You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srs/trunk/src/service/srs_service_st.cpp

767 lines
18 KiB
C++

/**
* The MIT License (MIT)
*
5 years ago
* Copyright (c) 2013-2020 Winlin
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include <srs_service_st.hpp>
#include <co_routine.h>
#include <fcntl.h>
#include <sys/socket.h>
#include <netdb.h>
#include <unistd.h>
using namespace std;
#include <srs_core_autofree.hpp>
#include <srs_kernel_error.hpp>
#include <srs_kernel_log.hpp>
#include <srs_service_utility.hpp>
#include <srs_kernel_utility.hpp>
// nginx also set to 512
#define SERVER_LISTEN_BACKLOG 512
#ifdef __linux__
#include <sys/epoll.h>
static int set_fd_nonblock(int fd)
{
int flags;
flags = fcntl(fd, F_GETFL, 0);
flags |= O_NONBLOCK;
flags |= O_NDELAY;
int ret = fcntl(fd, F_SETFL, flags);
return ret;
}
bool srs_st_epoll_is_supported(void)
{
struct epoll_event ev;
ev.events = EPOLLIN;
ev.data.ptr = NULL;
/* Guaranteed to fail */
epoll_ctl(-1, EPOLL_CTL_ADD, -1, &ev);
return (errno != ENOSYS);
}
#endif
srs_error_t srs_st_init()
{
return srs_success;
}
void srs_close_stfd(srs_netfd_t& stfd)
{
::close(stfd);
}
srs_error_t srs_fd_closeexec(int fd)
{
int flags = fcntl(fd, F_GETFD);
flags |= FD_CLOEXEC;
if (fcntl(fd, F_SETFD, flags) == -1) {
return srs_error_new(ERROR_SOCKET_SETCLOSEEXEC, "FD_CLOEXEC fd=%v", fd);
}
return srs_success;
}
srs_error_t srs_fd_reuseaddr(int fd)
{
int v = 1;
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &v, sizeof(int)) == -1) {
return srs_error_new(ERROR_SOCKET_SETREUSEADDR, "SO_REUSEADDR fd=%v", fd);
}
return srs_success;
}
srs_error_t srs_fd_reuseport(int fd)
{
#if defined(SO_REUSEPORT)
int v = 1;
if (setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &v, sizeof(int)) == -1) {
#ifdef SRS_AUTO_CROSSBUILD
srs_warn("SO_REUSEPORT disabled for crossbuild");
return srs_success;
#else
return srs_error_new(ERROR_SOCKET_SETREUSEADDR, "SO_REUSEPORT fd=%v", fd);
#endif
}
#else
#warning "SO_REUSEPORT is not supported by your OS"
srs_warn("SO_REUSEPORT is not supported util Linux kernel 3.9");
#endif
return srs_success;
}
srs_error_t srs_fd_keepalive(int fd)
{
#ifdef SO_KEEPALIVE
int v = 1;
if (setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, &v, sizeof(int)) == -1) {
return srs_error_new(ERROR_SOCKET_SETKEEPALIVE, "SO_KEEPALIVE fd=%d", fd);
}
#endif
return srs_success;
}
srs_thread_t srs_thread_self()
{
return (srs_thread_t)co_self();
}
srs_error_t srs_tcp_connect(string server, int port, srs_utime_t tm, srs_netfd_t* pstfd)
{
srs_utime_t timeout = SRS_UTIME_NO_TIMEOUT;
if (tm != SRS_UTIME_NO_TIMEOUT) {
timeout = tm;
}
(void)timeout;
char sport[8];
snprintf(sport, sizeof(sport), "%d", port);
addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
addrinfo* r = NULL;
SrsAutoFree(addrinfo, r);
if(getaddrinfo(server.c_str(), sport, (const addrinfo*)&hints, &r)) {
return srs_error_new(ERROR_SYSTEM_IP_INVALID, "get address info");
}
int sock = socket(r->ai_family, r->ai_socktype, r->ai_protocol);
if(sock == -1){
return srs_error_new(ERROR_SOCKET_CREATE, "create socket");
}
*pstfd = sock;
// TODO: timeout
if (connect(sock, r->ai_addr, r->ai_addrlen) == -1) {
srs_close_stfd(sock);
return srs_error_new(ERROR_ST_CONNECT, "connect to %s:%d", server.c_str(), port);
}
return srs_success;
}
srs_error_t do_srs_tcp_listen(int fd, addrinfo* r, srs_netfd_t* pfd)
{
srs_error_t err = srs_success;
// Detect alive for TCP connection.
