Type refactor

Signed-off-by: Mark Tolmacs <mark@lazycat.hu>
pull/8539/head
Mark Tolmacs 2 weeks ago
parent 47064a3662
commit 2137f2b806
No known key found for this signature in database

@ -12,10 +12,10 @@ import {
TrashIcon,
} from "../../packages/excalidraw/components/icons";
import { STORAGE_KEYS } from "../app_constants";
import type { Arc, CubicBezier } from "../../packages/math";
import type { Arc, Curve } from "../../packages/math";
import {
isArc,
isBezier,
isCurve,
isSegment,
type GlobalPoint,
type Segment,
@ -39,7 +39,7 @@ const renderLine = (
const renderCubicBezier = (
context: CanvasRenderingContext2D,
zoom: number,
{ start, control1, control2, end }: CubicBezier<GlobalPoint>,
[start, control1, control2, end]: Curve<GlobalPoint>,
color: string,
) => {
context.save();
@ -113,11 +113,11 @@ const render = (
el.color,
);
break;
case isBezier(el.data):
case isCurve(el.data):
renderCubicBezier(
context,
appState.zoom.value,
el.data as CubicBezier<GlobalPoint>,
el.data as Curve<GlobalPoint>,
el.color,
);
break;

@ -164,14 +164,14 @@ export const getElementShape = (
const [, , , , cx, cy] = getElementAbsoluteCoords(element, elementsMap);
return shouldTestInside(element)
? getClosedCurveShape<GlobalPoint>(
? getClosedCurveShape(
element,
roughShape,
pointFrom<GlobalPoint>(element.x, element.y),
element.angle,
pointFrom(cx, cy),
)
: getCurveShape<GlobalPoint>(
: getCurveShape(
roughShape,
pointFrom<GlobalPoint>(element.x, element.y),
element.angle,

@ -1,4 +1,4 @@
import type { Arc, CubicBezier, Segment } from "../math";
import type { Arc, Curve, Segment } from "../math";
import { isSegment, segment, pointFrom, type GlobalPoint } from "../math";
import { isBounds } from "./element/typeChecks";
import type { Bounds } from "./element/types";
@ -15,12 +15,12 @@ declare global {
export type DebugElement = {
color: string;
data: Segment<GlobalPoint> | Arc<GlobalPoint> | CubicBezier<GlobalPoint>;
data: Segment<GlobalPoint> | Arc<GlobalPoint> | Curve<GlobalPoint>;
permanent: boolean;
};
export const debugDrawCubicBezier = (
c: CubicBezier<GlobalPoint>,
c: Curve<GlobalPoint>,
opts?: {
color?: string;
permanent?: boolean;

