|
|
|
@ -1,5 +1,5 @@
|
|
|
|
|
import { pointFrom, pointRotateRads } from "./point";
|
|
|
|
|
import type { Curve, GlobalPoint, LocalPoint, Radians } from "./types";
|
|
|
|
|
import { pointFrom } from "./point";
|
|
|
|
|
import type { Curve, GlobalPoint, Line, LocalPoint } from "./types";
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
@ -18,206 +18,325 @@ export function curve<Point extends GlobalPoint | LocalPoint>(
|
|
|
|
|
return [a, b, c, d] as Curve<Point>;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
export const curveRotate = <Point extends LocalPoint | GlobalPoint>(
|
|
|
|
|
curve: Curve<Point>,
|
|
|
|
|
angle: Radians,
|
|
|
|
|
origin: Point,
|
|
|
|
|
) => {
|
|
|
|
|
return curve.map((p) => pointRotateRads(p, origin, angle));
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
|
* @param pointsIn
|
|
|
|
|
* @param curveTightness
|
|
|
|
|
* @returns
|
|
|
|
|
*/
|
|
|
|
|
export function curveToBezier<Point extends LocalPoint | GlobalPoint>(
|
|
|
|
|
pointsIn: readonly Point[],
|
|
|
|
|
curveTightness = 0,
|
|
|
|
|
/*computes intersection between a cubic spline and a line segment*/
|
|
|
|
|
export function curveIntersectLine<Point extends GlobalPoint | LocalPoint>(
|
|
|
|
|
p: Curve<Point>,
|
|
|
|
|
l: Line<Point>,
|
|
|
|
|
): Point[] {
|
|
|
|
|
const len = pointsIn.length;
|
|
|
|
|
if (len < 3) {
|
|
|
|
|
throw new Error("A curve must have at least three points.");
|
|
|
|
|
}
|
|
|
|
|
const out: Point[] = [];
|
|
|
|
|
if (len === 3) {
|
|
|
|
|
out.push(
|
|
|
|
|
pointFrom(pointsIn[0][0], pointsIn[0][1]), // Points need to be cloned
|
|
|
|
|
pointFrom(pointsIn[1][0], pointsIn[1][1]), // Points need to be cloned
|
|
|
|
|
pointFrom(pointsIn[2][0], pointsIn[2][1]), // Points need to be cloned
|
|
|
|
|
pointFrom(pointsIn[2][0], pointsIn[2][1]), // Points need to be cloned
|
|
|
|
|
const A = l[1][1] - l[0][1]; //A=y2-y1
|
|
|
|
|
const B = l[0][0] - l[1][0]; //B=x1-x2
|
|
|
|
|
const C = l[0][0] * (l[0][1] - l[1][1]) + l[0][1] * (l[1][0] - l[0][0]); //C=x1*(y1-y2)+y1*(x2-x1)
|
|
|
|
|
|
|
|
|
|
const bx = bezierCoefficients(p[0][0], p[1][0], p[2][0], p[3][0]);
|
|
|
|
|
const by = bezierCoefficients(p[0][1], p[1][1], p[2][1], p[3][1]);
|
|
|
|
|
|
|
|
|
|
const P: [number, number, number, number] = [
|
|
|
|
|
A * bx[0] + B * by[0] /*t^3*/,
|
|
|
|
|
A * bx[1] + B * by[1] /*t^2*/,
|
|
|
|
|
A * bx[2] + B * by[2] /*t*/,
|
|
|
|
|
A * bx[3] + B * by[3] + C /*1*/,
|
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
const r = cubicRoots(P);
|
|
|
|
|
|
|
|
|
|
/*verify the roots are in bounds of the linear segment*/
|
|
|
|
|
return r
|
|
|
|
|
.map((t) => {
|
|
|
|
|
const t3 = Math.pow(t, 3);
|
|
|
|
|
const t2 = Math.pow(t, 2);
|
|
|
|
|
const x = pointFrom<Point>(
|
|
|
|
|
bx[0] * t3 + bx[1] * t2 + bx[2] * t + bx[3],
|
|
|
|
|
by[0] * t3 + by[1] * t2 + by[2] * t + by[3],
