You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
success/packages/math/curve.ts

283 lines
5.8 KiB
TypeScript

import type { Bounds } from "../excalidraw/element/bounds";
import { isPoint, pointDistance, pointFrom } from "./point";
import { rectangle, rectangleIntersectLineSegment } from "./rectangle";
import type { Curve, GlobalPoint, LineSegment, LocalPoint } from "./types";
/**
*
* @param a
* @param b
* @param c
* @param d
* @returns
*/
export function curve<Point extends GlobalPoint | LocalPoint>(
a: Point,
b: Point,
c: Point,
d: Point,
) {
return [a, b, c, d] as Curve<Point>;
}
function gradient(
f: (t: number, s: number) => number,
t0: number,
s0: number,
delta: number = 1e-6,
): number[] {
return [
(f(t0 + delta, s0) - f(t0 - delta, s0)) / (2 * delta),
(f(t0, s0 + delta) - f(t0, s0 - delta)) / (2 * delta),
];
}
function solve(
f: (t: number, s: number) => [number, number],
t0: number,
s0: number,
tolerance: number = 1e-3,
iterLimit: number = 10,
): number[] | null {
let error = Infinity;
let iter = 0;
while (error >= tolerance) {
if (iter >= iterLimit) {
return null;
}
const y0 = f(t0, s0);
const jacobian = [
gradient((t, s) => f(t, s)[0], t0, s0),
gradient((t, s) => f(t, s)[1], t0, s0),
];
const b = [[-y0[0]], [-y0[1]]];
const det =
jacobian[0][0] * jacobian[1][1] - jacobian[0][1] * jacobian[1][0];
if (det === 0) {
return null;
}
const iJ = [
[jacobian[1][1] / det, -jacobian[0][1] / det],
[-jacobian[1][0] / det, jacobian[0][0] / det],
];
const h = [
[iJ[0][0] * b[0][0] + iJ[0][1] * b[1][0]],
[iJ[1][0] * b[0][0] + iJ[1][1] * b[1][0]],
];
t0 = t0 + h[0][0];
s0 = s0 + h[1][0];
const [tErr, sErr] = f(t0, s0);
error = Math.max(Math.abs(tErr), Math.abs(sErr));
iter += 1;
}
return [t0, s0];
}
const bezierEquation = <Point extends GlobalPoint | LocalPoint>(
c: Curve<Point>,
t: number,
) =>
pointFrom<Point>(
(1 - t) ** 3 * c[0][0] +
3 * (1 - t) ** 2 * t * c[1][0] +
3 * (1 - t) * t ** 2 * c[2][0] +
t ** 3 * c[3][0],
(1 - t) ** 3 * c[0][1] +
3 * (1 - t) ** 2 * t * c[1][1] +
3 * (1 - t) * t ** 2 * c[2][1] +
t ** 3 * c[3][1],
);
/**
* Computes the intersection between a cubic spline and a line segment.
*/
export function curveIntersectLineSegment<
Point extends GlobalPoint | LocalPoint,
>(c: Curve<Point>, l: LineSegment<Point>): Point[] {
// Optimize by doing a cheap bounding box check first
const bounds = curveBounds(c);
if (
rectangleIntersectLineSegment(
rectangle(
pointFrom(bounds[0], bounds[1]),
pointFrom(bounds[2], bounds[3]),
),
l,
).length === 0
) {
return [];
}
const line = (s: number) =>
pointFrom<Point>(
l[0][0] + s * (l[1][0] - l[0][0]),
l[0][1] + s * (l[1][1] - l[0][1]),
);
const initial_guesses: [number, number][] = [
[0.5, 0],
[0.2, 0],
[0.8, 0],
];
const calculate = ([t0, s0]: [number, number]) => {
const solution = solve(
(t: number, s: number) => {
const bezier_point = bezierEquation(c, t);
const line_point = line(s);
return [
bezier_point[0] - line_point[0],
bezier_point[1] - line_point[1],
];
},
t0,
s0,
);
if (!solution) {
return null;
}
const [t, s] = solution;
if (t < 0 || t > 1 || s < 0 || s > 1) {
return null;
}
return bezierEquation(c, t);
};
let solution = calculate(initial_guesses[0]);
if (solution) {
return [solution];
}
solution = calculate(initial_guesses[1]);
if (solution) {
return [solution];
}
solution = calculate(initial_guesses[2]);
if (solution) {
return [solution];
}
return [];
}
/**
* Finds the closest point on the Bezier curve from another point
*
* @param x
* @param y
* @param P0
* @param P1
* @param P2
* @param P3
* @param tolerance
* @param maxLevel
* @returns
*/
export function curveClosestPoint<Point extends GlobalPoint | LocalPoint>(
c: Curve<Point>,
p: Point,
tolerance: number = 1e-3,
): Point | null {
const localMinimum = (
min: number,
max: number,
f: (t: number) => number,
e: number = tolerance,
) => {
let m = min;
let n = max;
let k;
while (n - m > e) {
k = (n + m) / 2;
if (f(k - e) < f(k + e)) {
n = k;
} else {
m = k;
}
}
return k;
};
const maxSteps = 30;
let closestStep = 0;
for (let min = Infinity, step = 0; step < maxSteps; step++) {
const d = pointDistance(p, bezierEquation(c, step / maxSteps));
if (d < min) {
min = d;
closestStep = step;
}
}
const t0 = Math.max((closestStep - 1) / maxSteps, 0);
const t1 = Math.min((closestStep + 1) / maxSteps, 1);
const solution = localMinimum(t0, t1, (t) =>
pointDistance(p, bezierEquation(c, t)),
);
if (!solution) {
return null;
}
return bezierEquation(c, solution);
}
/**
* Determines the distance between a point and the closest point on the
* Bezier curve.
*
* @param c The curve to test
* @param p The point to measure from
*/
export function curvePointDistance<Point extends GlobalPoint | LocalPoint>(
c: Curve<Point>,
p: Point,
) {
const closest = curveClosestPoint(c, p);
if (!closest) {
return 0;
}
return pointDistance(p, closest);
}
/**
* Determines if the parameter is a Curve
*/
export function isCurve<P extends GlobalPoint | LocalPoint>(
v: unknown,
): v is Curve<P> {
return (
Array.isArray(v) &&
v.length === 4 &&
isPoint(v[0]) &&
isPoint(v[1]) &&
isPoint(v[2]) &&
isPoint(v[3])
);
}
function curveBounds<Point extends GlobalPoint | LocalPoint>(
c: Curve<Point>,
): Bounds {
const [P0, P1, P2, P3] = c;
const x = [P0[0], P1[0], P2[0], P3[0]];
const y = [P0[1], P1[1], P2[1], P3[1]];
return [Math.min(...x), Math.min(...y), Math.max(...x), Math.max(...y)];
}