@ -1,5 +1,5 @@
import { isPoint, pointFrom, pointRotateRads } from "./point";
import type { CubicBezier, Curve, GenericPoint, Radians } from "./types";
import { isPoint, pointRotateRads } from "./point";
import type { Curve, GenericPoint, Radians } from "./types";
/**
*
@ -10,12 +10,12 @@ import type { CubicBezier, Curve, GenericPoint, Radians } from "./types";
* @returns
*/
export function curve<Point extends GenericPoint>(
a: Point,
b: Point,
c: Point,
d: Point,
start: Point,
control1: Point,
control2: Point,
end: Point,
) {
return [a, b, c, d] as Curve<Point>;
return [start, control1, control2, end] as Curve<Point>;
}
export const curveRotate = <Point extends GenericPoint>(
@ -26,215 +26,16 @@ export const curveRotate = <Point extends GenericPoint>(
return curve.map((p) => pointRotateRads(p, origin, angle));
};
/**
*
* @param pointsIn
* @param curveTightness
* @returns
*/
export function curveToBezier<Point extends GenericPoint>(
pointsIn: readonly Point[],
curveTightness = 0,
): Point[] {
const len = pointsIn.length;
if (len < 3) {
throw new Error("A curve must have at least three points.");
}
const out: Point[] = [];
if (len === 3) {
out.push(
pointFrom(pointsIn[0][0], pointsIn[0][1]), // Points need to be cloned
pointFrom(pointsIn[1][0], pointsIn[1][1]), // Points need to be cloned
pointFrom(pointsIn[2][0], pointsIn[2][1]), // Points need to be cloned
pointFrom(pointsIn[2][0], pointsIn[2][1]), // Points need to be cloned
);
} else {
const points: Point[] = [];
points.push(pointsIn[0], pointsIn[0]);
for (let i = 1; i < pointsIn.length; i++) {
points.push(pointsIn[i]);
if (i === pointsIn.length - 1) {
points.push(pointsIn[i]);
}
}
const b: Point[] = [];
const s = 1 - curveTightness;
out.push(pointFrom(points[0][0], points[0][1]));
for (let i = 1; i + 2 < points.length; i++) {
const cachedVertArray = points[i];
b[0] = pointFrom(cachedVertArray[0], cachedVertArray[1]);
b[1] = pointFrom(
cachedVertArray[0] + (s * points[i + 1][0] - s * points[i - 1][0]) / 6,
cachedVertArray[1] + (s * points[i + 1][1] - s * points[i - 1][1]) / 6,
);
b[2] = pointFrom(
points[i + 1][0] + (s * points[i][0] - s * points[i + 2][0]) / 6,
points[i + 1][1] + (s * points[i][1] - s * points[i + 2][1]) / 6,
);
b[3] = pointFrom(points[i + 1][0], points[i + 1][1]);
out.push(b[1], b[2], b[3]);
}
}
return out;
}
/**
*
* @param t
* @param controlPoints
* @returns
*/
export const cubicBezierPoint = <Point extends GenericPoint>(
t: number,
controlPoints: Curve<Point>,
): Point => {
const [p0, p1, p2, p3] = controlPoints;
const x =
Math.pow(1 - t, 3) * p0[0] +
3 * Math.pow(1 - t, 2) * t * p1[0] +
3 * (1 - t) * Math.pow(t, 2) * p2[0] +
Math.pow(t, 3) * p3[0];
const y =
Math.pow(1 - t, 3) * p0[1] +
3 * Math.pow(1 - t, 2) * t * p1[1] +
3 * (1 - t) * Math.pow(t, 2) * p2[1] +
Math.pow(t, 3) * p3[1];
return pointFrom(x, y);
};
/**
*
* @param point
* @param controlPoints
* @returns
*/
export const cubicBezierDistance = <Point extends GenericPoint>(
point: Point,
controlPoints: Curve<Point>,
) => {
// Calculate the closest point on the Bezier curve to the given point
const t = findClosestParameter(point, controlPoints);
// Calculate the coordinates of the closest point on the curve
const [closestX, closestY] = cubicBezierPoint(t, controlPoints);
// Calculate the distance between the given point and the closest point on the curve
