Type refactor

Signed-off-by: Mark Tolmacs <mark@lazycat.hu>
pull/8539/head
Mark Tolmacs 2 weeks ago
parent 47064a3662
commit 2137f2b806
No known key found for this signature in database

@ -12,10 +12,10 @@ import {
TrashIcon, TrashIcon,
} from "../../packages/excalidraw/components/icons"; } from "../../packages/excalidraw/components/icons";
import { STORAGE_KEYS } from "../app_constants"; import { STORAGE_KEYS } from "../app_constants";
import type { Arc, CubicBezier } from "../../packages/math"; import type { Arc, Curve } from "../../packages/math";
import { import {
isArc, isArc,
isBezier, isCurve,
isSegment, isSegment,
type GlobalPoint, type GlobalPoint,
type Segment, type Segment,
@ -39,7 +39,7 @@ const renderLine = (
const renderCubicBezier = ( const renderCubicBezier = (
context: CanvasRenderingContext2D, context: CanvasRenderingContext2D,
zoom: number, zoom: number,
{ start, control1, control2, end }: CubicBezier<GlobalPoint>, [start, control1, control2, end]: Curve<GlobalPoint>,
color: string, color: string,
) => { ) => {
context.save(); context.save();
@ -113,11 +113,11 @@ const render = (
el.color, el.color,
); );
break; break;
case isBezier(el.data): case isCurve(el.data):
renderCubicBezier( renderCubicBezier(
context, context,
appState.zoom.value, appState.zoom.value,
el.data as CubicBezier<GlobalPoint>, el.data as Curve<GlobalPoint>,
el.color, el.color,
); );
break; break;

@ -164,14 +164,14 @@ export const getElementShape = (
const [, , , , cx, cy] = getElementAbsoluteCoords(element, elementsMap); const [, , , , cx, cy] = getElementAbsoluteCoords(element, elementsMap);
return shouldTestInside(element) return shouldTestInside(element)
? getClosedCurveShape<GlobalPoint>( ? getClosedCurveShape(
element, element,
roughShape, roughShape,
pointFrom<GlobalPoint>(element.x, element.y), pointFrom<GlobalPoint>(element.x, element.y),
element.angle, element.angle,
pointFrom(cx, cy), pointFrom(cx, cy),
) )
: getCurveShape<GlobalPoint>( : getCurveShape(
roughShape, roughShape,
pointFrom<GlobalPoint>(element.x, element.y), pointFrom<GlobalPoint>(element.x, element.y),
element.angle, element.angle,

@ -1,4 +1,4 @@
import type { Arc, CubicBezier, Segment } from "../math"; import type { Arc, Curve, Segment } from "../math";
import { isSegment, segment, pointFrom, type GlobalPoint } from "../math"; import { isSegment, segment, pointFrom, type GlobalPoint } from "../math";
import { isBounds } from "./element/typeChecks"; import { isBounds } from "./element/typeChecks";
import type { Bounds } from "./element/types"; import type { Bounds } from "./element/types";
@ -15,12 +15,12 @@ declare global {
export type DebugElement = { export type DebugElement = {
color: string; color: string;
data: Segment<GlobalPoint> | Arc<GlobalPoint> | CubicBezier<GlobalPoint>; data: Segment<GlobalPoint> | Arc<GlobalPoint> | Curve<GlobalPoint>;
permanent: boolean; permanent: boolean;
}; };
export const debugDrawCubicBezier = ( export const debugDrawCubicBezier = (
c: CubicBezier<GlobalPoint>, c: Curve<GlobalPoint>,
opts?: { opts?: {
color?: string; color?: string;
permanent?: boolean; permanent?: boolean;

