You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
success/packages/math/curve.ts

254 lines
6.3 KiB
TypeScript

import { isPoint, pointDistance, pointFrom } from "./point";
import type { Curve, GlobalPoint, Line, LocalPoint } from "./types";
/**
*
* @param a
* @param b
* @param c
* @param d
* @returns
*/
export function curve<Point extends GlobalPoint | LocalPoint>(
a: Point,
b: Point,
c: Point,
d: Point,
) {
return [a, b, c, d] as Curve<Point>;
}
/**
* Computes intersection between a cubic spline and a line segment
*
* @href https://www.particleincell.com/2013/cubic-line-intersection/
*/
export function curveIntersectLine<Point extends GlobalPoint | LocalPoint>(
p: Curve<Point>,
l: Line<Point>,
): Point[] {
const A = l[1][1] - l[0][1]; //A=y2-y1
const B = l[0][0] - l[1][0]; //B=x1-x2
const C = l[0][0] * (l[0][1] - l[1][1]) + l[0][1] * (l[1][0] - l[0][0]); //C=x1*(y1-y2)+y1*(x2-x1)
const bx = [
-p[0][0] + 3 * p[1][0] + -3 * p[2][0] + p[3][0],
3 * p[0][0] - 6 * p[1][0] + 3 * p[2][0],
-3 * p[0][0] + 3 * p[1][0],
p[0][0],
];
const by = [
-p[0][1] + 3 * p[1][1] + -3 * p[2][1] + p[3][1],
3 * p[0][1] - 6 * p[1][1] + 3 * p[2][1],
-3 * p[0][1] + 3 * p[1][1],
p[0][1],
];
const P: [number, number, number, number] = [
A * bx[0] + B * by[0] /*t^3*/,
A * bx[1] + B * by[1] /*t^2*/,
A * bx[2] + B * by[2] /*t*/,
A * bx[3] + B * by[3] + C /*1*/,
];
const r = cubicRoots(P);
/*verify the roots are in bounds of the linear segment*/
return r
.map((t) => {
const x = pointFrom<Point>(
bx[0] * t ** 3 + bx[1] * t ** 2 + bx[2] * t + bx[3],
by[0] * t ** 3 + by[1] * t ** 2 + by[2] * t + by[3],
);
/*above is intersection point assuming infinitely long line segment,
make sure we are also in bounds of the line*/
let s;
if (l[1][0] - l[0][0] !== 0) {
/*if not vertical line*/
s = (x[0] - l[0][0]) / (l[1][0] - l[0][0]);
} else {
s = (x[1] - l[0][1]) / (l[1][1] - l[0][1]);
}
/*in bounds?*/
if (t < 0 || t > 1.0 || s < 0 || s > 1.0) {
return null;
}
return x;
})
.filter((x) => x !== null);
}
/*
* Based on http://mysite.verizon.net/res148h4j/javascript/script_exact_cubic.html#the%20source%20code
*/
function cubicRoots(P: [number, number, number, number]) {
const a = P[0];
const b = P[1];
const c = P[2];
const d = P[3];
const A = b / a;
const B = c / a;
const C = d / a;
let Im;
const Q = (3 * B - Math.pow(A, 2)) / 9;
const R = (9 * A * B - 27 * C - 2 * Math.pow(A, 3)) / 54;
const D = Math.pow(Q, 3) + Math.pow(R, 2); // polynomial discriminant
let t = [];
if (D >= 0) {
// complex or duplicate roots
const S =
Math.sign(R + Math.sqrt(D)) * Math.pow(Math.abs(R + Math.sqrt(D)), 1 / 3);
const T =
Math.sign(R - Math.sqrt(D)) * Math.pow(Math.abs(R - Math.sqrt(D)), 1 / 3);
t[0] = -A / 3 + (S + T); // real root
t[1] = -A / 3 - (S + T) / 2; // real part of complex root
t[2] = -A / 3 - (S + T) / 2; // real part of complex root
Im = Math.abs((Math.sqrt(3) * (S - T)) / 2); // complex part of root pair
