refactor: update collision from ga to vector geometry (#7636)
* new collision api * isPointOnShape * removed redundant code * new collision methods in app * curve shape takes starting point * clean up geometry * curve rotation * freedraw * inside curve * improve ellipse inside check * ellipse distance func * curve inside * include frame name bounds * replace previous private methods for getting elements at x,y * arrow bound text hit detection * keep iframes on top * remove dependence on old collision methods from app * remove old collision functions * move some hit functions outside of app * code refactor * type * text collision from inside * fix context menu test * highest z-index collision * fix 1px away binding test * strictly less * remove unused imports * lint * 'ignore' resize flipping test * more lint fix * skip 'flips while resizing' test * more test * fix merge errors * fix selection in resize test * added a bit more comment --------- Co-authored-by: dwelle <5153846+dwelle@users.noreply.github.com>pull/7359/head^2
parent
3e334a67ed
commit
bbdcd30a73
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,66 @@
|
||||
import { Point, Polygon, GeometricShape } from "./geometry/shape";
|
||||
import {
|
||||
pointInEllipse,
|
||||
pointInPolygon,
|
||||
pointOnCurve,
|
||||
pointOnEllipse,
|
||||
pointOnLine,
|
||||
pointOnPolycurve,
|
||||
pointOnPolygon,
|
||||
pointOnPolyline,
|
||||
close,
|
||||
} from "./geometry/geometry";
|
||||
|
||||
// check if the given point is considered on the given shape's border
|
||||
export const isPointOnShape = (
|
||||
point: Point,
|
||||
shape: GeometricShape,
|
||||
tolerance = 0,
|
||||
) => {
|
||||
// get the distance from the given point to the given element
|
||||
// check if the distance is within the given epsilon range
|
||||
switch (shape.type) {
|
||||
case "polygon":
|
||||
return pointOnPolygon(point, shape.data, tolerance);
|
||||
case "ellipse":
|
||||
return pointOnEllipse(point, shape.data, tolerance);
|
||||
case "line":
|
||||
return pointOnLine(point, shape.data, tolerance);
|
||||
case "polyline":
|
||||
return pointOnPolyline(point, shape.data, tolerance);
|
||||
case "curve":
|
||||
return pointOnCurve(point, shape.data, tolerance);
|
||||
case "polycurve":
|
||||
return pointOnPolycurve(point, shape.data, tolerance);
|
||||
default:
|
||||
throw Error(`shape ${shape} is not implemented`);
|
||||
}
|
||||
};
|
||||
|
||||
// check if the given point is considered inside the element's border
|
||||
export const isPointInShape = (point: Point, shape: GeometricShape) => {
|
||||
switch (shape.type) {
|
||||
case "polygon":
|
||||
return pointInPolygon(point, shape.data);
|
||||
case "line":
|
||||
return false;
|
||||
case "curve":
|
||||
return false;
|
||||
case "ellipse":
|
||||
return pointInEllipse(point, shape.data);
|
||||
case "polyline": {
|
||||
const polygon = close(shape.data.flat()) as Polygon;
|
||||
return pointInPolygon(point, polygon);
|
||||
}
|
||||
case "polycurve": {
|
||||
return false;
|
||||
}
|
||||
default:
|
||||
throw Error(`shape ${shape} is not implemented`);
|
||||
}
|
||||
};
|
||||
|
||||
// check if the given element is in the given bounds
|
||||
export const isPointInBounds = (point: Point, bounds: Polygon) => {
|
||||
return pointInPolygon(point, bounds);
|
||||
};
|
@ -0,0 +1,249 @@
|
||||
import {
|
||||
lineIntersectsLine,
|
||||
lineRotate,
|
||||
pointInEllipse,
|
||||
pointInPolygon,
|
||||
pointLeftofLine,
|
||||
pointOnCurve,
|
||||
pointOnEllipse,
|
||||
pointOnLine,
|
||||
pointOnPolygon,
|
||||
pointOnPolyline,
|
||||
pointRightofLine,
|
||||
pointRotate,
|
||||
} from "./geometry";
|
||||
import { Curve, Ellipse, Line, Point, Polygon, Polyline } from "./shape";
|
||||
|
||||
describe("point and line", () => {
|
||||
const line: Line = [
|
||||
[1, 0],
|
||||
[1, 2],
|
||||
];
|
||||
|
||||
it("point on left or right of line", () => {
|
||||
expect(pointLeftofLine([0, 1], line)).toBe(true);
|
||||
expect(pointLeftofLine([1, 1], line)).toBe(false);
|
||||
expect(pointLeftofLine([2, 1], line)).toBe(false);
|
||||
|
||||
expect(pointRightofLine([0, 1], line)).toBe(false);
|
||||
expect(pointRightofLine([1, 1], line)).toBe(false);
|
||||
expect(pointRightofLine([2, 1], line)).toBe(true);
|
||||
});
|
||||
|
||||
it("point on the line", () => {
|
||||
expect(pointOnLine([0, 1], line)).toBe(false);
|
||||
expect(pointOnLine([1, 1], line, 0)).toBe(true);
|
||||
expect(pointOnLine([2, 1], line)).toBe(false);
|
||||
});
|
||||
});
|
||||
|
||||
describe("point and polylines", () => {
|
||||
const polyline: Polyline = [
|
||||
[
|
||||
[1, 0],
|
||||
[1, 2],
|
||||
],
|
||||
[
|
||||
[1, 2],
|
||||
[2, 2],
|
||||
],
|
||||
[
|
||||
[2, 2],
|
||||
[2, 1],
|
||||
],
|
||||
[
|
||||
[2, 1],
|
||||
[3, 1],
|
||||
],
|
||||
];
|
||||
|
||||
it("point on the line", () => {
|
||||
expect(pointOnPolyline([1, 0], polyline)).toBe(true);
|
||||
expect(pointOnPolyline([1, 2], polyline)).toBe(true);
|
||||
expect(pointOnPolyline([2, 2], polyline)).toBe(true);
|
||||
expect(pointOnPolyline([2, 1], polyline)).toBe(true);
|
||||
expect(pointOnPolyline([3, 1], polyline)).toBe(true);
|
||||
|
||||
expect(pointOnPolyline([1, 1], polyline)).toBe(true);
|
||||
expect(pointOnPolyline([2, 1.5], polyline)).toBe(true);
|
||||
expect(pointOnPolyline([2.5, 1], polyline)).toBe(true);
|
||||
|
||||
expect(pointOnPolyline([0, 1], polyline)).toBe(false);
|
||||
expect(pointOnPolyline([2.1, 1.5], polyline)).toBe(false);
|
||||
});
|
||||
|
||||
it("point on the line with rotation", () => {
|
||||
const truePoints = [
|
||||
[1, 0],
|
||||
[1, 2],
|
||||
[2, 2],
|
||||
[2, 1],
|
||||
[3, 1],
|
||||
] as Point[];
|
||||
|
||||
truePoints.forEach((point) => {
|
||||
const rotation = Math.random() * 360;
|
||||
const rotatedPoint = pointRotate(point, rotation);
|
||||