const distance = Math.sqrt(
(point[0] - closestX) ** 2 + (point[1] - closestY) ** 2,
);
return distance;
};
const solveCubic = (a: number, b: number, c: number, d: number) => {
// This function solves the cubic equation ax^3 + bx^2 + cx + d = 0
const roots: number[] = [];
const discriminant =
18 * a * b * c * d -
4 * Math.pow(b, 3) * d +
Math.pow(b, 2) * Math.pow(c, 2) -
4 * a * Math.pow(c, 3) -
27 * Math.pow(a, 2) * Math.pow(d, 2);
if (discriminant >= 0) {
const C = Math.cbrt((discriminant + Math.sqrt(discriminant)) / 2);
const D = Math.cbrt((discriminant - Math.sqrt(discriminant)) / 2);
const root1 = (-b - C - D) / (3 * a);
const root2 = (-b + (C + D) / 2) / (3 * a);
const root3 = (-b + (C + D) / 2) / (3 * a);
roots.push(root1, root2, root3);
} else {
const realPart = -b / (3 * a);
const root1 =
2 * Math.sqrt(-b / (3 * a)) * Math.cos(Math.acos(realPart) / 3);
const root2 =
2 *
Math.sqrt(-b / (3 * a)) *
Math.cos((Math.acos(realPart) + 2 * Math.PI) / 3);
const root3 =
2 *
Math.sqrt(-b / (3 * a)) *
Math.cos((Math.acos(realPart) + 4 * Math.PI) / 3);
roots.push(root1, root2, root3);
}
return roots;
};
const findClosestParameter = <Point extends GenericPoint>(
point: Point,
controlPoints: Curve<Point>,
) => {
// This function finds the parameter t that minimizes the distance between the point
// and any point on the cubic Bezier curve.
const [p0, p1, p2, p3] = controlPoints;
// Use the direct formula to find the parameter t
const a = p3[0] - 3 * p2[0] + 3 * p1[0] - p0[0];
const b = 3 * p2[0] - 6 * p1[0] + 3 * p0[0];
const c = 3 * p1[0] - 3 * p0[0];
const d = p0[0] - point[0];
const rootsX = solveCubic(a, b, c, d);
// Do the same for the y-coordinate
const e = p3[1] - 3 * p2[1] + 3 * p1[1] - p0[1];
const f = 3 * p2[1] - 6 * p1[1] + 3 * p0[1];
const g = 3 * p1[1] - 3 * p0[1];
const h = p0[1] - point[1];
const rootsY = solveCubic(e, f, g, h);
// Select the real root that is between 0 and 1 (inclusive)
const validRootsX = rootsX.filter((root) => root >= 0 && root <= 1);
const validRootsY = rootsY.filter((root) => root >= 0 && root <= 1);
if (validRootsX.length === 0 || validRootsY.length === 0) {
// No valid roots found, use the midpoint as a fallback
return 0.5;
}
// Choose the parameter t that minimizes the distance
let minDistance = Infinity;
let closestT = 0;
for (const rootX of validRootsX) {
for (const rootY of validRootsY) {
const distance = Math.sqrt(
(rootX - point[0]) ** 2 + (rootY - point[1]) ** 2,
);
if (distance < minDistance) {
minDistance = distance;
closestT = (rootX + rootY) / 2; // Use the average for a smoother result
}
}
}
return closestT;
};
export const isBezier = <Point extends GenericPoint>(
export const isCurve = <Point extends GenericPoint>(
c: unknown,
): c is CubicBezier<Point> => {
): c is Curve<Point> => {
return (
c != null &&
typeof c === "object" &&
Object.hasOwn(c, "start") &&
Object.hasOwn(c, "end") &&
Object.hasOwn(c, "control1") &&
Object.hasOwn(c, "control2") &&
isPoint((c as CubicBezier<Point>).start) &&
isPoint((c as CubicBezier<Point>).end) &&
isPoint((c as CubicBezier<Point>).control1) &&
isPoint((c as CubicBezier<Point>).control2)
Array.isArray(c) &&
c.length === 4 &&
isPoint((c as Curve<Point>)[0]) &&
isPoint((c as Curve<Point>)[1]) &&
isPoint((c as Curve<Point>)[2]) &&
isPoint((c as Curve<Point>)[3])
);
};