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
/*above is intersection point assuming infinitely long line segment,
|
|
|
|
|
make sure we are also in bounds of the line*/
|
|
|
|
|
let s;
|
|
|
|
|
if (l[1][0] - l[0][0] !== 0) {
|
|
|
|
|
/*if not vertical line*/
|
|
|
|
|
s = (x[0] - l[0][0]) / (l[1][0] - l[0][0]);
|
|
|
|
|
} else {
|
|
|
|
|
const points: Point[] = [];
|
|
|
|
|
points.push(pointsIn[0], pointsIn[0]);
|
|
|
|
|
for (let i = 1; i < pointsIn.length; i++) {
|
|
|
|
|
points.push(pointsIn[i]);
|
|
|
|
|
if (i === pointsIn.length - 1) {
|
|
|
|
|
points.push(pointsIn[i]);
|
|
|
|
|
s = (x[1] - l[0][1]) / (l[1][1] - l[0][1]);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*in bounds?*/
|
|
|
|
|
if (t < 0 || t > 1.0 || s < 0 || s > 1.0) {
|
|
|
|
|
return null;
|
|
|
|
|
}
|
|
|
|
|
const b: Point[] = [];
|
|
|
|
|
const s = 1 - curveTightness;
|
|
|
|
|
out.push(pointFrom(points[0][0], points[0][1]));
|
|
|
|
|
for (let i = 1; i + 2 < points.length; i++) {
|
|
|
|
|
const cachedVertArray = points[i];
|
|
|
|
|
b[0] = pointFrom(cachedVertArray[0], cachedVertArray[1]);
|
|
|
|
|
b[1] = pointFrom(
|
|
|
|
|
cachedVertArray[0] + (s * points[i + 1][0] - s * points[i - 1][0]) / 6,
|
|
|
|
|
cachedVertArray[1] + (s * points[i + 1][1] - s * points[i - 1][1]) / 6,
|
|
|
|
|
);
|
|
|
|
|
b[2] = pointFrom(
|
|
|
|
|
points[i + 1][0] + (s * points[i][0] - s * points[i + 2][0]) / 6,
|
|
|
|
|
points[i + 1][1] + (s * points[i][1] - s * points[i + 2][1]) / 6,
|
|
|
|
|
);
|
|
|
|
|
b[3] = pointFrom(points[i + 1][0], points[i + 1][1]);
|
|
|
|
|
out.push(b[1], b[2], b[3]);
|
|
|
|
|
|
|
|
|
|
return x;
|
|
|
|
|
})
|
|
|
|
|
.filter((x) => x !== null);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/*based on http://mysite.verizon.net/res148h4j/javascript/script_exact_cubic.html#the%20source%20code*/
|
|
|
|
|
function cubicRoots(P: [number, number, number, number]) {
|
|
|
|
|
const a = P[0];
|
|
|
|
|
const b = P[1];
|
|
|
|
|
const c = P[2];
|
|
|
|
|
const d = P[3];
|
|
|
|
|
|
|
|
|
|
const A = b / a;
|
|
|
|
|
const B = c / a;
|
|
|
|
|
const C = d / a;
|
|
|
|
|
|
|
|
|
|
let Im;
|
|
|
|
|
|
|
|
|
|
const Q = (3 * B - Math.pow(A, 2)) / 9;
|
|
|
|
|
const R = (9 * A * B - 27 * C - 2 * Math.pow(A, 3)) / 54;
|
|
|
|
|
const D = Math.pow(Q, 3) + Math.pow(R, 2); // polynomial discriminant
|
|
|
|
|
|
|
|
|
|
let t = [];
|
|
|
|
|
|
|
|
|
|
if (D >= 0) {
|
|
|
|
|
// complex or duplicate roots
|
|
|
|
|
const S =
|
|
|
|
|
Math.sign(R + Math.sqrt(D)) * Math.pow(Math.abs(R + Math.sqrt(D)), 1 / 3);
|
|
|
|
|
const T =
|
|
|
|
|
Math.sign(R - Math.sqrt(D)) * Math.pow(Math.abs(R - Math.sqrt(D)), 1 / 3);
|
|
|
|
|
|
|
|
|
|
t[0] = -A / 3 + (S + T); // real root
|
|
|
|
|
t[1] = -A / 3 - (S + T) / 2; // real part of complex root
|
|
|
|
|
t[2] = -A / 3 - (S + T) / 2; // real part of complex root