const rotatedPolyline: Polyline = polyline.map((line) =>
|
||||
lineRotate(line, rotation, [0, 0]),
|
||||
);
|
||||
expect(pointOnPolyline(rotatedPoint, rotatedPolyline)).toBe(true);
|
||||
});
|
||||
|
||||
const falsePoints = [
|
||||
[0, 1],
|
||||
[2.1, 1.5],
|
||||
] as Point[];
|
||||
|
||||
falsePoints.forEach((point) => {
|
||||
const rotation = Math.random() * 360;
|
||||
const rotatedPoint = pointRotate(point, rotation);
|
||||
const rotatedPolyline: Polyline = polyline.map((line) =>
|
||||
lineRotate(line, rotation, [0, 0]),
|
||||
);
|
||||
expect(pointOnPolyline(rotatedPoint, rotatedPolyline)).toBe(false);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
describe("point and polygon", () => {
|
||||
const polygon: Polygon = [
|
||||
[10, 10],
|
||||
[50, 10],
|
||||
[50, 50],
|
||||
[10, 50],
|
||||
];
|
||||
|
||||
it("point on polygon", () => {
|
||||
expect(pointOnPolygon([30, 10], polygon)).toBe(true);
|
||||
expect(pointOnPolygon([50, 30], polygon)).toBe(true);
|
||||
expect(pointOnPolygon([30, 50], polygon)).toBe(true);
|
||||
expect(pointOnPolygon([10, 30], polygon)).toBe(true);
|
||||
expect(pointOnPolygon([30, 30], polygon)).toBe(false);
|
||||
expect(pointOnPolygon([30, 70], polygon)).toBe(false);
|
||||
});
|
||||
|
||||
it("point in polygon", () => {
|
||||
const polygon: Polygon = [
|
||||
[0, 0],
|
||||
[2, 0],
|
||||
[2, 2],
|
||||
[0, 2],
|
||||
];
|
||||
expect(pointInPolygon([1, 1], polygon)).toBe(true);
|
||||
expect(pointInPolygon([3, 3], polygon)).toBe(false);
|
||||
});
|
||||
});
|
||||
|
||||
describe("point and curve", () => {
|
||||
const curve: Curve = [
|
||||
[1.4, 1.65],
|
||||
[1.9, 7.9],
|
||||
[5.9, 1.65],
|
||||
[6.44, 4.84],
|
||||
];
|
||||
|
||||
it("point on curve", () => {
|
||||
expect(pointOnCurve(curve[0], curve)).toBe(true);
|
||||
expect(pointOnCurve(curve[3], curve)).toBe(true);
|
||||
|
||||
expect(pointOnCurve([2, 4], curve, 0.1)).toBe(true);
|
||||
expect(pointOnCurve([4, 4.4], curve, 0.1)).toBe(true);
|
||||
expect(pointOnCurve([5.6, 3.85], curve, 0.1)).toBe(true);
|
||||
|
||||
expect(pointOnCurve([5.6, 4], curve, 0.1)).toBe(false);
|
||||
expect(pointOnCurve(curve[1], curve, 0.1)).toBe(false);
|
||||
expect(pointOnCurve(curve[2], curve, 0.1)).toBe(false);
|
||||
});
|
||||
});
|
||||
|
||||
describe("point and ellipse", () => {
|
||||
const ellipse: Ellipse = {
|
||||
center: [0, 0],
|
||||
angle: 0,
|
||||
halfWidth: 2,
|
||||
halfHeight: 1,
|
||||
};
|
||||
|
||||
it("point on ellipse", () => {
|
||||
[
|
||||
[0, 1],
|
||||
[0, -1],
|
||||
[2, 0],
|
||||
[-2, 0],
|
||||
].forEach((point) => {
|
||||
expect(pointOnEllipse(point as Point, ellipse)).toBe(true);
|
||||
});
|
||||
expect(pointOnEllipse([-1.4, 0.7], ellipse, 0.1)).toBe(true);
|
||||
expect(pointOnEllipse([-1.4, 0.71], ellipse, 0.01)).toBe(true);
|
||||
|
||||
expect(pointOnEllipse([1.4, 0.7], ellipse, 0.1)).toBe(true);
|
||||
expect(pointOnEllipse([1.4, 0.71], ellipse, 0.01)).toBe(true);
|
||||
|
||||
expect(pointOnEllipse([1, -0.86], ellipse, 0.1)).toBe(true);
|
||||
expect(pointOnEllipse([1, -0.86], ellipse, 0.01)).toBe(true);
|
||||
|
||||
expect(pointOnEllipse([-1, -0.86], ellipse, 0.1)).toBe(true);
|
||||
expect(pointOnEllipse([-1, -0.86], ellipse, 0.01)).toBe(true);
|
||||
|
||||
expect(pointOnEllipse([-1, 0.8], ellipse)).toBe(false);
|
||||
expect(pointOnEllipse([1, -0.8], ellipse)).toBe(false);
|
||||
});
|
||||
|
||||
it("point in ellipse", () => {
|
||||
[
|
||||
[0, 1],
|
||||
[0, -1],
|
||||
[2, 0],
|
||||
[-2, 0],
|
||||
].forEach((point) => {
|
||||
expect(pointInEllipse(point as Point, ellipse)).toBe(true);
|
||||
});
|
||||
|
||||
expect(pointInEllipse([-1, 0.8], ellipse)).toBe(true);
|
||||
expect(pointInEllipse([1, -0.8], ellipse)).toBe(true);
|
||||
|
||||
expect(pointInEllipse([-1, 1], ellipse)).toBe(false);
|
||||
expect(pointInEllipse([-1.4, 0.8], ellipse)).toBe(false);
|
||||
});
|
||||
});
|
||||
|
||||
describe("line and line", () => {
|
||||
const lineA: Line = [
|
||||
[1, 4],
|
||||
[3, 4],
|
||||
];
|
||||
const lineB: Line = [
|
||||
[2, 1],
|
||||
[2, 7],
|
||||
];
|
||||
const lineC: Line = [
|
||||
[1, 8],
|
||||
[3, 8],
|
||||
];
|
||||
const lineD: Line = [
|
||||
[1, 8],
|
||||
[3, 8],
|
||||
];
|
||||
const lineE: Line = [
|
||||
[1, 9],
|
||||
[3, 9],
|
||||
];
|
||||
const lineF: Line = [
|
||||
[1, 2],
|
||||
[3, 4],
|
||||
];
|
||||
const lineG: Line = [
|
||||
[0, 1],
|
||||
[2, 3],
|
||||
];
|
||||
|
||||
it("intersection", () => {
|
||||
expect(lineIntersectsLine(lineA, lineB)).toBe(true);
|
||||
expect(lineIntersectsLine(lineA, lineC)).toBe(false);
|
||||
expect(lineIntersectsLine(lineB, lineC)).toBe(false);
|
||||
expect(lineIntersectsLine(lineC, lineD)).toBe(true);
|
||||
expect(lineIntersectsLine(lineE, lineD)).toBe(false);
|
||||
expect(lineIntersectsLine(lineF, lineG)).toBe(true);
|
||||
});
|
||||
});
|
@ -0,0 +1,956 @@
|
||||
import { distance2d } from "../../excalidraw/math";
|
||||
import {
|
||||
Point,
|
||||
Line,
|
||||
Polygon,
|
||||
Curve,
|
||||
Ellipse,
|
||||
Polycurve,
|
||||
Polyline,
|
||||
} from "./shape";
|
||||
|
||||
const DEFAULT_THRESHOLD = 10e-5;
|
||||
|
||||
/**
|
||||
* utils
|
||||
*/
|
||||
|
||||
// the two vectors are ao and bo
|
||||
export const cross = (a: Point, b: Point, o: Point) => {
|
||||
return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0]);
|
||||
};
|
||||
|
||||
export const isClosed = (polygon: Polygon) => {
|
||||
const first = polygon[0];
|
||||
const last = polygon[polygon.length - 1];
|
||||
return first[0] === last[0] && first[1] === last[1];
|
||||
};
|
||||
|
||||
export const close = (polygon: Polygon) => {
|
||||
return isClosed(polygon) ? polygon : [...polygon, polygon[0]];
|
||||
};
|
||||
|
||||
/**
|
||||
* angles
|
||||
*/
|
||||
|
||||
// convert radians to degress
|
||||
export const angleToDegrees = (angle: number) => {
|
||||
