|
|
|
@ -1,5 +1,5 @@
|
|
|
|
|
import { isPoint, pointFrom, pointRotateRads } from "./point";
|
|
|
|
|
import type { CubicBezier, Curve, GenericPoint, Radians } from "./types";
|
|
|
|
|
import { isPoint, pointRotateRads } from "./point";
|
|
|
|
|
import type { Curve, GenericPoint, Radians } from "./types";
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
@ -10,12 +10,12 @@ import type { CubicBezier, Curve, GenericPoint, Radians } from "./types";
|
|
|
|
|
* @returns
|
|
|
|
|
*/
|
|
|
|
|
export function curve<Point extends GenericPoint>(
|
|
|
|
|
a: Point,
|
|
|
|
|
b: Point,
|
|
|
|
|
c: Point,
|
|
|
|
|
d: Point,
|
|
|
|
|
start: Point,
|
|
|
|
|
control1: Point,
|
|
|
|
|
control2: Point,
|
|
|
|
|
end: Point,
|
|
|
|
|
) {
|
|
|
|
|
return [a, b, c, d] as Curve<Point>;
|
|
|
|
|
return [start, control1, control2, end] as Curve<Point>;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
export const curveRotate = <Point extends GenericPoint>(
|
|
|
|
@ -26,215 +26,16 @@ export const curveRotate = <Point extends GenericPoint>(
|
|
|
|
|
return curve.map((p) => pointRotateRads(p, origin, angle));
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
|
* @param pointsIn
|
|
|
|
|
* @param curveTightness
|
|
|
|
|
* @returns
|
|
|
|
|
*/
|
|
|
|
|
export function curveToBezier<Point extends GenericPoint>(
|
|
|
|
|
pointsIn: readonly Point[],
|
|
|
|
|
curveTightness = 0,
|
|
|
|
|
): Point[] {
|
|
|
|
|
const len = pointsIn.length;
|
|
|
|
|
if (len < 3) {
|
|
|
|
|
throw new Error("A curve must have at least three points.");
|
|
|
|
|
}
|
|
|
|
|
const out: Point[] = [];
|
|
|
|
|
if (len === 3) {
|
|
|
|
|
out.push(
|
|
|
|
|
pointFrom(pointsIn[0][0], pointsIn[0][1]), // Points need to be cloned
|
|
|
|
|
pointFrom(pointsIn[1][0], pointsIn[1][1]), // Points need to be cloned
|
|
|
|
|
pointFrom(pointsIn[2][0], pointsIn[2][1]), // Points need to be cloned
|
|
|
|
|
pointFrom(pointsIn[2][0], pointsIn[2][1]), // Points need to be cloned
|
|
|
|
|
);
|
|
|
|
|
} else {
|
|
|
|
|
const points: Point[] = [];
|
|
|
|
|
points.push(pointsIn[0], pointsIn[0]);
|
|
|
|
|
for (let i = 1; i < pointsIn.length; i++) {
|
|
|
|
|
points.push(pointsIn[i]);
|
|
|
|
|
if (i === pointsIn.length - 1) {
|
|
|
|
|
points.push(pointsIn[i]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
const b: Point[] = [];
|
|
|
|
|
const s = 1 - curveTightness;
|
|
|
|
|
out.push(pointFrom(points[0][0], points[0][1]));
|
|
|
|
|
for (let i = 1; i + 2 < points.length; i++) {
|
|
|
|
|
const cachedVertArray = points[i];
|
|
|
|
|
b[0] = pointFrom(cachedVertArray[0], cachedVertArray[1]);
|
|
|
|
|
b[1] = pointFrom(
|
|
|
|
|
cachedVertArray[0] + (s * points[i + 1][0] - s * points[i - 1][0]) / 6,
|
|
|
|
|
cachedVertArray[1] + (s * points[i + 1][1] - s * points[i - 1][1]) / 6,
|
|
|
|
|
);
|
|
|
|
|
b[2] = pointFrom(
|
|
|
|
|
points[i + 1][0] + (s * points[i][0] - s * points[i + 2][0]) / 6,
|
|
|
|
|
points[i + 1][1] + (s * points[i][1] - s * points[i + 2][1]) / 6,
|
|
|
|
|
);
|
|
|
|
|
b[3] = pointFrom(points[i + 1][0], points[i + 1][1]);
|
|
|
|
|
out.push(b[1], b[2], b[3]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return out;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
|
* @param t
|
|
|
|
|
* @param controlPoints
|
|
|
|
|
* @returns
|
|
|
|
|
*/
|