@ -1,5 +1,5 @@
import { isPoint, pointFrom, pointRotateRads } from "./point"; import { isPoint, pointRotateRads } from "./point";
import type { CubicBezier, Curve, GenericPoint, Radians } from "./types"; import type { Curve, GenericPoint, Radians } from "./types";
/** /**
* *
@ -10,12 +10,12 @@ import type { CubicBezier, Curve, GenericPoint, Radians } from "./types";
* @returns * @returns
*/ */
export function curve<Point extends GenericPoint>( export function curve<Point extends GenericPoint>(
a: Point, start: Point,
b: Point, control1: Point,
c: Point, control2: Point,
d: Point, end: Point,
) { ) {
return [a, b, c, d] as Curve<Point>; return [start, control1, control2, end] as Curve<Point>;
} }
export const curveRotate = <Point extends GenericPoint>( export const curveRotate = <Point extends GenericPoint>(
@ -26,215 +26,16 @@ export const curveRotate = <Point extends GenericPoint>(
return curve.map((p) => pointRotateRads(p, origin, angle)); return curve.map((p) => pointRotateRads(p, origin, angle));
}; };
/** export const isCurve = <Point extends GenericPoint>(
*
* @param pointsIn
* @param curveTightness
* @returns
*/
export function curveToBezier<Point extends GenericPoint>(
pointsIn: readonly Point[],
curveTightness = 0,
): Point[] {
const len = pointsIn.length;
if (len < 3) {
throw new Error("A curve must have at least three points.");
}
const out: Point[] = [];
if (len === 3) {
out.push(
pointFrom(pointsIn[0][0], pointsIn[0][1]), // Points need to be cloned
pointFrom(pointsIn[1][0], pointsIn[1][1]), // Points need to be cloned
pointFrom(pointsIn[2][0], pointsIn[2][1]), // Points need to be cloned
pointFrom(pointsIn[2][0], pointsIn[2][1]), // Points need to be cloned
);
} else {
const points: Point[] = [];
points.push(pointsIn[0], pointsIn[0]);
for (let i = 1; i < pointsIn.length; i++) {
points.push(pointsIn[i]);
if (i === pointsIn.length - 1) {
points.push(pointsIn[i]);
}
}
const b: Point[] = [];
const s = 1 - curveTightness;
out.push(pointFrom(points[0][0], points[0][1]));
for (let i = 1; i + 2 < points.length; i++) {
const cachedVertArray = points[i];
b[0] = pointFrom(cachedVertArray[0], cachedVertArray[1]);
b[1] = pointFrom(
cachedVertArray[0] + (s * points[i + 1][0] - s * points[i - 1][0]) / 6,
cachedVertArray[1] + (s * points[i + 1][1] - s * points[i - 1][1]) / 6,
);
b[2] = pointFrom(
points[i + 1][0] + (s * points[i][0] - s * points[i + 2][0]) / 6,
points[i + 1][1] + (s * points[i][1] - s * points[i + 2][1]) / 6,
);
b[3] = pointFrom(points[i + 1][0], points[i + 1][1]);
out.push(b[1], b[2], b[3]);
}
}
return out;
}
/**
*
* @param t
* @param controlPoints
* @returns
*/
export const cubicBezierPoint = <Point extends GenericPoint>(
t: number,
controlPoints: Curve<Point>,
): Point => {
const [p0, p1, p2, p3] = controlPoints;
const x =
Math.pow(1 - t, 3) * p0[0] +
3 * Math.pow(1 - t, 2) * t * p1[0] +
3 * (1 - t) * Math.pow(t, 2) * p2[0] +
Math.pow(t, 3) * p3[0];
const y =
Math.pow(1 - t, 3) * p0[1] +
3 * Math.pow(1 - t, 2) * t * p1[1] +
3 * (1 - t) * Math.pow(t, 2) * p2[1] +
Math.pow(t, 3) * p3[1];
return pointFrom(x, y);
};
/**
*
* @param point
* @param controlPoints
* @returns
*/
export const cubicBezierDistance = <Point extends GenericPoint>(
point: Point,
controlPoints: Curve<Point>,
) => {
// Calculate the closest point on the Bezier curve to the given point
const t = findClosestParameter(point, controlPoints);
// Calculate the coordinates of the closest point on the curve