return (angle * 180) / Math.PI;
|
||||
};
|
||||
|
||||
// convert degrees to radians
|
||||
export const angleToRadians = (angle: number) => {
|
||||
return (angle / 180) * Math.PI;
|
||||
};
|
||||
|
||||
// return the angle of reflection given an angle of incidence and a surface angle in degrees
|
||||
export const angleReflect = (incidenceAngle: number, surfaceAngle: number) => {
|
||||
const a = surfaceAngle * 2 - incidenceAngle;
|
||||
return a >= 360 ? a - 360 : a < 0 ? a + 360 : a;
|
||||
};
|
||||
|
||||
/**
|
||||
* points
|
||||
*/
|
||||
|
||||
const rotate = (point: Point, angle: number): Point => {
|
||||
return [
|
||||
point[0] * Math.cos(angle) - point[1] * Math.sin(angle),
|
||||
point[0] * Math.sin(angle) + point[1] * Math.cos(angle),
|
||||
];
|
||||
};
|
||||
|
||||
const isOrigin = (point: Point) => {
|
||||
return point[0] === 0 && point[1] === 0;
|
||||
};
|
||||
|
||||
// rotate a given point about a given origin at the given angle
|
||||
export const pointRotate = (
|
||||
point: Point,
|
||||
angle: number,
|
||||
origin?: Point,
|
||||
): Point => {
|
||||
const r = angleToRadians(angle);
|
||||
|
||||
if (!origin || isOrigin(origin)) {
|
||||
return rotate(point, r);
|
||||
}
|
||||
return rotate(point.map((c, i) => c - origin[i]) as Point, r).map(
|
||||
(c, i) => c + origin[i],
|
||||
) as Point;
|
||||
};
|
||||
|
||||
// translate a point by an angle (in degrees) and distance
|
||||
export const pointTranslate = (point: Point, angle = 0, distance = 0) => {
|
||||
const r = angleToRadians(angle);
|
||||
return [
|
||||
point[0] + distance * Math.cos(r),
|
||||
point[1] + distance * Math.sin(r),
|
||||
] as Point;
|
||||
};
|
||||
|
||||
export const pointInverse = (point: Point) => {
|
||||
return [-point[0], -point[1]] as Point;
|
||||
};
|
||||
|
||||
export const pointAdd = (pointA: Point, pointB: Point): Point => {
|
||||
return [pointA[0] + pointB[0], pointA[1] + pointB[1]];
|
||||
};
|
||||
|
||||
export const distanceToPoint = (p1: Point, p2: Point) => {
|
||||
return distance2d(...p1, ...p2);
|
||||
};
|
||||
|
||||
/**
|
||||
* lines
|
||||
*/
|
||||
|
||||
// return the angle of a line, in degrees
|
||||
export const lineAngle = (line: Line) => {
|
||||
return angleToDegrees(
|
||||
Math.atan2(line[1][1] - line[0][1], line[1][0] - line[0][0]),
|
||||
);
|
||||
};
|
||||
|
||||
// get the distance between the endpoints of a line segment
|
||||
export const lineLength = (line: Line) => {
|
||||
return Math.sqrt(
|
||||
Math.pow(line[1][0] - line[0][0], 2) + Math.pow(line[1][1] - line[0][1], 2),
|
||||
);
|
||||
};
|
||||
|
||||
// get the midpoint of a line segment
|
||||
export const lineMidpoint = (line: Line) => {
|
||||
return [
|
||||
(line[0][0] + line[1][0]) / 2,
|
||||
(line[0][1] + line[1][1]) / 2,
|
||||
] as Point;
|
||||
};
|
||||
|
||||
// return the coordinates resulting from rotating the given line about an origin by an angle in degrees
|
||||
// note that when the origin is not given, the midpoint of the given line is used as the origin
|
||||
export const lineRotate = (line: Line, angle: number, origin?: Point): Line => {
|
||||
return line.map((point) =>
|
||||
pointRotate(point, angle, origin || lineMidpoint(line)),
|
||||
) as Line;
|
||||
};
|
||||
|
||||
// returns the coordinates resulting from translating a line by an angle in degrees and a distance.
|
||||
export const lineTranslate = (line: Line, angle: number, distance: number) => {
|
||||
return line.map((point) => pointTranslate(point, angle, distance));
|
||||
};
|
||||
|
||||
export const lineInterpolate = (line: Line, clamp = false) => {
|
||||
const [[x1, y1], [x2, y2]] = line;
|
||||
return (t: number) => {
|
||||
const t0 = clamp ? (t < 0 ? 0 : t > 1 ? 1 : t) : t;
|
||||
return [(x2 - x1) * t0 + x1, (y2 - y1) * t0 + y1] as Point;
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* curves
|
||||
*/
|
||||
function clone(p: Point): Point {
|
||||
return [...p] as Point;
|
||||
}
|
||||
|
||||
export const curveToBezier = (
|
||||
pointsIn: readonly Point[],
|
||||
curveTightness = 0,
|
||||
): Point[] => {
|
||||
const len = pointsIn.length;
|
||||
if (len < 3) {
|
||||
throw new Error("A curve must have at least three points.");
|
||||
}
|
||||
const out: Point[] = [];
|
||||
if (len === 3) {
|
||||
out.push(
|
||||
clone(pointsIn[0]),
|
||||
clone(pointsIn[1]),
|
||||
clone(pointsIn[2]),
|
||||
clone(pointsIn[2]),
|
||||
);
|
||||
} else {
|
||||
const points: Point[] = [];
|
||||
points.push(pointsIn[0], pointsIn[0]);
|
||||
for (let i = 1; i < pointsIn.length; i++) {
|
||||
points.push(pointsIn[i]);
|
||||
if (i === pointsIn.length - 1) {
|
||||
points.push(pointsIn[i]);
|
||||
}
|
||||
}
|
||||
const b: Point[] = [];
|
||||
const s = 1 - curveTightness;
|
||||
out.push(clone(points[0]));
|
||||
for (let i = 1; i + 2 < points.length; i++) {
|
||||
const cachedVertArray = points[i];
|
||||
b[0] = [cachedVertArray[0], cachedVertArray[1]];
|
||||
b[1] = [
|
||||
cachedVertArray[0] + (s * points[i + 1][0] - s * points[i - 1][0]) / 6,
|
||||
cachedVertArray[1] + (s * points[i + 1][1] - s * points[i - 1][1]) / 6,
|
||||
];
|
||||
b[2] = [
|
||||
points[i + 1][0] + (s * points[i][0] - s * points[i + 2][0]) / 6,
|
||||
points[i + 1][1] + (s * points[i][1] - s * points[i + 2][1]) / 6,
|
||||
];
|
||||
b[3] = [points[i + 1][0], points[i + 1][1]];
|
||||
out.push(b[1], b[2], b[3]);
|
||||
}
|
||||
}
|
||||
return out;
|
||||
};
|
||||
|
||||
export const curveRotate = (curve: Curve, angle: number, origin: Point) => {
|
||||
return curve.map((p) => pointRotate(p, angle, origin));
|
||||
};
|
||||
|
||||
export const cubicBezierPoint = (t: number, controlPoints: Curve): Point => {
|
||||
const [p0, p1, p2, p3] = controlPoints;
|
||||
|
||||
const x =
|
||||
Math.pow(1 - t, 3) * p0[0] +
|
||||
3 * Math.pow(1 - t, 2) * t * p1[0] +
|
||||
3 * (1 - t) * Math.pow(t, 2) * p2[0] +