|
|
|
|
export const cubicBezierPoint = <Point extends GenericPoint>(
|
|
|
|
|
t: number,
|
|
|
|
|
controlPoints: Curve<Point>,
|
|
|
|
|
): Point => {
|
|
|
|
|
const [p0, p1, p2, p3] = controlPoints;
|
|
|
|
|
|
|
|
|
|
const x =
|
|
|
|
|
Math.pow(1 - t, 3) * p0[0] +
|
|
|
|
|
3 * Math.pow(1 - t, 2) * t * p1[0] +
|
|
|
|
|
3 * (1 - t) * Math.pow(t, 2) * p2[0] +
|
|
|
|
|
Math.pow(t, 3) * p3[0];
|
|
|
|
|
|
|
|
|
|
const y =
|
|
|
|
|
Math.pow(1 - t, 3) * p0[1] +
|
|
|
|
|
3 * Math.pow(1 - t, 2) * t * p1[1] +
|
|
|
|
|
3 * (1 - t) * Math.pow(t, 2) * p2[1] +
|
|
|
|
|
Math.pow(t, 3) * p3[1];
|
|
|
|
|
|
|
|
|
|
return pointFrom(x, y);
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
|
* @param point
|
|
|
|
|
* @param controlPoints
|
|
|
|
|
* @returns
|
|
|
|
|
*/
|
|
|
|
|
export const cubicBezierDistance = <Point extends GenericPoint>(
|
|
|
|
|
point: Point,
|
|
|
|
|
controlPoints: Curve<Point>,
|
|
|
|
|
) => {
|
|
|
|
|
// Calculate the closest point on the Bezier curve to the given point
|
|
|
|
|
const t = findClosestParameter(point, controlPoints);
|
|
|
|
|
|
|
|
|
|
// Calculate the coordinates of the closest point on the curve
|
|
|
|
|
const [closestX, closestY] = cubicBezierPoint(t, controlPoints);
|
|
|
|
|
|
|
|
|
|
// Calculate the distance between the given point and the closest point on the curve
|
|
|
|
|
const distance = Math.sqrt(
|
|
|
|
|
(point[0] - closestX) ** 2 + (point[1] - closestY) ** 2,
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
return distance;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const solveCubic = (a: number, b: number, c: number, d: number) => {
|
|
|
|
|
// This function solves the cubic equation ax^3 + bx^2 + cx + d = 0
|
|
|
|
|
const roots: number[] = [];
|
|
|
|
|
|
|
|
|
|
const discriminant =
|
|
|
|
|
18 * a * b * c * d -
|
|
|
|
|
4 * Math.pow(b, 3) * d +
|
|
|
|
|
Math.pow(b, 2) * Math.pow(c, 2) -
|
|
|
|
|
4 * a * Math.pow(c, 3) -
|
|
|
|
|
27 * Math.pow(a, 2) * Math.pow(d, 2);
|
|
|
|
|
|
|
|
|
|
if (discriminant >= 0) {
|
|
|
|
|
const C = Math.cbrt((discriminant + Math.sqrt(discriminant)) / 2);
|
|
|
|
|
const D = Math.cbrt((discriminant - Math.sqrt(discriminant)) / 2);
|
|
|
|
|
|
|
|
|
|
const root1 = (-b - C - D) / (3 * a);
|
|
|
|
|
const root2 = (-b + (C + D) / 2) / (3 * a);
|
|
|
|
|
const root3 = (-b + (C + D) / 2) / (3 * a);
|
|
|
|
|
|
|
|
|
|
roots.push(root1, root2, root3);
|
|
|
|
|
} else {
|
|
|
|
|
const realPart = -b / (3 * a);
|
|
|
|
|
|
|
|
|
|
const root1 =
|
|
|
|
|
2 * Math.sqrt(-b / (3 * a)) * Math.cos(Math.acos(realPart) / 3);
|
|
|
|
|
const root2 =
|
|
|
|
|
2 *
|
|
|
|
|
Math.sqrt(-b / (3 * a)) *
|
|
|
|
|
Math.cos((Math.acos(realPart) + 2 * Math.PI) / 3);
|
|
|
|
|
const root3 =
|
|
|
|
|
2 *
|
|
|
|
|
Math.sqrt(-b / (3 * a)) *
|
|
|
|
|
Math.cos((Math.acos(realPart) + 4 * Math.PI) / 3);
|
|
|
|
|
|
|
|
|
|
roots.push(root1, root2, root3);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return roots;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
const findClosestParameter = <Point extends GenericPoint>(
|
|
|
|
|
point: Point,
|
|
|
|
|
controlPoints: Curve<Point>,
|
|
|
|
|
) => {
|
|
|
|
|
// This function finds the parameter t that minimizes the distance between the point
|
|
|
|
|
// and any point on the cubic Bezier curve.