|
|
|
|
|
Im = Math.abs((Math.sqrt(3) * (S - T)) / 2); // complex part of root pair
|
|
|
|
|
|
|
|
|
|
/*discard complex roots*/
|
|
|
|
|
if (Im !== 0) {
|
|
|
|
|
t[1] = -1;
|
|
|
|
|
t[2] = -1;
|
|
|
|
|
}
|
|
|
|
|
} // distinct real roots
|
|
|
|
|
else {
|
|
|
|
|
const th = Math.acos(R / Math.sqrt(-Math.pow(Q, 3)));
|
|
|
|
|
|
|
|
|
|
t[0] = 2 * Math.sqrt(-Q) * Math.cos(th / 3) - A / 3;
|
|
|
|
|
t[1] = 2 * Math.sqrt(-Q) * Math.cos((th + 2 * Math.PI) / 3) - A / 3;
|
|
|
|
|
t[2] = 2 * Math.sqrt(-Q) * Math.cos((th + 4 * Math.PI) / 3) - A / 3;
|
|
|
|
|
Im = 0.0;
|
|
|
|
|
}
|
|
|
|
|
return out;
|
|
|
|
|
|
|
|
|
|
/*discard out of spec roots*/
|
|
|
|
|
for (let i = 0; i < 3; i++) {
|
|
|
|
|
if (t[i] < 0 || t[i] > 1.0) {
|
|
|
|
|
t[i] = -1;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// sort but place -1 at the end
|
|
|
|
|
t = t.sort((a, b) => (a === -1 ? 1 : b === -1 ? -1 : a - b));
|
|
|
|
|
|
|
|
|
|
return t;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
|
* @param t
|
|
|
|
|
* @param controlPoints
|
|
|
|
|
* @returns
|
|
|
|
|
*/
|
|
|
|
|
export const cubicBezierPoint = <Point extends LocalPoint | GlobalPoint>(
|
|
|
|
|
t: number,
|
|
|
|
|
controlPoints: Curve<Point>,
|
|
|
|
|
): Point => {
|
|
|
|
|
const [p0, p1, p2, p3] = controlPoints;
|
|
|
|
|
|
|
|
|
|
const x =
|
|
|
|
|
Math.pow(1 - t, 3) * p0[0] +
|
|
|
|
|
3 * Math.pow(1 - t, 2) * t * p1[0] +
|
|
|
|
|
3 * (1 - t) * Math.pow(t, 2) * p2[0] +
|
|
|
|
|
Math.pow(t, 3) * p3[0];
|
|
|
|
|
|
|
|
|
|
const y =
|
|
|
|
|
Math.pow(1 - t, 3) * p0[1] +
|
|
|
|
|
3 * Math.pow(1 - t, 2) * t * p1[1] +
|
|
|
|
|
3 * (1 - t) * Math.pow(t, 2) * p2[1] +
|
|
|
|
|
Math.pow(t, 3) * p3[1];
|
|
|
|
|
|
|
|
|
|
return pointFrom(x, y);
|
|
|
|
|
};
|
|
|
|
|
function bezierCoefficients(P0: number, P1: number, P2: number, P3: number) {
|
|
|
|
|
const Z = [];
|
|
|
|
|
Z[0] = -P0 + 3 * P1 + -3 * P2 + P3;
|
|
|
|
|
Z[1] = 3 * P0 - 6 * P1 + 3 * P2;
|
|
|
|
|
Z[2] = -3 * P0 + 3 * P1;
|
|
|
|
|
Z[3] = P0;
|
|
|
|
|
return Z;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
*
|
|
|
|
|
* @param point
|
|
|
|
|
* @param controlPoints
|
|
|
|
|
* @returns
|
|
|
|
|
*/
|
|
|
|
|
export const cubicBezierDistance = <Point extends LocalPoint | GlobalPoint>(
|
|
|
|
|
point: Point,
|
|
|
|
|
controlPoints: Curve<Point>,
|
|
|
|
|
) => {
|
|
|
|
|
// Calculate the closest point on the Bezier curve to the given point
|
|
|
|
|
const t = findClosestParameter(point, controlPoints);
|
|
|
|
|
|
|
|
|
|
// Calculate the coordinates of the closest point on the curve
|
|
|
|
|
const [closestX, closestY] = cubicBezierPoint(t, controlPoints);
|
|
|
|
|
|
|
|
|
|
// Calculate the distance between the given point and the closest point on the curve
|
|
|
|
|
const distance = Math.sqrt(
|
|
|
|
|
(point[0] - closestX) ** 2 + (point[1] - closestY) ** 2,
|
|