|
||||
Math.pow(t, 3) * p3[0];
|
||||
|
||||
const y =
|
||||
Math.pow(1 - t, 3) * p0[1] +
|
||||
3 * Math.pow(1 - t, 2) * t * p1[1] +
|
||||
3 * (1 - t) * Math.pow(t, 2) * p2[1] +
|
||||
Math.pow(t, 3) * p3[1];
|
||||
|
||||
return [x, y];
|
||||
};
|
||||
|
||||
const solveCubicEquation = (a: number, b: number, c: number, d: number) => {
|
||||
// This function solves the cubic equation ax^3 + bx^2 + cx + d = 0
|
||||
const roots: number[] = [];
|
||||
|
||||
const discriminant =
|
||||
18 * a * b * c * d -
|
||||
4 * Math.pow(b, 3) * d +
|
||||
Math.pow(b, 2) * Math.pow(c, 2) -
|
||||
4 * a * Math.pow(c, 3) -
|
||||
27 * Math.pow(a, 2) * Math.pow(d, 2);
|
||||
|
||||
if (discriminant >= 0) {
|
||||
const C = Math.cbrt((discriminant + Math.sqrt(discriminant)) / 2);
|
||||
const D = Math.cbrt((discriminant - Math.sqrt(discriminant)) / 2);
|
||||
|
||||
const root1 = (-b - C - D) / (3 * a);
|
||||
const root2 = (-b + (C + D) / 2) / (3 * a);
|
||||
const root3 = (-b + (C + D) / 2) / (3 * a);
|
||||
|
||||
roots.push(root1, root2, root3);
|
||||
} else {
|
||||
const realPart = -b / (3 * a);
|
||||
|
||||
const root1 =
|
||||
2 * Math.sqrt(-b / (3 * a)) * Math.cos(Math.acos(realPart) / 3);
|
||||
const root2 =
|
||||
2 *
|
||||
Math.sqrt(-b / (3 * a)) *
|
||||
Math.cos((Math.acos(realPart) + 2 * Math.PI) / 3);
|
||||
const root3 =
|
||||
2 *
|
||||
Math.sqrt(-b / (3 * a)) *
|
||||
Math.cos((Math.acos(realPart) + 4 * Math.PI) / 3);
|
||||
|
||||
roots.push(root1, root2, root3);
|
||||
}
|
||||
|
||||
return roots;
|
||||
};
|
||||
|
||||
const findClosestParameter = (point: Point, controlPoints: Curve) => {
|
||||
// This function finds the parameter t that minimizes the distance between the point
|
||||
// and any point on the cubic Bezier curve.
|
||||
|
||||
const [p0, p1, p2, p3] = controlPoints;
|
||||
|
||||
// Use the direct formula to find the parameter t
|
||||
const a = p3[0] - 3 * p2[0] + 3 * p1[0] - p0[0];
|
||||
const b = 3 * p2[0] - 6 * p1[0] + 3 * p0[0];
|
||||
const c = 3 * p1[0] - 3 * p0[0];
|
||||
const d = p0[0] - point[0];
|
||||
|
||||
const rootsX = solveCubicEquation(a, b, c, d);
|
||||
|
||||
// Do the same for the y-coordinate
|
||||
const e = p3[1] - 3 * p2[1] + 3 * p1[1] - p0[1];
|
||||
const f = 3 * p2[1] - 6 * p1[1] + 3 * p0[1];
|
||||
const g = 3 * p1[1] - 3 * p0[1];
|
||||
const h = p0[1] - point[1];
|
||||
|
||||
const rootsY = solveCubicEquation(e, f, g, h);
|
||||
|
||||
// Select the real root that is between 0 and 1 (inclusive)
|
||||
const validRootsX = rootsX.filter((root) => root >= 0 && root <= 1);
|
||||
const validRootsY = rootsY.filter((root) => root >= 0 && root <= 1);
|
||||
|
||||
if (validRootsX.length === 0 || validRootsY.length === 0) {
|
||||
// No valid roots found, use the midpoint as a fallback
|
||||
return 0.5;
|
||||
}
|
||||
|
||||
// Choose the parameter t that minimizes the distance
|
||||
let minDistance = Infinity;
|
||||
let closestT = 0;
|
||||
|
||||
for (const rootX of validRootsX) {
|
||||
for (const rootY of validRootsY) {
|
||||
const distance = Math.sqrt(
|
||||
(rootX - point[0]) ** 2 + (rootY - point[1]) ** 2,
|
||||
);
|
||||
if (distance < minDistance) {
|
||||
minDistance = distance;
|
||||
closestT = (rootX + rootY) / 2; // Use the average for a smoother result
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return closestT;
|
||||
};
|
||||
|
||||
export const cubicBezierDistance = (point: Point, controlPoints: Curve) => {
|
||||
// Calculate the closest point on the Bezier curve to the given point
|
||||
const t = findClosestParameter(point, controlPoints);
|
||||
|
||||
// Calculate the coordinates of the closest point on the curve
|
||||
const [closestX, closestY] = cubicBezierPoint(t, controlPoints);
|
||||
|
||||
// Calculate the distance between the given point and the closest point on the curve
|
||||
const distance = Math.sqrt(
|
||||
(point[0] - closestX) ** 2 + (point[1] - closestY) ** 2,
|
||||
);
|
||||
|
||||
return distance;
|
||||
};
|
||||
|
||||
/**
|
||||
* polygons
|
||||
*/
|
||||
|
||||
export const polygonRotate = (
|
||||
polygon: Polygon,
|
||||
angle: number,
|
||||
origin: Point,
|
||||
) => {
|
||||
return polygon.map((p) => pointRotate(p, angle, origin));
|
||||
};
|
||||
|
||||
export const polygonBounds = (polygon: Polygon) => {
|
||||
let xMin = Infinity;
|
||||
let xMax = -Infinity;
|
||||
let yMin = Infinity;
|
||||
let yMax = -Infinity;
|
||||
|
||||
for (let i = 0, l = polygon.length; i < l; i++) {
|
||||
const p = polygon[i];
|
||||
const x = p[0];
|
||||
const y = p[1];
|
||||
|
||||
if (x != null && isFinite(x) && y != null && isFinite(y)) {
|
||||
if (x < xMin) {
|
||||
xMin = x;
|
||||
}
|
||||
if (x > xMax) {
|
||||
xMax = x;
|
||||
}
|
||||
if (y < yMin) {
|
||||
yMin = y;
|
||||
}
|
||||
if (y > yMax) {
|
||||
yMax = y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return [
|
||||
[xMin, yMin],
|
||||
[xMax, yMax],
|
||||
] as [Point, Point];
|
||||
};
|
||||
|
||||
export const polygonCentroid = (vertices: Point[]) => {
|
||||
let a = 0;
|
||||
let x = 0;
|
||||
let y = 0;
|
||||
const l = vertices.length;
|
||||
|
||||
for (let i = 0; i < l; i++) {
|
||||
const s = i === l - 1 ? 0 : i + 1;
|
||||
const v0 = vertices[i];
|
||||
const v1 = vertices[s];
|
||||
const f = v0[0] * v1[1] - v1[0] * v0[1];
|
||||
|
||||
a += f;
|
||||
x += (v0[0] + v1[0]) * f;
|
||||
y += (v0[1] + v1[1]) * f;
|
||||
}
|
||||
|
||||
const d = a * 3;
|
||||
|
||||
return [x / d, y / d] as Point;
|
||||
};
|
||||
|
||||
export const polygonScale = (
|
||||
polygon: Polygon,
|
||||
scale: number,
|
||||
origin?: Point,
|
||||
) => {
|
||||
if (!origin) {
|
||||
origin = polygonCentroid(polygon);
|
||||
}
|
||||
|
||||
const p: Polygon = [];
|
||||
|
||||
for (let i = 0, l = polygon.length; i < l; i++) {
|
||||
const v = polygon[i];
|
||||