const [closestX, closestY] = cubicBezierPoint(t, controlPoints);
// Calculate the distance between the given point and the closest point on the curve
const distance = Math.sqrt(
(point[0] - closestX) ** 2 + (point[1] - closestY) ** 2,
);
return distance;
};
const solveCubic = (a: number, b: number, c: number, d: number) => {
// This function solves the cubic equation ax^3 + bx^2 + cx + d = 0
const roots: number[] = [];
const discriminant =
18 * a * b * c * d -
4 * Math.pow(b, 3) * d +
Math.pow(b, 2) * Math.pow(c, 2) -
4 * a * Math.pow(c, 3) -
27 * Math.pow(a, 2) * Math.pow(d, 2);
if (discriminant >= 0) {
const C = Math.cbrt((discriminant + Math.sqrt(discriminant)) / 2);
const D = Math.cbrt((discriminant - Math.sqrt(discriminant)) / 2);
const root1 = (-b - C - D) / (3 * a);
const root2 = (-b + (C + D) / 2) / (3 * a);
const root3 = (-b + (C + D) / 2) / (3 * a);
roots.push(root1, root2, root3);
} else {
const realPart = -b / (3 * a);
const root1 =
2 * Math.sqrt(-b / (3 * a)) * Math.cos(Math.acos(realPart) / 3);
const root2 =
2 *
Math.sqrt(-b / (3 * a)) *
Math.cos((Math.acos(realPart) + 2 * Math.PI) / 3);
const root3 =
2 *
Math.sqrt(-b / (3 * a)) *
Math.cos((Math.acos(realPart) + 4 * Math.PI) / 3);
roots.push(root1, root2, root3);
}
return roots;
};
const findClosestParameter = <Point extends GenericPoint>(
point: Point,
controlPoints: Curve<Point>,
) => {
// This function finds the parameter t that minimizes the distance between the point
// and any point on the cubic Bezier curve.
const [p0, p1, p2, p3] = controlPoints;
// Use the direct formula to find the parameter t
const a = p3[0] - 3 * p2[0] + 3 * p1[0] - p0[0];
const b = 3 * p2[0] - 6 * p1[0] + 3 * p0[0];
const c = 3 * p1[0] - 3 * p0[0];
const d = p0[0] - point[0];
const rootsX = solveCubic(a, b, c, d);
// Do the same for the y-coordinate
const e = p3[1] - 3 * p2[1] + 3 * p1[1] - p0[1];
const f = 3 * p2[1] - 6 * p1[1] + 3 * p0[1];
const g = 3 * p1[1] - 3 * p0[1];
const h = p0[1] - point[1];
const rootsY = solveCubic(e, f, g, h);
// Select the real root that is between 0 and 1 (inclusive)
const validRootsX = rootsX.filter((root) => root >= 0 && root <= 1);
const validRootsY = rootsY.filter((root) => root >= 0 && root <= 1);
if (validRootsX.length === 0 || validRootsY.length === 0) {
// No valid roots found, use the midpoint as a fallback
return 0.5;
}
// Choose the parameter t that minimizes the distance
let minDistance = Infinity;
let closestT = 0;
for (const rootX of validRootsX) {
for (const rootY of validRootsY) {
const distance = Math.sqrt(
(rootX - point[0]) ** 2 + (rootY - point[1]) ** 2,
);
if (distance < minDistance) {
minDistance = distance;
closestT = (rootX + rootY) / 2; // Use the average for a smoother result
}
}
}
return closestT;
};
export const isBezier = <Point extends GenericPoint>(
c: unknown, c: unknown,
): c is CubicBezier<Point> => { ): c is Curve<Point> => {
return ( return (
c != null && c != null &&
typeof c === "object" && Array.isArray(c) &&
Object.hasOwn(c, "start") && c.length === 4 &&
Object.hasOwn(c, "end") && isPoint((c as Curve<Point>)[0]) &&
Object.hasOwn(c, "control1") && isPoint((c as Curve<Point>)[1]) &&
Object.hasOwn(c, "control2") && isPoint((c as Curve<Point>)[2]) &&
isPoint((c as CubicBezier<Point>).start) && isPoint((c as Curve<Point>)[3])
isPoint((c as CubicBezier<Point>).end) &&
isPoint((c as CubicBezier<Point>).control1) &&
isPoint((c as CubicBezier<Point>).control2)
); );
}; };