// @see https://github.com/ossrs/srs/issues/1044
if ((err = srs_fd_keepalive(fd)) != srs_success) {
return srs_error_wrap(err, "set keepalive");
}
if ((err = srs_fd_closeexec(fd)) != srs_success) {
return srs_error_wrap(err, "set closeexec");
}
if ((err = srs_fd_reuseaddr(fd)) != srs_success) {
return srs_error_wrap(err, "set reuseaddr");
}
if ((err = srs_fd_reuseport(fd)) != srs_success) {
return srs_error_wrap(err, "set reuseport");
}
if (::bind(fd, r->ai_addr, r->ai_addrlen) == -1) {
return srs_error_new(ERROR_SOCKET_BIND, "bind");
}
if (::listen(fd, SERVER_LISTEN_BACKLOG) == -1) {
return srs_error_new(ERROR_SOCKET_LISTEN, "listen");
}
return err;
}
srs_error_t srs_tcp_listen(std::string ip, int port, srs_netfd_t* pfd)
{
srs_error_t err = srs_success;
char sport[8];
snprintf(sport, sizeof(sport), "%d", port);
addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_NUMERICHOST;
addrinfo* r = NULL;
SrsAutoFree(addrinfo, r);
if(getaddrinfo(ip.c_str(), sport, (const addrinfo*)&hints, &r)) {
return srs_error_new(ERROR_SYSTEM_IP_INVALID, "getaddrinfo hints=(%d,%d,%d)",
hints.ai_family, hints.ai_socktype, hints.ai_flags);
}
int fd = 0;
if ((fd = socket(r->ai_family, r->ai_socktype, r->ai_protocol)) == -1) {
return srs_error_new(ERROR_SOCKET_CREATE, "socket domain=%d, type=%d, protocol=%d",
r->ai_family, r->ai_socktype, r->ai_protocol);
}
set_fd_nonblock(fd);
if ((err = do_srs_tcp_listen(fd, r, pfd)) != srs_success) {
::close(fd);
return srs_error_wrap(err, "fd=%d", fd);
}
*pfd = fd;
return err;
}
srs_error_t do_srs_udp_listen(int fd, addrinfo* r, srs_netfd_t* pfd)
{
srs_error_t err = srs_success;
if ((err = srs_fd_closeexec(fd)) != srs_success) {
return srs_error_wrap(err, "set closeexec");
}
if ((err = srs_fd_reuseaddr(fd)) != srs_success) {
return srs_error_wrap(err, "set reuseaddr");
}
if ((err = srs_fd_reuseport(fd)) != srs_success) {
return srs_error_wrap(err, "set reuseport");
}
if (bind(fd, r->ai_addr, r->ai_addrlen) == -1) {
return srs_error_new(ERROR_SOCKET_BIND, "bind");
}
return err;
}
srs_error_t srs_udp_listen(std::string ip, int port, srs_netfd_t* pfd)
{
srs_error_t err = srs_success;
char sport[8];
snprintf(sport, sizeof(sport), "%d", port);
addrinfo hints;
memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_flags = AI_NUMERICHOST;
addrinfo* r = NULL;
SrsAutoFree(addrinfo, r);
if(getaddrinfo(ip.c_str(), sport, (const addrinfo*)&hints, &r)) {
return srs_error_new(ERROR_SYSTEM_IP_INVALID, "getaddrinfo hints=(%d,%d,%d)",
hints.ai_family, hints.ai_socktype, hints.ai_flags);
}
int fd = 0;
if ((fd = socket(r->ai_family, r->ai_socktype, r->ai_protocol)) == -1) {
return srs_error_new(ERROR_SOCKET_CREATE, "socket domain=%d, type=%d, protocol=%d",
r->ai_family, r->ai_socktype, r->ai_protocol);
}
if ((err = do_srs_udp_listen(fd, r, pfd)) != srs_success) {
::close(fd);
return srs_error_wrap(err, "fd=%d", fd);
}
return err;
}
srs_cond_t srs_cond_new()
{
return (srs_cond_t)co_cond_alloc();
}
int srs_cond_destroy(srs_cond_t cond)
{
return co_cond_free((stCoCond_t*)cond);
}
int srs_cond_wait(srs_cond_t cond)
{
return co_cond_timedwait((stCoCond_t*)cond, -1);
}
int srs_cond_timedwait(srs_cond_t cond, srs_utime_t timeout)
{
return co_cond_timedwait((stCoCond_t*)cond, timeout);
}
int srs_cond_signal(srs_cond_t cond)
{
return co_cond_signal((stCoCond_t*)cond);
}
srs_mutex_t srs_mutex_new()
{
