You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
success/packages/math/curve.ts

343 lines
9.9 KiB
TypeScript

import { pointFrom } from "./point";
import type { Curve, GlobalPoint, Line, LocalPoint } from "./types";
/**
*
* @param a
* @param b
* @param c
* @param d
* @returns
*/
export function curve<Point extends GlobalPoint | LocalPoint>(
a: Point,
b: Point,
c: Point,
d: Point,
) {
return [a, b, c, d] as Curve<Point>;
}
/*computes intersection between a cubic spline and a line segment*/
export function curveIntersectLine<Point extends GlobalPoint | LocalPoint>(
p: Curve<Point>,
l: Line<Point>,
): Point[] {
const A = l[1][1] - l[0][1]; //A=y2-y1
const B = l[0][0] - l[1][0]; //B=x1-x2
const C = l[0][0] * (l[0][1] - l[1][1]) + l[0][1] * (l[1][0] - l[0][0]); //C=x1*(y1-y2)+y1*(x2-x1)
const bx = bezierCoefficients(p[0][0], p[1][0], p[2][0], p[3][0]);
const by = bezierCoefficients(p[0][1], p[1][1], p[2][1], p[3][1]);
const P: [number, number, number, number] = [
A * bx[0] + B * by[0] /*t^3*/,
A * bx[1] + B * by[1] /*t^2*/,
A * bx[2] + B * by[2] /*t*/,
A * bx[3] + B * by[3] + C /*1*/,
];
const r = cubicRoots(P);
/*verify the roots are in bounds of the linear segment*/
return r
.map((t) => {
const t3 = Math.pow(t, 3);
const t2 = Math.pow(t, 2);
const x = pointFrom<Point>(
bx[0] * t3 + bx[1] * t2 + bx[2] * t + bx[3],
by[0] * t3 + by[1] * t2 + by[2] * t + by[3],
);
/*above is intersection point assuming infinitely long line segment,
make sure we are also in bounds of the line*/
let s;
if (l[1][0] - l[0][0] !== 0) {
/*if not vertical line*/
s = (x[0] - l[0][0]) / (l[1][0] - l[0][0]);
} else {
s = (x[1] - l[0][1]) / (l[1][1] - l[0][1]);
}
/*in bounds?*/
if (t < 0 || t > 1.0 || s < 0 || s > 1.0) {
return null;
}
return x;
})
.filter((x) => x !== null);
}
/*based on http://mysite.verizon.net/res148h4j/javascript/script_exact_cubic.html#the%20source%20code*/
function cubicRoots(P: [number, number, number, number]) {
const a = P[0];
const b = P[1];
const c = P[2];
const d = P[3];
const A = b / a;
const B = c / a;
const C = d / a;
let Im;
const Q = (3 * B - Math.pow(A, 2)) / 9;
const R = (9 * A * B - 27 * C - 2 * Math.pow(A, 3)) / 54;
const D = Math.pow(Q, 3) + Math.pow(R, 2); // polynomial discriminant
let t = [];
if (D >= 0) {
// complex or duplicate roots
const S =
Math.sign(R + Math.sqrt(D)) * Math.pow(Math.abs(R + Math.sqrt(D)), 1 / 3);
const T =
Math.sign(R - Math.sqrt(D)) * Math.pow(Math.abs(R - Math.sqrt(D)), 1 / 3);
t[0] = -A / 3 + (S + T); // real root
t[1] = -A / 3 - (S + T) / 2; // real part of complex root
t[2] = -A / 3 - (S + T) / 2; // real part of complex root
Im = Math.abs((Math.sqrt(3) * (S - T)) / 2); // complex part of root pair
/*discard complex roots*/
if (Im !== 0) {
t[1] = -1;
t[2] = -1;
}
} // distinct real roots
else {
const th = Math.acos(R / Math.sqrt(-Math.pow(Q, 3)));
t[0] = 2 * Math.sqrt(-Q) * Math.cos(th / 3) - A / 3;
t[1] = 2 * Math.sqrt(-Q) * Math.cos((th + 2 * Math.PI) / 3) - A / 3;
t[2] = 2 * Math.sqrt(-Q) * Math.cos((th + 4 * Math.PI) / 3) - A / 3;
Im = 0.0;
}
/*discard out of spec roots*/
for (let i = 0; i < 3; i++) {