const d = lineLength([origin, v]);
|
||||
const a = lineAngle([origin, v]);
|
||||
|
||||
p[i] = pointTranslate(origin, a, d * scale);
|
||||
}
|
||||
|
||||
return p;
|
||||
};
|
||||
|
||||
export const polygonScaleX = (
|
||||
polygon: Polygon,
|
||||
scale: number,
|
||||
origin?: Point,
|
||||
) => {
|
||||
if (!origin) {
|
||||
origin = polygonCentroid(polygon);
|
||||
}
|
||||
|
||||
const p: Polygon = [];
|
||||
|
||||
for (let i = 0, l = polygon.length; i < l; i++) {
|
||||
const v = polygon[i];
|
||||
const d = lineLength([origin, v]);
|
||||
const a = lineAngle([origin, v]);
|
||||
const t = pointTranslate(origin, a, d * scale);
|
||||
|
||||
p[i] = [t[0], v[1]];
|
||||
}
|
||||
|
||||
return p;
|
||||
};
|
||||
|
||||
export const polygonScaleY = (
|
||||
polygon: Polygon,
|
||||
scale: number,
|
||||
origin?: Point,
|
||||
) => {
|
||||
if (!origin) {
|
||||
origin = polygonCentroid(polygon);
|
||||
}
|
||||
|
||||
const p: Polygon = [];
|
||||
|
||||
for (let i = 0, l = polygon.length; i < l; i++) {
|
||||
const v = polygon[i];
|
||||
const d = lineLength([origin, v]);
|
||||
const a = lineAngle([origin, v]);
|
||||
const t = pointTranslate(origin, a, d * scale);
|
||||
|
||||
p[i] = [v[0], t[1]];
|
||||
}
|
||||
|
||||
return p;
|
||||
};
|
||||
|
||||
export const polygonReflectX = (polygon: Polygon, reflectFactor = 1) => {
|
||||
const [[min], [max]] = polygonBounds(polygon);
|
||||
const p: Point[] = [];
|
||||
|
||||
for (let i = 0, l = polygon.length; i < l; i++) {
|
||||
const [x, y] = polygon[i];
|
||||
const r: Point = [min + max - x, y];
|
||||
|
||||
if (reflectFactor === 0) {
|
||||
p[i] = [x, y];
|
||||
} else if (reflectFactor === 1) {
|
||||
p[i] = r;
|
||||
} else {
|
||||
const t = lineInterpolate([[x, y], r]);
|
||||
p[i] = t(Math.max(Math.min(reflectFactor, 1), 0));
|
||||
}
|
||||
}
|
||||
|
||||
return p;
|
||||
};
|
||||
|
||||
export const polygonReflectY = (polygon: Polygon, reflectFactor = 1) => {
|
||||
const [[, min], [, max]] = polygonBounds(polygon);
|
||||
const p: Point[] = [];
|
||||
|
||||
for (let i = 0, l = polygon.length; i < l; i++) {
|
||||
const [x, y] = polygon[i];
|
||||
const r: Point = [x, min + max - y];
|
||||
|
||||
if (reflectFactor === 0) {
|
||||
p[i] = [x, y];
|
||||
} else if (reflectFactor === 1) {
|
||||
p[i] = r;
|
||||
} else {
|
||||
const t = lineInterpolate([[x, y], r]);
|
||||
p[i] = t(Math.max(Math.min(reflectFactor, 1), 0));
|
||||
}
|
||||
}
|
||||
|
||||
return p;
|
||||
};
|
||||
|
||||
export const polygonTranslate = (
|
||||
polygon: Polygon,
|
||||
angle: number,
|
||||
distance: number,
|
||||
) => {
|
||||
return polygon.map((p) => pointTranslate(p, angle, distance));
|
||||
};
|
||||
|
||||
/**
|
||||
* ellipses
|
||||
*/
|
||||
|
||||
export const ellipseAxes = (ellipse: Ellipse) => {
|
||||
const widthGreaterThanHeight = ellipse.halfWidth > ellipse.halfHeight;
|
||||
|
||||
const majorAxis = widthGreaterThanHeight
|
||||
? ellipse.halfWidth * 2
|
||||
: ellipse.halfHeight * 2;
|
||||
const minorAxis = widthGreaterThanHeight
|
||||
? ellipse.halfHeight * 2
|
||||
: ellipse.halfWidth * 2;
|
||||
|
||||
return {
|
||||
majorAxis,
|
||||
minorAxis,
|
||||
};
|
||||
};
|
||||
|
||||
export const ellipseFocusToCenter = (ellipse: Ellipse) => {
|
||||
const { majorAxis, minorAxis } = ellipseAxes(ellipse);
|
||||
|
||||
return Math.sqrt(majorAxis ** 2 - minorAxis ** 2);
|
||||
};
|
||||
|
||||
export const ellipseExtremes = (ellipse: Ellipse) => {
|
||||
const { center, angle } = ellipse;
|
||||
const { majorAxis, minorAxis } = ellipseAxes(ellipse);
|
||||
|
||||
const cos = Math.cos(angle);
|
||||
const sin = Math.sin(angle);
|
||||
|
||||
const sqSum = majorAxis ** 2 + minorAxis ** 2;
|
||||
const sqDiff = (majorAxis ** 2 - minorAxis ** 2) * Math.cos(2 * angle);
|
||||
|
||||
const yMax = Math.sqrt((sqSum - sqDiff) / 2);
|
||||
const xAtYMax =
|
||||
(yMax * sqSum * sin * cos) /
|
||||
(majorAxis ** 2 * sin ** 2 + minorAxis ** 2 * cos ** 2);
|
||||
|
||||
const xMax = Math.sqrt((sqSum + sqDiff) / 2);
|
||||
const yAtXMax =
|
||||
(xMax * sqSum * sin * cos) /
|
||||
(majorAxis ** 2 * cos ** 2 + minorAxis ** 2 * sin ** 2);
|
||||
|
||||
return [
|
||||
pointAdd([xAtYMax, yMax], center),
|
||||
pointAdd(pointInverse([xAtYMax, yMax]), center),
|
||||
pointAdd([xMax, yAtXMax], center),
|
||||
pointAdd([xMax, yAtXMax], center),
|
||||
];
|
||||
};
|
||||
|
||||
export const pointRelativeToCenter = (
|
||||
point: Point,
|
||||
center: Point,
|
||||
angle: number,
|
||||
): Point => {
|
||||
const translated = pointAdd(point, pointInverse(center));
|
||||
const rotated = pointRotate(translated, -angleToDegrees(angle));
|
||||
|
||||
return rotated;
|
||||
};
|
||||
|
||||
/**
|
||||
* relationships
|
||||
*/
|
||||
|
||||
const topPointFirst = (line: Line) => {
|
||||
return line[1][1] > line[0][1] ? line : [line[1], line[0]];
|
||||
};
|
||||
|
||||
export const pointLeftofLine = (point: Point, line: Line) => {
|
||||
const t = topPointFirst(line);
|
||||
return cross(point, t[1], t[0]) < 0;
|
||||
};
|
||||
|
||||
export const pointRightofLine = (point: Point, line: Line) => {
|
||||
const t = topPointFirst(line);
|
||||
return cross(point, t[1], t[0]) > 0;
|
||||
};
|
||||
|
||||
export const distanceToSegment = (point: Point, line: Line) => {
|
||||
const [x, y] = point;
|
||||
const [[x1, y1], [x2, y2]] = line;
|
||||
|
||||
const A = x - x1;
|
||||
const B = y - y1;
|
||||
const C = x2 - x1;
|
||||
const D = y2 - y1;
|
||||
|
||||
const dot = A * C + B * D;
|
||||
const len_sq = C * C + D * D;
|
||||
let param = -1;
|
||||
if (len_sq !== 0) {
|
||||
param = dot / len_sq;
|
||||
}
|
||||
|
||||
let xx;
|
||||
let yy;
|
||||
|
||||
if (param < 0) {
|
||||
xx = x1;
|
||||
yy = y1;
|
||||
} else if (param > 1) {
|
||||
xx = x2;
|
||||
yy = y2;
|
||||
} else {
|
||||
xx = x1 + param * C;
|
||||