|
|
|
);
|
|
|
|
|
// export const curveRotate = <Point extends LocalPoint | GlobalPoint>(
|
|
|
|
|
// curve: Curve<Point>,
|
|
|
|
|
// angle: Radians,
|
|
|
|
|
// origin: Point,
|
|
|
|
|
// ) => {
|
|
|
|
|
// return curve.map((p) => pointRotateRads(p, origin, angle));
|
|
|
|
|
// };
|
|
|
|
|
|
|
|
|
|
return distance;
|
|
|
|
|
};
|
|
|
|
|
// /**
|
|
|
|
|
// *
|
|
|
|
|
// * @param pointsIn
|
|
|
|
|
// * @param curveTightness
|
|
|
|
|
// * @returns
|
|
|
|
|
// */
|
|
|
|
|
// export function curveToBezier<Point extends LocalPoint | GlobalPoint>(
|
|
|
|
|
// pointsIn: readonly Point[],
|
|
|
|
|
// curveTightness = 0,
|
|
|
|
|
// ): Point[] {
|
|
|
|
|
// const len = pointsIn.length;
|
|
|
|
|
// if (len < 3) {
|
|
|
|
|
// throw new Error("A curve must have at least three points.");
|
|
|
|
|
// }
|
|
|
|
|
// const out: Point[] = [];
|
|
|
|
|
// if (len === 3) {
|
|
|
|
|
// out.push(
|
|
|
|
|
// pointFrom(pointsIn[0][0], pointsIn[0][1]), // Points need to be cloned
|
|
|
|
|
// pointFrom(pointsIn[1][0], pointsIn[1][1]), // Points need to be cloned
|
|
|
|
|
// pointFrom(pointsIn[2][0], pointsIn[2][1]), // Points need to be cloned
|
|
|
|
|
// pointFrom(pointsIn[2][0], pointsIn[2][1]), // Points need to be cloned
|
|
|
|
|
// );
|
|
|
|
|
// } else {
|
|
|
|
|
// const points: Point[] = [];
|
|
|
|
|
// points.push(pointsIn[0], pointsIn[0]);
|
|
|
|
|
// for (let i = 1; i < pointsIn.length; i++) {
|
|
|
|
|
// points.push(pointsIn[i]);
|
|
|
|
|
// if (i === pointsIn.length - 1) {
|
|
|
|
|
// points.push(pointsIn[i]);
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// const b: Point[] = [];
|
|
|
|
|
// const s = 1 - curveTightness;
|
|
|
|
|
// out.push(pointFrom(points[0][0], points[0][1]));
|
|
|
|
|
// for (let i = 1; i + 2 < points.length; i++) {
|
|
|
|
|
// const cachedVertArray = points[i];
|
|
|
|
|
// b[0] = pointFrom(cachedVertArray[0], cachedVertArray[1]);
|
|
|
|
|
// b[1] = pointFrom(
|
|
|
|
|
// cachedVertArray[0] + (s * points[i + 1][0] - s * points[i - 1][0]) / 6,
|
|
|
|
|
// cachedVertArray[1] + (s * points[i + 1][1] - s * points[i - 1][1]) / 6,
|
|
|
|
|
// );
|
|
|
|
|
// b[2] = pointFrom(
|
|
|
|
|
// points[i + 1][0] + (s * points[i][0] - s * points[i + 2][0]) / 6,
|
|
|
|
|
// points[i + 1][1] + (s * points[i][1] - s * points[i + 2][1]) / 6,
|
|
|
|
|
// );
|
|
|
|
|
// b[3] = pointFrom(points[i + 1][0], points[i + 1][1]);
|
|
|
|
|
// out.push(b[1], b[2], b[3]);
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// return out;
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
const solveCubic = (a: number, b: number, c: number, d: number) => {
|
|
|
|
|
// This function solves the cubic equation ax^3 + bx^2 + cx + d = 0
|
|
|
|
|
const roots: number[] = [];
|
|
|
|
|
// /**
|
|
|
|
|
// *
|
|
|
|
|
// * @param t
|
|
|
|
|
// * @param controlPoints
|
|
|
|
|