if (t[i] < 0 || t[i] > 1.0) {
t[i] = -1;
}
}
// sort but place -1 at the end
t = t.sort((a, b) => (a === -1 ? 1 : b === -1 ? -1 : a - b));
return t;
}
function bezierCoefficients(P0: number, P1: number, P2: number, P3: number) {
const Z = [];
Z[0] = -P0 + 3 * P1 + -3 * P2 + P3;
Z[1] = 3 * P0 - 6 * P1 + 3 * P2;
Z[2] = -3 * P0 + 3 * P1;
Z[3] = P0;
return Z;
}
// export const curveRotate = <Point extends LocalPoint | GlobalPoint>(
// curve: Curve<Point>,
// angle: Radians,
// origin: Point,
// ) => {
// return curve.map((p) => pointRotateRads(p, origin, angle));
// };
// /**
// *
// * @param pointsIn
// * @param curveTightness
// * @returns
// */
// export function curveToBezier<Point extends LocalPoint | GlobalPoint>(
// pointsIn: readonly Point[],
// curveTightness = 0,
// ): Point[] {
// const len = pointsIn.length;
// if (len < 3) {
// throw new Error("A curve must have at least three points.");
// }
// const out: Point[] = [];
// if (len === 3) {
// out.push(
// pointFrom(pointsIn[0][0], pointsIn[0][1]), // Points need to be cloned
// pointFrom(pointsIn[1][0], pointsIn[1][1]), // Points need to be cloned
// pointFrom(pointsIn[2][0], pointsIn[2][1]), // Points need to be cloned
// pointFrom(pointsIn[2][0], pointsIn[2][1]), // Points need to be cloned
// );
// } else {
// const points: Point[] = [];
// points.push(pointsIn[0], pointsIn[0]);
// for (let i = 1; i < pointsIn.length; i++) {
// points.push(pointsIn[i]);
// if (i === pointsIn.length - 1) {
// points.push(pointsIn[i]);
// }
// }
// const b: Point[] = [];
// const s = 1 - curveTightness;
// out.push(pointFrom(points[0][0], points[0][1]));
// for (let i = 1; i + 2 < points.length; i++) {
// const cachedVertArray = points[i];
// b[0] = pointFrom(cachedVertArray[0], cachedVertArray[1]);
// b[1] = pointFrom(
// cachedVertArray[0] + (s * points[i + 1][0] - s * points[i - 1][0]) / 6,
// cachedVertArray[1] + (s * points[i + 1][1] - s * points[i - 1][1]) / 6,
// );
// b[2] = pointFrom(
// points[i + 1][0] + (s * points[i][0] - s * points[i + 2][0]) / 6,
// points[i + 1][1] + (s * points[i][1] - s * points[i + 2][1]) / 6,
// );
// b[3] = pointFrom(points[i + 1][0], points[i + 1][1]);
// out.push(b[1], b[2], b[3]);
// }
// }
// return out;
// }
// /**
// *
// * @param t
// * @param controlPoints
// * @returns
// */
// export const cubicBezierPoint = <Point extends LocalPoint | GlobalPoint>(
// t: number,
// controlPoints: Curve<Point>,
// ): Point => {
// const [p0, p1, p2, p3] = controlPoints;
// const x =
// Math.pow(1 - t, 3) * p0[0] +
// 3 * Math.pow(1 - t, 2) * t * p1[0] +
// 3 * (1 - t) * Math.pow(t, 2) * p2[0] +
// Math.pow(t, 3) * p3[0];
// const y =
// Math.pow(1 - t, 3) * p0[1] +
// 3 * Math.pow(1 - t, 2) * t * p1[1] +
// 3 * (1 - t) * Math.pow(t, 2) * p2[1] +
// Math.pow(t, 3) * p3[1];
// return pointFrom(x, y);
// };
// /**
// *
// * @param point
// * @param controlPoints
// * @returns
// */
// export const cubicBezierDistance = <Point extends LocalPoint | GlobalPoint>(
// point: Point,
// controlPoints: Curve<Point>,
// ) => {
// // Calculate the closest point on the Bezier curve to the given point