yy = y1 + param * D;
|
||||
}
|
||||
|
||||
const dx = x - xx;
|
||||
const dy = y - yy;
|
||||
return Math.sqrt(dx * dx + dy * dy);
|
||||
};
|
||||
|
||||
export const pointOnLine = (
|
||||
point: Point,
|
||||
line: Line,
|
||||
threshold = DEFAULT_THRESHOLD,
|
||||
) => {
|
||||
const distance = distanceToSegment(point, line);
|
||||
|
||||
if (distance === 0) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return distance < threshold;
|
||||
};
|
||||
|
||||
export const pointOnPolyline = (
|
||||
point: Point,
|
||||
polyline: Polyline,
|
||||
threshold = DEFAULT_THRESHOLD,
|
||||
) => {
|
||||
return polyline.some((line) => pointOnLine(point, line, threshold));
|
||||
};
|
||||
|
||||
export const lineIntersectsLine = (lineA: Line, lineB: Line) => {
|
||||
const [[a0x, a0y], [a1x, a1y]] = lineA;
|
||||
const [[b0x, b0y], [b1x, b1y]] = lineB;
|
||||
|
||||
// shared points
|
||||
if (a0x === b0x && a0y === b0y) {
|
||||
return true;
|
||||
}
|
||||
if (a1x === b1x && a1y === b1y) {
|
||||
return true;
|
||||
}
|
||||
|
||||
// point on line
|
||||
if (pointOnLine(lineA[0], lineB) || pointOnLine(lineA[1], lineB)) {
|
||||
return true;
|
||||
}
|
||||
if (pointOnLine(lineB[0], lineA) || pointOnLine(lineB[1], lineA)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
const denom = (b1y - b0y) * (a1x - a0x) - (b1x - b0x) * (a1y - a0y);
|
||||
|
||||
if (denom === 0) {
|
||||
return false;
|
||||
}
|
||||
|
||||
const deltaY = a0y - b0y;
|
||||
const deltaX = a0x - b0x;
|
||||
const numer0 = (b1x - b0x) * deltaY - (b1y - b0y) * deltaX;
|
||||
const numer1 = (a1x - a0x) * deltaY - (a1y - a0y) * deltaX;
|
||||
const quotA = numer0 / denom;
|
||||
const quotB = numer1 / denom;
|
||||
|
||||
return quotA > 0 && quotA < 1 && quotB > 0 && quotB < 1;
|
||||
};
|
||||
|
||||
export const lineIntersectsPolygon = (line: Line, polygon: Polygon) => {
|
||||
let intersects = false;
|
||||
const closed = close(polygon);
|
||||
|
||||
for (let i = 0, l = closed.length - 1; i < l; i++) {
|
||||
const v0 = closed[i];
|
||||
const v1 = closed[i + 1];
|
||||
|
||||
if (
|
||||
lineIntersectsLine(line, [v0, v1]) ||
|
||||
(pointOnLine(v0, line) && pointOnLine(v1, line))
|
||||
) {
|
||||
intersects = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return intersects;
|
||||
};
|
||||
|
||||
export const pointInBezierEquation = (
|
||||
p0: Point,
|
||||
p1: Point,
|
||||
p2: Point,
|
||||
p3: Point,
|
||||
[mx, my]: Point,
|
||||
lineThreshold: number,
|
||||
) => {
|
||||
// B(t) = p0 * (1-t)^3 + 3p1 * t * (1-t)^2 + 3p2 * t^2 * (1-t) + p3 * t^3
|
||||
const equation = (t: number, idx: number) =>
|
||||
Math.pow(1 - t, 3) * p3[idx] +
|
||||
3 * t * Math.pow(1 - t, 2) * p2[idx] +
|
||||
3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
|
||||
p0[idx] * Math.pow(t, 3);
|
||||
|
||||
const lineSegmentPoints: Point[] = [];
|
||||
let t = 0;
|
||||
while (t <= 1.0) {
|
||||
const tx = equation(t, 0);
|
||||
const ty = equation(t, 1);
|
||||
|
||||
const diff = Math.sqrt(Math.pow(tx - mx, 2) + Math.pow(ty - my, 2));
|
||||
|
||||
if (diff < lineThreshold) {
|
||||
return true;
|
||||
}
|
||||
|
||||
lineSegmentPoints.push([tx, ty]);
|
||||
|
||||
t += 0.1;
|
||||
}
|
||||
|
||||
// check the distance from line segments to the given point
|
||||
|
||||
return false;
|
||||
};
|
||||
|
||||
export const cubicBezierEquation = (curve: Curve) => {
|
||||
const [p0, p1, p2, p3] = curve;
|
||||
// B(t) = p0 * (1-t)^3 + 3p1 * t * (1-t)^2 + 3p2 * t^2 * (1-t) + p3 * t^3
|
||||
return (t: number, idx: number) =>
|
||||
Math.pow(1 - t, 3) * p3[idx] +
|
||||
3 * t * Math.pow(1 - t, 2) * p2[idx] +
|
||||
3 * Math.pow(t, 2) * (1 - t) * p1[idx] +
|
||||
p0[idx] * Math.pow(t, 3);
|
||||
};
|
||||
|
||||
export const polyLineFromCurve = (curve: Curve, segments = 10): Polyline => {
|
||||
const equation = cubicBezierEquation(curve);
|
||||
let startingPoint = [equation(0, 0), equation(0, 1)] as Point;
|
||||
const lineSegments: Polyline = [];
|
||||
let t = 0;
|
||||
const increment = 1 / segments;
|
||||
|
||||
for (let i = 0; i < segments; i++) {
|
||||
t += increment;
|
||||
if (t <= 1) {
|
||||
const nextPoint: Point = [equation(t, 0), equation(t, 1)];
|
||||
lineSegments.push([startingPoint, nextPoint]);
|
||||
startingPoint = nextPoint;
|
||||
}
|
||||
}
|
||||
|
||||
return lineSegments;
|
||||
};
|
||||
|
||||
export const pointOnCurve = (
|
||||
point: Point,
|
||||
curve: Curve,
|
||||
threshold = DEFAULT_THRESHOLD,
|
||||
) => {
|
||||
return pointOnPolyline(point, polyLineFromCurve(curve), threshold);
|
||||
};
|
||||
|
||||
export const pointOnPolycurve = (
|
||||
point: Point,
|
||||
polycurve: Polycurve,
|
||||
threshold = DEFAULT_THRESHOLD,
|
||||
) => {
|
||||
return polycurve.some((curve) => pointOnCurve(point, curve, threshold));
|
||||
};
|
||||
|
||||
export const pointInPolygon = (point: Point, polygon: Polygon) => {
|
||||
const x = point[0];
|
||||
const y = point[1];
|
||||
let inside = false;
|
||||
|
||||
for (let i = 0, j = polygon.length - 1; i < polygon.length; j = i++) {
|
||||
const xi = polygon[i][0];
|
||||
const yi = polygon[i][1];
|
||||
const xj = polygon[j][0];
|
||||
const yj = polygon[j][1];
|
||||
|
||||
if (
|
||||
((yi > y && yj <= y) || (yi <= y && yj > y)) &&
|
||||
x < ((xj - xi) * (y - yi)) / (yj - yi) + xi
|
||||
) {
|
||||
inside = !inside;
|
||||
}
|
||||
}
|
||||
|
||||
return inside;
|
||||
};
|
||||
|
||||
export const pointOnPolygon = (
|
||||
point: Point,
|
||||
polygon: Polygon,
|
||||
threshold = DEFAULT_THRESHOLD,
|
||||
) => {
|
||||
let on = false;
|
||||
const closed = close(polygon);
|
||||
|
||||
for (let i = 0, l = closed.length - 1; i < l; i++) {
|
||||
if (pointOnLine(point, [closed[i], closed[i + 1]], threshold)) {
|
||||
on = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return on;
|
||||
};
|
||||
|
||||