// * @returns
|
|
|
|
|
// */
|
|
|
|
|
// export const cubicBezierPoint = <Point extends LocalPoint | GlobalPoint>(
|
|
|
|
|
// t: number,
|
|
|
|
|
// controlPoints: Curve<Point>,
|
|
|
|
|
// ): Point => {
|
|
|
|
|
// const [p0, p1, p2, p3] = controlPoints;
|
|
|
|
|
|
|
|
|
|
const discriminant =
|
|
|
|
|
18 * a * b * c * d -
|
|
|
|
|
4 * Math.pow(b, 3) * d +
|
|
|
|
|
Math.pow(b, 2) * Math.pow(c, 2) -
|
|
|
|
|
4 * a * Math.pow(c, 3) -
|
|
|
|
|
27 * Math.pow(a, 2) * Math.pow(d, 2);
|
|
|
|
|
// const x =
|
|
|
|
|
// Math.pow(1 - t, 3) * p0[0] +
|
|
|
|
|
// 3 * Math.pow(1 - t, 2) * t * p1[0] +
|
|
|
|
|
// 3 * (1 - t) * Math.pow(t, 2) * p2[0] +
|
|
|
|
|
// Math.pow(t, 3) * p3[0];
|
|
|
|
|
|
|
|
|
|
if (discriminant >= 0) {
|
|
|
|
|
const C = Math.cbrt((discriminant + Math.sqrt(discriminant)) / 2);
|
|
|
|
|
const D = Math.cbrt((discriminant - Math.sqrt(discriminant)) / 2);
|
|
|
|
|
// const y =
|
|
|
|
|
// Math.pow(1 - t, 3) * p0[1] +
|
|
|
|
|
// 3 * Math.pow(1 - t, 2) * t * p1[1] +
|
|
|
|
|
// 3 * (1 - t) * Math.pow(t, 2) * p2[1] +
|
|
|
|
|
// Math.pow(t, 3) * p3[1];
|
|
|
|
|
|
|
|
|
|
const root1 = (-b - C - D) / (3 * a);
|
|
|
|
|
const root2 = (-b + (C + D) / 2) / (3 * a);
|
|
|
|
|
const root3 = (-b + (C + D) / 2) / (3 * a);
|
|
|
|
|
// return pointFrom(x, y);
|
|
|
|
|
// };
|
|
|
|
|
|
|
|
|
|
roots.push(root1, root2, root3);
|
|
|
|
|
} else {
|
|
|
|
|
const realPart = -b / (3 * a);
|
|
|
|
|
|
|
|
|
|
const root1 =
|
|
|
|
|
2 * Math.sqrt(-b / (3 * a)) * Math.cos(Math.acos(realPart) / 3);
|
|
|
|
|
const root2 =
|
|
|
|
|
2 *
|
|
|
|
|
Math.sqrt(-b / (3 * a)) *
|
|
|
|
|
Math.cos((Math.acos(realPart) + 2 * Math.PI) / 3);
|
|
|
|
|
const root3 =
|
|
|
|
|
2 *
|
|
|
|
|
Math.sqrt(-b / (3 * a)) *
|
|
|
|
|
Math.cos((Math.acos(realPart) + 4 * Math.PI) / 3);
|
|
|
|
|
|
|
|
|
|
roots.push(root1, root2, root3);
|
|
|
|
|
}
|
|
|
|
|
// /**
|
|
|
|
|
// *
|
|
|
|
|
// * @param point
|
|
|
|
|
// * @param controlPoints
|
|
|
|
|
// * @returns
|
|
|
|
|
// */
|
|
|
|
|
// export const cubicBezierDistance = <Point extends LocalPoint | GlobalPoint>(
|
|
|
|
|
// point: Point,
|
|
|
|
|
// controlPoints: Curve<Point>,
|
|
|
|
|
// ) => {
|
|
|
|
|
// // Calculate the closest point on the Bezier curve to the given point
|
|
|
|
|
// const t = findClosestParameter(point, controlPoints);
|
|
|
|
|
|
|
|
|
|
return roots;
|
|
|
|
|
};
|
|
|
|
|
// // Calculate the coordinates of the closest point on the curve
|
|
|
|
|
// const [closestX, closestY] = cubicBezierPoint(t, controlPoints);
|
|
|
|
|
|
|
|
|
|
const findClosestParameter = <Point extends LocalPoint | GlobalPoint>(
|
|
|
|
|
point: Point,
|
|
|
|
|
controlPoints: Curve<Point>,
|
|
|
|
|
) => {
|
|
|
|
|
// This function finds the parameter t that minimizes the distance between the point
|
|
|
|
|
// and any point on the cubic Bezier curve.