@ -101,9 +101,22 @@ export type Polygon<Point extends GenericPoint> = Point[] & {
}; };
/** /**
* Cubic bezier curve with four control points * Cubic bezier curve where the start and end points are at the 0 and 3 index
*/ * respectively, and the control points are at the 1 and 2 index respectively.
export type Curve<Point extends GenericPoint> = [Point, Point, Point, Point] & { *
* It conveniently maps into the following code:
*
* ```javascript
* canvasCtx.moveTo(start);
* canvasCtx.bezierCurveTo(control1, control2, end);
* ```
*/
export type Curve<Point extends GenericPoint> = [
start: Point,
control1: Point,
control2: Point,
end: Point,
] & {
_brand: "excalimath_curve"; _brand: "excalimath_curve";
}; };
@ -144,14 +157,3 @@ export type Ellipse<Point extends GenericPoint> = {
} & { } & {
_brand: "excalimath_ellipse"; _brand: "excalimath_ellipse";
}; };
/**
* Represents a cubic bezier with 2 control points on the point space of your
* choosing.
*/
export type CubicBezier<P extends GenericPoint> = {
start: P;
end: P;
control1: P;
control2: P;
};

@ -197,13 +197,13 @@ export const getCurvePathOps = (shape: Drawable): Op[] => {
}; };
// linear // linear
export const getCurveShape = <Point extends GlobalPoint | LocalPoint>( export const getCurveShape = (
roughShape: Drawable, roughShape: Drawable,
startingPoint: Point = pointFrom(0, 0), startingPoint: GlobalPoint,
angleInRadian: Radians, angleInRadian: Radians,
center: Point, center: GlobalPoint,
): GeometricShape<Point> => { ): GeometricShape<GlobalPoint> => {
const transform = (p: Point): Point => const transform = (p: GlobalPoint): GlobalPoint =>
pointRotateRads( pointRotateRads(
pointFrom(p[0] + startingPoint[0], p[1] + startingPoint[1]), pointFrom(p[0] + startingPoint[0], p[1] + startingPoint[1]),
center, center,
@ -211,20 +211,20 @@ export const getCurveShape = <Point extends GlobalPoint | LocalPoint>(
); );
const ops = getCurvePathOps(roughShape); const ops = getCurvePathOps(roughShape);
const polycurve: Polycurve<Point> = []; const polycurve: Polycurve<GlobalPoint> = [];
let p0 = pointFrom<Point>(0, 0); let p0 = pointFrom<GlobalPoint>(0, 0);
for (const op of ops) { for (const op of ops) {
if (op.op === "move") { if (op.op === "move") {
const p = pointFromArray<Point>(op.data); const p = pointFromArray<GlobalPoint>(op.data);
invariant(p != null, "Ops data is not a point"); invariant(p != null, "Ops data is not a point");
p0 = transform(p); p0 = transform(p);
} }
if (op.op === "bcurveTo") { if (op.op === "bcurveTo") {
const p1 = transform(pointFrom<Point>(op.data[0], op.data[1])); const p1 = transform(pointFrom(op.data[0], op.data[1]));
const p2 = transform(pointFrom<Point>(op.data[2], op.data[3])); const p2 = transform(pointFrom(op.data[2], op.data[3]));
const p3 = transform(pointFrom<Point>(op.data[4], op.data[5])); const p3 = transform(pointFrom(op.data[4], op.data[5]));
polycurve.push(curve<Point>(p0, p1, p2, p3)); polycurve.push(curve(p0, p1, p2, p3));
p0 = p3; p0 = p3;
} }
} }
@ -281,16 +281,16 @@ export const getFreedrawShape = (
) as GeometricShape<GlobalPoint>; ) as GeometricShape<GlobalPoint>;
}; };
export const getClosedCurveShape = <Point extends GlobalPoint | LocalPoint>( export const getClosedCurveShape = (
element: ExcalidrawLinearElement, element: ExcalidrawLinearElement,
roughShape: Drawable, roughShape: Drawable,
startingPoint: Point = pointFrom<Point>(0, 0), startingPoint: GlobalPoint,
angleInRadian: Radians, angleInRadian: Radians,
center: Point, center: GlobalPoint,
): GeometricShape<Point> => { ): GeometricShape<GlobalPoint> => {
const transform = (p: Point) => const transform = (p: LocalPoint) =>
pointRotateRads( pointRotateRads(
pointFrom(p[0] + startingPoint[0], p[1] + startingPoint[1]), pointFrom<GlobalPoint>(p[0] + startingPoint[0], p[1] + startingPoint[1]),
center, center,
angleInRadian, angleInRadian,
); );
@ -298,15 +298,13 @@ export const getClosedCurveShape = <Point extends GlobalPoint | LocalPoint>(
if (element.roundness === null) { if (element.roundness === null) {
return { return {
type: "polygon", type: "polygon",
data: polygonFromPoints( data: polygonFromPoints(element.points.map((p) => transform(p))),
element.points.map((p) => transform(p as Point)) as Point[],
),
}; };
} }
const ops = getCurvePathOps(roughShape); const ops = getCurvePathOps(roughShape);
const points: Point[] = []; const points: GlobalPoint[] = [];
let odd = false; let odd = false;
for (const operation of ops) { for (const operation of ops) {
if (operation.op === "move") { if (operation.op === "move") {
@ -328,12 +326,12 @@ export const getClosedCurveShape = <Point extends GlobalPoint | LocalPoint>(
} }
const polygonPoints = pointsOnBezierCurves(points, 10, 5).map((p) => const polygonPoints = pointsOnBezierCurves(points, 10, 5).map((p) =>
transform(p as Point), transform(p as LocalPoint),
) as Point[]; );
return { return {
type: "polygon", type: "polygon",
data: polygonFromPoints<Point>(polygonPoints), data: polygonFromPoints(polygonPoints),
}; };
}; };

Loading…
Cancel
Save