/*discard complex roots*/
if (Im !== 0) {
t[1] = -1;
t[2] = -1;
}
} // distinct real roots
else {
const th = Math.acos(R / Math.sqrt(-Math.pow(Q, 3)));
t[0] = 2 * Math.sqrt(-Q) * Math.cos(th / 3) - A / 3;
t[1] = 2 * Math.sqrt(-Q) * Math.cos((th + 2 * Math.PI) / 3) - A / 3;
t[2] = 2 * Math.sqrt(-Q) * Math.cos((th + 4 * Math.PI) / 3) - A / 3;
Im = 0.0;
}
/*discard out of spec roots*/
for (let i = 0; i < 3; i++) {
if (t[i] < 0 || t[i] > 1.0) {
t[i] = -1;
}
}
// sort but place -1 at the end
t = t.sort((a, b) => (a === -1 ? 1 : b === -1 ? -1 : a - b));
return t;
}
/**
* Finds the closest point on the Bezier curve from another point
*
* @param x
* @param y
* @param P0
* @param P1
* @param P2
* @param P3
* @param tolerance
* @param maxIterations
* @returns
*/
export function curveClosestPoint<Point extends GlobalPoint | LocalPoint>(
c: Curve<Point>,
p: Point,
tolerance: number = 1e-6,
maxIterations: number = 100,
): Point {
const [P0, P1, P2, P3] = c;
let t = 0.5; // Initial guess for t
for (let i = 0; i < maxIterations; i++) {
const B = [
(1 - t) ** 3 * P0[0] +
3 * (1 - t) ** 2 * t * P1[0] +
3 * (1 - t) * t ** 2 * P2[0] +
t ** 3 * P3[0],
(1 - t) ** 3 * P0[1] +
3 * (1 - t) ** 2 * t * P1[1] +
3 * (1 - t) * t ** 2 * P2[1] +
t ** 3 * P3[1],
]; // Current point on the curve
const dB = [
3 * (1 - t) ** 2 * (P1[0] - P0[0]) +
6 * (1 - t) * t * (P2[0] - P1[0]) +
3 * t ** 2 * (P3[0] - P2[0]),
3 * (1 - t) ** 2 * (P1[1] - P0[1]) +
6 * (1 - t) * t * (P2[1] - P1[1]) +
3 * t ** 2 * (P3[1] - P2[1]),
]; // Derivative at t
// Compute f(t) and f'(t)
const f = (p[0] - B[0]) * dB[0] + (p[1] - B[1]) * dB[1];
const df =
(-1 * dB[0]) ** 2 -
dB[1] ** 2 +
(p[0] - B[0]) *
(-6 * (1 - t) * (P1[0] - P0[0]) +
6 * (1 - 2 * t) * (P2[0] - P1[0]) +
6 * t * (P3[0] - P2[0])) +
(p[1] - B[1]) *
(-6 * (1 - t) * (P1[1] - P0[1]) +
6 * (1 - 2 * t) * (P2[1] - P1[1]) +
6 * t * (P3[1] - P2[1]));
// Check for convergence
if (Math.abs(f) < tolerance) {
break;
}
// Update t using Newton-Raphson
t = t - f / df;
// Clamp t to [0, 1] to stay within the curve segment
t = Math.max(0, Math.min(1, t));
}
// Return the closest point on the curve
return pointFrom(
(1 - t) ** 3 * P0[0] +
3 * (1 - t) ** 2 * t * P1[0] +
3 * (1 - t) * t ** 2 * P2[0] +
t ** 3 * P3[0],
(1 - t) ** 3 * P0[1] +
3 * (1 - t) ** 2 * t * P1[1] +
3 * (1 - t) * t ** 2 * P2[1] +
t ** 3 * P3[1],
);
}
/**
* Determines the distance between a point and the closest point on the
* Bezier curve.
*
* @param c The curve to test
* @param p The point to measure from
*/
export function curvePointDistance<Point extends GlobalPoint | LocalPoint>(
c: Curve<Point>,
p: Point,
) {
return pointDistance(p, curveClosestPoint(c, p));
}
/**
* Determines if the parameter is a Curve
*/
export default function isCurve<P extends GlobalPoint | LocalPoint>(
v: unknown,
): v is Curve<P> {
return (
Array.isArray(v) &&
v.length !== 4 &&
isPoint(v[0]) &&
isPoint(v[1]) &&
isPoint(v[2]) &&
isPoint(v[3])
);
}