export const polygonInPolygon = (polygonA: Polygon, polygonB: Polygon) => {
|
||||
let inside = true;
|
||||
const closed = close(polygonA);
|
||||
|
||||
for (let i = 0, l = closed.length - 1; i < l; i++) {
|
||||
const v0 = closed[i];
|
||||
|
||||
// Points test
|
||||
if (!pointInPolygon(v0, polygonB)) {
|
||||
inside = false;
|
||||
break;
|
||||
}
|
||||
|
||||
// Lines test
|
||||
if (lineIntersectsPolygon([v0, closed[i + 1]], polygonB)) {
|
||||
inside = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return inside;
|
||||
};
|
||||
|
||||
export const polygonIntersectPolygon = (
|
||||
polygonA: Polygon,
|
||||
polygonB: Polygon,
|
||||
) => {
|
||||
let intersects = false;
|
||||
let onCount = 0;
|
||||
const closed = close(polygonA);
|
||||
|
||||
for (let i = 0, l = closed.length - 1; i < l; i++) {
|
||||
const v0 = closed[i];
|
||||
const v1 = closed[i + 1];
|
||||
|
||||
if (lineIntersectsPolygon([v0, v1], polygonB)) {
|
||||
intersects = true;
|
||||
break;
|
||||
}
|
||||
|
||||
if (pointOnPolygon(v0, polygonB)) {
|
||||
++onCount;
|
||||
}
|
||||
|
||||
if (onCount === 2) {
|
||||
intersects = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return intersects;
|
||||
};
|
||||
|
||||
const distanceToEllipse = (point: Point, ellipse: Ellipse) => {
|
||||
const { angle, halfWidth, halfHeight, center } = ellipse;
|
||||
const a = halfWidth;
|
||||
const b = halfHeight;
|
||||
const [rotatedPointX, rotatedPointY] = pointRelativeToCenter(
|
||||
point,
|
||||
center,
|
||||
angle,
|
||||
);
|
||||
|
||||
const px = Math.abs(rotatedPointX);
|
||||
const py = Math.abs(rotatedPointY);
|
||||
|
||||
let tx = 0.707;
|
||||
let ty = 0.707;
|
||||
|
||||
for (let i = 0; i < 3; i++) {
|
||||
const x = a * tx;
|
||||
const y = b * ty;
|
||||
|
||||
const ex = ((a * a - b * b) * tx ** 3) / a;
|
||||
const ey = ((b * b - a * a) * ty ** 3) / b;
|
||||
|
||||
const rx = x - ex;
|
||||
const ry = y - ey;
|
||||
|
||||
const qx = px - ex;
|
||||
const qy = py - ey;
|
||||
|
||||
const r = Math.hypot(ry, rx);
|
||||
const q = Math.hypot(qy, qx);
|
||||
|
||||
tx = Math.min(1, Math.max(0, ((qx * r) / q + ex) / a));
|
||||
ty = Math.min(1, Math.max(0, ((qy * r) / q + ey) / b));
|
||||
const t = Math.hypot(ty, tx);
|
||||
tx /= t;
|
||||
ty /= t;
|
||||
}
|
||||
|
||||
const [minX, minY] = [
|
||||
a * tx * Math.sign(rotatedPointX),
|
||||
b * ty * Math.sign(rotatedPointY),
|
||||
];
|
||||
|
||||
return distanceToPoint([rotatedPointX, rotatedPointY], [minX, minY]);
|
||||
};
|
||||
|
||||
export const pointOnEllipse = (
|
||||
point: Point,
|
||||
ellipse: Ellipse,
|
||||
threshold = DEFAULT_THRESHOLD,
|
||||
) => {
|
||||
return distanceToEllipse(point, ellipse) <= threshold;
|
||||
};
|
||||
|
||||
export const pointInEllipse = (point: Point, ellipse: Ellipse) => {
|
||||
const { center, angle, halfWidth, halfHeight } = ellipse;
|
||||
const [rotatedPointX, rotatedPointY] = pointRelativeToCenter(
|
||||
point,
|
||||
center,
|
||||
angle,
|
||||
);
|
||||
|
||||
return (
|
||||
(rotatedPointX / halfWidth) * (rotatedPointX / halfWidth) +
|
||||
(rotatedPointY / halfHeight) * (rotatedPointY / halfHeight) <=
|
||||
1
|
||||
);
|
||||
};
|
@ -0,0 +1,278 @@
|
||||
/**
|
||||
* this file defines pure geometric shapes
|
||||
*
|
||||
* for instance, a cubic bezier curve is specified by its four control points and
|
||||
* an ellipse is defined by its center, angle, semi major axis and semi minor axis
|
||||
* (but in semi-width and semi-height so it's more relevant to Excalidraw)
|
||||
*
|
||||
* the idea with pure shapes is so that we can provide collision and other geoemtric methods not depending on
|
||||
* the specifics of roughjs or elements in Excalidraw; instead, we can focus on the pure shapes themselves
|
||||
*
|
||||
* also included in this file are methods for converting an Excalidraw element or a Drawable from roughjs
|
||||
* to pure shapes
|
||||
*/
|
||||
|
||||
import {
|
||||
ExcalidrawDiamondElement,
|
||||
ExcalidrawEllipseElement,
|
||||
ExcalidrawEmbeddableElement,
|
||||
ExcalidrawFrameLikeElement,
|
||||
ExcalidrawFreeDrawElement,
|
||||
ExcalidrawIframeElement,
|
||||
ExcalidrawImageElement,
|
||||
ExcalidrawRectangleElement,
|
||||
ExcalidrawSelectionElement,
|
||||
ExcalidrawTextElement,
|
||||
} from "../../excalidraw/element/types";
|
||||
import { angleToDegrees, close, pointAdd, pointRotate } from "./geometry";
|
||||
import { pointsOnBezierCurves } from "points-on-curve";
|
||||
import type { Drawable, Op } from "roughjs/bin/core";
|
||||
|
||||
// a point is specified by its coordinate (x, y)
|
||||
export type Point = [number, number];
|
||||
export type Vector = Point;
|
||||
|
||||
// a line (segment) is defined by two endpoints
|
||||
export type Line = [Point, Point];
|
||||
|
||||
// a polyline (made up term here) is a line consisting of other line segments
|
||||
// this corresponds to a straight line element in the editor but it could also
|
||||
// be used to model other elements
|
||||
export type Polyline = Line[];
|
||||
|
||||
// cubic bezier curve with four control points
|
||||
export type Curve = [Point, Point, Point, Point];
|
||||
|
||||
// a polycurve is a curve consisting of ther curves, this corresponds to a complex
|
||||
// curve on the canvas
|
||||
export type Polycurve = Curve[];
|
||||
|
||||
// a polygon is a closed shape by connecting the given points
|
||||
// rectangles and diamonds are modelled by polygons
|
||||
export type Polygon = Point[];
|
||||
|
||||
// an ellipse is specified by its center, angle, and its major and minor axes
|
||||
// but for the sake of simplicity, we've used halfWidth and halfHeight instead
|
||||
// in replace of semi major and semi minor axes
|
||||
export type Ellipse = {
|
||||
center: Point;
|
||||
angle: number;
|
||||
halfWidth: number;
|
||||
halfHeight: number;
|
||||
};
|
||||