@ -101,9 +101,22 @@ export type Polygon<Point extends GenericPoint> = Point[] & {
};
/**
* Cubic bezier curve with four control points
*/
export type Curve<Point extends GenericPoint> = [Point, Point, Point, Point] & {
* Cubic bezier curve where the start and end points are at the 0 and 3 index
* respectively, and the control points are at the 1 and 2 index respectively.
*
* It conveniently maps into the following code:
*
* ```javascript
* canvasCtx.moveTo(start);
* canvasCtx.bezierCurveTo(control1, control2, end);
* ```
*/
export type Curve<Point extends GenericPoint> = [
start: Point,
control1: Point,
control2: Point,
end: Point,
] & {
_brand: "excalimath_curve";
};
@ -144,14 +157,3 @@ export type Ellipse<Point extends GenericPoint> = {
} & {
_brand: "excalimath_ellipse";
};
/**
* Represents a cubic bezier with 2 control points on the point space of your
* choosing.
*/
export type CubicBezier<P extends GenericPoint> = {
start: P;
end: P;
control1: P;
control2: P;
};

@ -197,13 +197,13 @@ export const getCurvePathOps = (shape: Drawable): Op[] => {
};
// linear
export const getCurveShape = <Point extends GlobalPoint | LocalPoint>(
export const getCurveShape = (
roughShape: Drawable,
startingPoint: Point = pointFrom(0, 0),
startingPoint: GlobalPoint,
angleInRadian: Radians,
center: Point,
): GeometricShape<Point> => {
const transform = (p: Point): Point =>
center: GlobalPoint,
): GeometricShape<GlobalPoint> => {
const transform = (p: GlobalPoint): GlobalPoint =>
pointRotateRads(
pointFrom(p[0] + startingPoint[0], p[1] + startingPoint[1]),
center,
@ -211,20 +211,20 @@ export const getCurveShape = <Point extends GlobalPoint | LocalPoint>(
);
const ops = getCurvePathOps(roughShape);
const polycurve: Polycurve<Point> = [];
let p0 = pointFrom<Point>(0, 0);
const polycurve: Polycurve<GlobalPoint> = [];
let p0 = pointFrom<GlobalPoint>(0, 0);
for (const op of ops) {
if (op.op === "move") {
const p = pointFromArray<Point>(op.data);
const p = pointFromArray<GlobalPoint>(op.data);
invariant(p != null, "Ops data is not a point");
p0 = transform(p);
}
if (op.op === "bcurveTo") {
const p1 = transform(pointFrom<Point>(op.data[0], op.data[1]));
const p2 = transform(pointFrom<Point>(op.data[2], op.data[3]));
const p3 = transform(pointFrom<Point>(op.data[4], op.data[5]));
polycurve.push(curve<Point>(p0, p1, p2, p3));
const p1 = transform(pointFrom(op.data[0], op.data[1]));
const p2 = transform(pointFrom(op.data[2], op.data[3]));
const p3 = transform(pointFrom(op.data[4], op.data[5]));
polycurve.push(curve(p0, p1, p2, p3));
p0 = p3;
}
}
@ -281,16 +281,16 @@ export const getFreedrawShape = (
) as GeometricShape<GlobalPoint>;
};
export const getClosedCurveShape = <Point extends GlobalPoint | LocalPoint>(
export const getClosedCurveShape = (
element: ExcalidrawLinearElement,
roughShape: Drawable,
startingPoint: Point = pointFrom<Point>(0, 0),
startingPoint: GlobalPoint,
angleInRadian: Radians,
center: Point,
): GeometricShape<Point> => {
const transform = (p: Point) =>
center: GlobalPoint,
): GeometricShape<GlobalPoint> => {
const transform = (p: LocalPoint) =>
pointRotateRads(
pointFrom(p[0] + startingPoint[0], p[1] + startingPoint[1]),
pointFrom<GlobalPoint>(p[0] + startingPoint[0], p[1] + startingPoint[1]),
center,
angleInRadian,
);
@ -298,15 +298,13 @@ export const getClosedCurveShape = <Point extends GlobalPoint | LocalPoint>(
if (element.roundness === null) {
return {
type: "polygon",
data: polygonFromPoints(
element.points.map((p) => transform(p as Point)) as Point[],
),
data: polygonFromPoints(element.points.map((p) => transform(p))),
};
}
const ops = getCurvePathOps(roughShape);
const points: Point[] = [];
const points: GlobalPoint[] = [];
let odd = false;
for (const operation of ops) {
if (operation.op === "move") {
@ -328,12 +326,12 @@ export const getClosedCurveShape = <Point extends GlobalPoint | LocalPoint>(
}
const polygonPoints = pointsOnBezierCurves(points, 10, 5).map((p) =>
transform(p as Point),
) as Point[];
transform(p as LocalPoint),
);
return {
type: "polygon",
data: polygonFromPoints<Point>(polygonPoints),
data: polygonFromPoints(polygonPoints),
};
};

Loading…
Cancel
Save