|
|
|
|
|
// // Calculate the distance between the given point and the closest point on the curve
|
|
|
|
|
// const distance = Math.sqrt(
|
|
|
|
|
// (point[0] - closestX) ** 2 + (point[1] - closestY) ** 2,
|
|
|
|
|
// );
|
|
|
|
|
|
|
|
|
|
const [p0, p1, p2, p3] = controlPoints;
|
|
|
|
|
// return distance;
|
|
|
|
|
// };
|
|
|
|
|
|
|
|
|
|
// Use the direct formula to find the parameter t
|
|
|
|
|
const a = p3[0] - 3 * p2[0] + 3 * p1[0] - p0[0];
|
|
|
|
|
const b = 3 * p2[0] - 6 * p1[0] + 3 * p0[0];
|
|
|
|
|
const c = 3 * p1[0] - 3 * p0[0];
|
|
|
|
|
const d = p0[0] - point[0];
|
|
|
|
|
// const solveCubic = (a: number, b: number, c: number, d: number) => {
|
|
|
|
|
// // This function solves the cubic equation ax^3 + bx^2 + cx + d = 0
|
|
|
|
|
// const roots: number[] = [];
|
|
|
|
|
|
|
|
|
|
const rootsX = solveCubic(a, b, c, d);
|
|
|
|
|
// const discriminant =
|
|
|
|
|
// 18 * a * b * c * d -
|
|
|
|
|
// 4 * Math.pow(b, 3) * d +
|
|
|
|
|
// Math.pow(b, 2) * Math.pow(c, 2) -
|
|
|
|
|
// 4 * a * Math.pow(c, 3) -
|
|
|
|
|
// 27 * Math.pow(a, 2) * Math.pow(d, 2);
|
|
|
|
|
|
|
|
|
|
// Do the same for the y-coordinate
|
|
|
|
|
const e = p3[1] - 3 * p2[1] + 3 * p1[1] - p0[1];
|
|
|
|
|
const f = 3 * p2[1] - 6 * p1[1] + 3 * p0[1];
|
|
|
|
|
const g = 3 * p1[1] - 3 * p0[1];
|
|
|
|
|
const h = p0[1] - point[1];
|
|
|
|
|
// if (discriminant >= 0) {
|
|
|
|
|
// const C = Math.cbrt((discriminant + Math.sqrt(discriminant)) / 2);
|
|
|
|
|
// const D = Math.cbrt((discriminant - Math.sqrt(discriminant)) / 2);
|
|
|
|
|
|
|
|
|
|
const rootsY = solveCubic(e, f, g, h);
|
|
|
|
|
// const root1 = (-b - C - D) / (3 * a);
|
|
|
|
|
// const root2 = (-b + (C + D) / 2) / (3 * a);
|
|
|
|
|
// const root3 = (-b + (C + D) / 2) / (3 * a);
|
|
|
|
|
|
|
|
|
|
// Select the real root that is between 0 and 1 (inclusive)
|
|
|
|
|
const validRootsX = rootsX.filter((root) => root >= 0 && root <= 1);
|
|
|
|
|
const validRootsY = rootsY.filter((root) => root >= 0 && root <= 1);
|
|
|
|
|
// roots.push(root1, root2, root3);
|
|
|
|
|
// } else {
|
|
|
|
|
// const realPart = -b / (3 * a);
|
|
|
|
|
|
|
|
|
|
if (validRootsX.length === 0 || validRootsY.length === 0) {
|
|
|
|
|
// No valid roots found, use the midpoint as a fallback
|
|
|
|
|
return 0.5;
|
|
|
|
|
}
|
|
|
|
|
// const root1 =
|
|
|
|
|
// 2 * Math.sqrt(-b / (3 * a)) * Math.cos(Math.acos(realPart) / 3);
|
|
|
|
|
// const root2 =
|
|
|
|
|
// 2 *
|
|
|
|
|
// Math.sqrt(-b / (3 * a)) *
|
|
|
|
|
// Math.cos((Math.acos(realPart) + 2 * Math.PI) / 3);
|
|
|
|
|
// const root3 =
|
|
|
|
|
// 2 *
|
|
|
|
|
// Math.sqrt(-b / (3 * a)) *
|
|
|
|
|
// Math.cos((Math.acos(realPart) + 4 * Math.PI) / 3);
|
|
|
|
|
|
|
|
|
|
// Choose the parameter t that minimizes the distance
|
|
|
|
|
let minDistance = Infinity;