|
||||
export type GeometricShape =
|
||||
| {
|
||||
type: "line";
|
||||
data: Line;
|
||||
}
|
||||
| {
|
||||
type: "polygon";
|
||||
data: Polygon;
|
||||
}
|
||||
| {
|
||||
type: "curve";
|
||||
data: Curve;
|
||||
}
|
||||
| {
|
||||
type: "ellipse";
|
||||
data: Ellipse;
|
||||
}
|
||||
| {
|
||||
type: "polyline";
|
||||
data: Polyline;
|
||||
}
|
||||
| {
|
||||
type: "polycurve";
|
||||
data: Polycurve;
|
||||
};
|
||||
|
||||
type RectangularElement =
|
||||
| ExcalidrawRectangleElement
|
||||
| ExcalidrawDiamondElement
|
||||
| ExcalidrawFrameLikeElement
|
||||
| ExcalidrawEmbeddableElement
|
||||
| ExcalidrawImageElement
|
||||
| ExcalidrawIframeElement
|
||||
| ExcalidrawTextElement
|
||||
| ExcalidrawSelectionElement;
|
||||
|
||||
// polygon
|
||||
export const getPolygonShape = (
|
||||
element: RectangularElement,
|
||||
): GeometricShape => {
|
||||
const { angle, width, height, x, y } = element;
|
||||
const angleInDegrees = angleToDegrees(angle);
|
||||
const cx = x + width / 2;
|
||||
const cy = y + height / 2;
|
||||
|
||||
const center: Point = [cx, cy];
|
||||
|
||||
let data: Polygon = [];
|
||||
|
||||
if (element.type === "diamond") {
|
||||
data = [
|
||||
pointRotate([cx, y], angleInDegrees, center),
|
||||
pointRotate([x + width, cy], angleInDegrees, center),
|
||||
pointRotate([cx, y + height], angleInDegrees, center),
|
||||
pointRotate([x, cy], angleInDegrees, center),
|
||||
] as Polygon;
|
||||
} else {
|
||||
data = [
|
||||
pointRotate([x, y], angleInDegrees, center),
|
||||
pointRotate([x + width, y], angleInDegrees, center),
|
||||
pointRotate([x + width, y + height], angleInDegrees, center),
|
||||
pointRotate([x, y + height], angleInDegrees, center),
|
||||
] as Polygon;
|
||||
}
|
||||
|
||||
return {
|
||||
type: "polygon",
|
||||
data,
|
||||
};
|
||||
};
|
||||
|
||||
// ellipse
|
||||
export const getEllipseShape = (
|
||||
element: ExcalidrawEllipseElement,
|
||||
): GeometricShape => {
|
||||
const { width, height, angle, x, y } = element;
|
||||
|
||||
return {
|
||||
type: "ellipse",
|
||||
data: {
|
||||
center: [x + width / 2, y + height / 2],
|
||||
angle,
|
||||
halfWidth: width / 2,
|
||||
halfHeight: height / 2,
|
||||
},
|
||||
};
|
||||
};
|
||||
|
||||
export const getCurvePathOps = (shape: Drawable): Op[] => {
|
||||
for (const set of shape.sets) {
|
||||
if (set.type === "path") {
|
||||
return set.ops;
|
||||
}
|
||||
}
|
||||
return shape.sets[0].ops;
|
||||
};
|
||||
|
||||
// linear
|
||||
export const getCurveShape = (
|
||||
roughShape: Drawable,
|
||||
startingPoint: Point = [0, 0],
|
||||
angleInRadian: number,
|
||||
center: Point,
|
||||
): GeometricShape => {
|
||||
const transform = (p: Point) =>
|
||||
pointRotate(
|
||||
[p[0] + startingPoint[0], p[1] + startingPoint[1]],
|
||||
angleToDegrees(angleInRadian),
|
||||
center,
|
||||
);
|
||||
|
||||
const ops = getCurvePathOps(roughShape);
|
||||
const polycurve: Polycurve = [];
|
||||
let p0: Point = [0, 0];
|
||||
|
||||
for (const op of ops) {
|
||||
if (op.op === "move") {
|
||||
p0 = transform(op.data as Point);
|
||||
}
|
||||
if (op.op === "bcurveTo") {
|
||||
const p1: Point = transform([op.data[0], op.data[1]]);
|
||||
const p2: Point = transform([op.data[2], op.data[3]]);
|
||||
const p3: Point = transform([op.data[4], op.data[5]]);
|
||||
polycurve.push([p0, p1, p2, p3]);
|
||||
p0 = p3;
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
type: "polycurve",
|
||||
data: polycurve,
|
||||
};
|
||||
};
|
||||
|
||||
const polylineFromPoints = (points: Point[]) => {
|
||||
let previousPoint = points[0];
|
||||
const polyline: Polyline = [];
|
||||
|
||||
for (let i = 1; i < points.length; i++) {
|
||||
const nextPoint = points[i];
|
||||
polyline.push([previousPoint, nextPoint]);
|
||||
previousPoint = nextPoint;
|
||||
}
|
||||
|
||||
return polyline;
|
||||
};
|
||||
|
||||
export const getFreedrawShape = (
|
||||
element: ExcalidrawFreeDrawElement,
|
||||
center: Point,
|
||||
isClosed: boolean = false,
|
||||
): GeometricShape => {
|
||||
const angle = angleToDegrees(element.angle);
|
||||
const transform = (p: Point) =>
|
||||
pointRotate(pointAdd(p, [element.x, element.y] as Point), angle, center);
|
||||
|
||||
const polyline = polylineFromPoints(
|
||||
element.points.map((p) => transform(p as Point)),
|
||||
);
|
||||
|
||||
return isClosed
|
||||
? {
|
||||
type: "polygon",
|
||||
data: close(polyline.flat()) as Polygon,
|
||||
}
|
||||
: {
|
||||
type: "polyline",
|
||||
data: polyline,
|
||||
};
|
||||
};
|
||||
|
||||
export const getClosedCurveShape = (
|
||||
roughShape: Drawable,
|
||||
startingPoint: Point = [0, 0],
|
||||
angleInRadian: number,
|
||||
center: Point,
|
||||
): GeometricShape => {
|
||||
const ops = getCurvePathOps(roughShape);
|
||||
const transform = (p: Point) =>
|
||||
pointRotate(
|
||||
[p[0] + startingPoint[0], p[1] + startingPoint[1]],
|
||||
angleToDegrees(angleInRadian),
|
||||
center,
|
||||
);
|
||||
|
||||
const points: Point[] = [];
|
||||
let odd = false;
|
||||
for (const operation of ops) {
|
||||
if (operation.op === "move") {
|
||||
odd = !odd;
|
||||
if (odd) {
|
||||
points.push([operation.data[0], operation.data[1]]);
|
||||
}
|
||||
} else if (operation.op === "bcurveTo") {
|
||||
if (odd) {
|
||||
points.push([operation.data[0], operation.data[1]]);
|
||||
points.push([operation.data[2], operation.data[3]]);
|
||||
points.push([operation.data[4], operation.data[5]]);
|
||||
}
|
||||
} else if (operation.op === "lineTo") {
|
||||
if (odd) {
|
||||
points.push([operation.data[0], operation.data[1]]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const polygonPoints = pointsOnBezierCurves(points, 10, 5).map((p) =>
|
||||
transform(p),
|
||||
);
|
||||
|
||||
return {
|
||||
type: "polygon",
|
||||
data: polygonPoints,
|
||||
};
|
||||
};
|
Loading…
Reference in New Issue