|
|
|
|
|
|
|
|
|
|
const [p0, p1, p2, p3] = controlPoints;
|
|
|
|
|
|
|
|
|
|
// Use the direct formula to find the parameter t
|
|
|
|
|
const a = p3[0] - 3 * p2[0] + 3 * p1[0] - p0[0];
|
|
|
|
|
const b = 3 * p2[0] - 6 * p1[0] + 3 * p0[0];
|
|
|
|
|
const c = 3 * p1[0] - 3 * p0[0];
|
|
|
|
|
const d = p0[0] - point[0];
|
|
|
|
|
|
|
|
|
|
const rootsX = solveCubic(a, b, c, d);
|
|
|
|
|
|
|
|
|
|
// Do the same for the y-coordinate
|
|
|
|
|
const e = p3[1] - 3 * p2[1] + 3 * p1[1] - p0[1];
|
|
|
|
|
const f = 3 * p2[1] - 6 * p1[1] + 3 * p0[1];
|
|
|
|
|
const g = 3 * p1[1] - 3 * p0[1];
|
|
|
|
|
const h = p0[1] - point[1];
|
|
|
|
|
|
|
|
|
|
const rootsY = solveCubic(e, f, g, h);
|
|
|
|
|
|
|
|
|
|
// Select the real root that is between 0 and 1 (inclusive)
|
|
|
|
|
const validRootsX = rootsX.filter((root) => root >= 0 && root <= 1);
|
|
|
|
|
const validRootsY = rootsY.filter((root) => root >= 0 && root <= 1);
|
|
|
|
|
|
|
|
|
|
if (validRootsX.length === 0 || validRootsY.length === 0) {
|
|
|
|
|
// No valid roots found, use the midpoint as a fallback
|
|
|
|
|
return 0.5;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Choose the parameter t that minimizes the distance
|
|
|
|
|
let minDistance = Infinity;
|
|
|
|
|
let closestT = 0;
|
|
|
|
|
|
|
|
|
|
for (const rootX of validRootsX) {
|
|
|
|
|
for (const rootY of validRootsY) {
|
|
|
|
|
const distance = Math.sqrt(
|
|
|
|
|
(rootX - point[0]) ** 2 + (rootY - point[1]) ** 2,
|
|
|
|
|
);
|
|
|
|
|
if (distance < minDistance) {
|
|
|
|
|
minDistance = distance;
|
|
|
|
|
closestT = (rootX + rootY) / 2; // Use the average for a smoother result
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
return closestT;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
export const isBezier = <Point extends GenericPoint>(
|
|
|
|
|
export const isCurve = <Point extends GenericPoint>(
|
|
|
|
|
c: unknown,
|
|
|
|
|
): c is CubicBezier<Point> => {
|
|
|
|
|
): c is Curve<Point> => {
|
|
|
|
|
return (
|
|
|
|
|
c != null &&
|
|
|
|
|
typeof c === "object" &&
|
|
|
|
|
Object.hasOwn(c, "start") &&
|
|
|
|
|
Object.hasOwn(c, "end") &&
|
|
|
|
|
Object.hasOwn(c, "control1") &&
|
|
|
|
|
Object.hasOwn(c, "control2") &&
|
|
|
|
|
isPoint((c as CubicBezier<Point>).start) &&
|
|
|
|
|
isPoint((c as CubicBezier<Point>).end) &&
|
|
|
|
|
isPoint((c as CubicBezier<Point>).control1) &&
|
|
|
|
|
isPoint((c as CubicBezier<Point>).control2)
|
|
|
|
|
Array.isArray(c) &&
|
|
|
|
|
c.length === 4 &&
|
|
|
|
|
isPoint((c as Curve<Point>)[0]) &&
|
|
|
|
|
isPoint((c as Curve<Point>)[1]) &&
|
|
|
|
|
isPoint((c as Curve<Point>)[2]) &&
|
|
|
|
|
isPoint((c as Curve<Point>)[3])
|
|
|
|
|
);
|
|
|
|
|
};
|
|
|
|
|