|
|
|
|
|
let closestT = 0;
|
|
|
|
|
// roots.push(root1, root2, root3);
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
for (const rootX of validRootsX) {
|
|
|
|
|
for (const rootY of validRootsY) {
|
|
|
|
|
const distance = Math.sqrt(
|
|
|
|
|
(rootX - point[0]) ** 2 + (rootY - point[1]) ** 2,
|
|
|
|
|
);
|
|
|
|
|
if (distance < minDistance) {
|
|
|
|
|
minDistance = distance;
|
|
|
|
|
closestT = (rootX + rootY) / 2; // Use the average for a smoother result
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// return roots;
|
|
|
|
|
// };
|
|
|
|
|
|
|
|
|
|
// const findClosestParameter = <Point extends LocalPoint | GlobalPoint>(
|
|
|
|
|
// point: Point,
|
|
|
|
|
// controlPoints: Curve<Point>,
|
|
|
|
|
// ) => {
|
|
|
|
|
// // This function finds the parameter t that minimizes the distance between the point
|
|
|
|
|
// // and any point on the cubic Bezier curve.
|
|
|
|
|
|
|
|
|
|
// const [p0, p1, p2, p3] = controlPoints;
|
|
|
|
|
|
|
|
|
|
// // Use the direct formula to find the parameter t
|
|
|
|
|
// const a = p3[0] - 3 * p2[0] + 3 * p1[0] - p0[0];
|
|
|
|
|
// const b = 3 * p2[0] - 6 * p1[0] + 3 * p0[0];
|
|
|
|
|
// const c = 3 * p1[0] - 3 * p0[0];
|
|
|
|
|
// const d = p0[0] - point[0];
|
|
|
|
|
|
|
|
|
|
// const rootsX = solveCubic(a, b, c, d);
|
|
|
|
|
|
|
|
|
|
// // Do the same for the y-coordinate
|
|
|
|
|
// const e = p3[1] - 3 * p2[1] + 3 * p1[1] - p0[1];
|
|
|
|
|
// const f = 3 * p2[1] - 6 * p1[1] + 3 * p0[1];
|
|
|
|
|
// const g = 3 * p1[1] - 3 * p0[1];
|
|
|
|
|
// const h = p0[1] - point[1];
|
|
|
|
|
|
|
|
|
|
// const rootsY = solveCubic(e, f, g, h);
|
|
|
|
|
|
|
|
|
|
// // Select the real root that is between 0 and 1 (inclusive)
|
|
|
|
|
// const validRootsX = rootsX.filter((root) => root >= 0 && root <= 1);
|
|
|
|
|
// const validRootsY = rootsY.filter((root) => root >= 0 && root <= 1);
|
|
|
|
|
|
|
|
|
|
// if (validRootsX.length === 0 || validRootsY.length === 0) {
|
|
|
|
|
// // No valid roots found, use the midpoint as a fallback
|
|
|
|
|
// return 0.5;
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
// // Choose the parameter t that minimizes the distance
|
|
|
|
|
// let minDistance = Infinity;
|
|
|
|
|
// let closestT = 0;
|
|
|
|
|
|
|
|
|
|
// for (const rootX of validRootsX) {
|
|
|
|
|
// for (const rootY of validRootsY) {
|
|
|
|
|
// const distance = Math.sqrt(
|
|
|
|
|
// (rootX - point[0]) ** 2 + (rootY - point[1]) ** 2,
|
|
|
|
|
// );
|
|
|
|
|
// if (distance < minDistance) {
|
|
|
|
|
// minDistance = distance;
|
|
|
|
|
// closestT = (rootX + rootY) / 2; // Use the average for a smoother result
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
// }
|
|
|
|
|
|
|
|
|
|
return closestT;
|
|
|
|
|
};
|
|
|
|
|
// return closestT;
|
|
|
|
|
// };
|
|
|
|
|