// const t = findClosestParameter(point, controlPoints);
// // Calculate the coordinates of the closest point on the curve
// const [closestX, closestY] = cubicBezierPoint(t, controlPoints);
// // Calculate the distance between the given point and the closest point on the curve
// const distance = Math.sqrt(
// (point[0] - closestX) ** 2 + (point[1] - closestY) ** 2,
// );
// return distance;
// };
// const solveCubic = (a: number, b: number, c: number, d: number) => {
// // This function solves the cubic equation ax^3 + bx^2 + cx + d = 0
// const roots: number[] = [];
// const discriminant =
// 18 * a * b * c * d -
// 4 * Math.pow(b, 3) * d +
// Math.pow(b, 2) * Math.pow(c, 2) -
// 4 * a * Math.pow(c, 3) -
// 27 * Math.pow(a, 2) * Math.pow(d, 2);
// if (discriminant >= 0) {
// const C = Math.cbrt((discriminant + Math.sqrt(discriminant)) / 2);
// const D = Math.cbrt((discriminant - Math.sqrt(discriminant)) / 2);
// const root1 = (-b - C - D) / (3 * a);
// const root2 = (-b + (C + D) / 2) / (3 * a);
// const root3 = (-b + (C + D) / 2) / (3 * a);
// roots.push(root1, root2, root3);
// } else {
// const realPart = -b / (3 * a);
// const root1 =
// 2 * Math.sqrt(-b / (3 * a)) * Math.cos(Math.acos(realPart) / 3);
// const root2 =
// 2 *
// Math.sqrt(-b / (3 * a)) *
// Math.cos((Math.acos(realPart) + 2 * Math.PI) / 3);
// const root3 =
// 2 *
// Math.sqrt(-b / (3 * a)) *
// Math.cos((Math.acos(realPart) + 4 * Math.PI) / 3);
// roots.push(root1, root2, root3);
// }
// return roots;
// };
// const findClosestParameter = <Point extends LocalPoint | GlobalPoint>(
// point: Point,
// controlPoints: Curve<Point>,
// ) => {
// // This function finds the parameter t that minimizes the distance between the point
// // and any point on the cubic Bezier curve.
// const [p0, p1, p2, p3] = controlPoints;
// // Use the direct formula to find the parameter t
// const a = p3[0] - 3 * p2[0] + 3 * p1[0] - p0[0];
// const b = 3 * p2[0] - 6 * p1[0] + 3 * p0[0];
// const c = 3 * p1[0] - 3 * p0[0];
// const d = p0[0] - point[0];
// const rootsX = solveCubic(a, b, c, d);
// // Do the same for the y-coordinate
// const e = p3[1] - 3 * p2[1] + 3 * p1[1] - p0[1];
// const f = 3 * p2[1] - 6 * p1[1] + 3 * p0[1];
// const g = 3 * p1[1] - 3 * p0[1];
// const h = p0[1] - point[1];
// const rootsY = solveCubic(e, f, g, h);
// // Select the real root that is between 0 and 1 (inclusive)
// const validRootsX = rootsX.filter((root) => root >= 0 && root <= 1);
// const validRootsY = rootsY.filter((root) => root >= 0 && root <= 1);
// if (validRootsX.length === 0 || validRootsY.length === 0) {
// // No valid roots found, use the midpoint as a fallback
// return 0.5;
// }
// // Choose the parameter t that minimizes the distance
// let minDistance = Infinity;
// let closestT = 0;
// for (const rootX of validRootsX) {
// for (const rootY of validRootsY) {
// const distance = Math.sqrt(
// (rootX - point[0]) ** 2 + (rootY - point[1]) ** 2,
// );
// if (distance < minDistance) {
// minDistance = distance;
// closestT = (rootX + rootY) / 2; // Use the average for a smoother result
// }
// }
// }
// return closestT;
// };