return NULL;
}
int srs_mutex_destroy(srs_mutex_t mutex)
{
return 0;
}
int srs_mutex_lock(srs_mutex_t mutex)
{
return 0;
}
int srs_mutex_unlock(srs_mutex_t mutex)
{
return 0;
}
int srs_netfd_fileno(srs_netfd_t stfd)
{
return stfd;
}
int srs_usleep(srs_utime_t usecs)
{
// XXX: libco has no API like co_sleep, use co_cond_timedwait instead
stCoCond_t* cond = co_cond_alloc();
co_cond_timedwait(cond, usecs/1000.0);
return 0;
}
srs_netfd_t srs_netfd_open_socket(int osfd)
{
set_fd_nonblock(osfd);
return osfd;
}
srs_netfd_t srs_netfd_open(int osfd)
{
set_fd_nonblock(osfd);
return osfd;
}
int srs_recvfrom(srs_netfd_t stfd, void *buf, int len, struct sockaddr *from, int *fromlen, srs_utime_t timeout)
{
// TODO: timeout
return recvfrom(stfd, buf, len, 0, from, (socklen_t*)fromlen);
}
srs_netfd_t srs_accept(srs_netfd_t stfd, struct sockaddr *addr, int *addrlen, srs_utime_t timeout)
{
struct pollfd pf = { 0 };
pf.fd = stfd;
pf.events = (POLLIN | POLLERR | POLLHUP);
srs_utime_t atm = timeout;
if (atm != SRS_UTIME_NO_TIMEOUT)
atm /= 1000;
int client_fd;
while ((client_fd = accept(stfd, addr, (socklen_t*)addrlen)) < 0) {
if (errno != EINTR && errno != EAGAIN && errno != EWOULDBLOCK) {
return -1;
}
co_poll(co_get_epoll_ct(), &pf, 1, atm);
}
set_fd_nonblock(client_fd);
return client_fd;
}
ssize_t srs_read(srs_netfd_t stfd, void *buf, size_t nbyte, srs_utime_t timeout)
{
struct pollfd pf = { 0 };
pf.fd = stfd;
pf.events = (POLLIN | POLLERR | POLLHUP);
int n;
while ((n = ::read(stfd, buf, nbyte)) < 0) {
if (errno != EINTR && errno != EAGAIN && errno != EWOULDBLOCK) {
return -1;
}
co_poll(co_get_epoll_ct(), &pf, 1, timeout);
}
return n;
}
bool srs_is_never_timeout(srs_utime_t tm)
{
return tm == SRS_UTIME_NO_TIMEOUT;
}
SrsStSocket::SrsStSocket()
{
stm = rtm = SRS_UTIME_NO_TIMEOUT;
rbytes = sbytes = 0;
}
SrsStSocket::~SrsStSocket()
{
}
srs_error_t SrsStSocket::initialize(srs_netfd_t fd)
{
stfd = fd;
return srs_success;
}
void SrsStSocket::set_recv_timeout(srs_utime_t tm)
{
rtm = tm;
}
srs_utime_t SrsStSocket::get_recv_timeout()
{
return rtm;
}
void SrsStSocket::set_send_timeout(srs_utime_t tm)
{
stm = tm;
}
srs_utime_t SrsStSocket::get_send_timeout()
{
return stm;
}
int64_t SrsStSocket::get_recv_bytes()
{
return rbytes;
}
int64_t SrsStSocket::get_send_bytes()
{
return sbytes;
}
srs_error_t SrsStSocket::read(void* buf, size_t size, ssize_t* nread)
{
srs_error_t err = srs_success;
ssize_t nb_read;
if (rtm == SRS_UTIME_NO_TIMEOUT) {
nb_read = srs_read(stfd, buf, size, -1);
} else {
nb_read = srs_read(stfd, buf, size, rtm / 1000);
}
if (nread) {
*nread = nb_read;
}
// On success a non-negative integer indicating the number of bytes actually read is returned
// (a value of 0 means the network connection is closed or end of file is reached).
// Otherwise, a value of -1 is returned and errno is set to indicate the error.
if (nb_read <= 0) {
// @see https://github.com/ossrs/srs/issues/200
if (nb_read < 0 && errno == ETIME) {
return srs_error_new(ERROR_SOCKET_TIMEOUT, "timeout %d ms", srsu2msi(rtm));
}
if (nb_read == 0) {
errno = ECONNRESET;
}
return srs_error_new(ERROR_SOCKET_READ, "read");
}
rbytes += nb_read;
return err;
}
srs_error_t SrsStSocket::read_fully(void* buf, size_t size, ssize_t* nread)
{
srs_error_t err = srs_success;
ssize_t nb_read = 0;
int wait_read_bytes = size;
while (wait_read_bytes > 0) {
int bytes = ::read(stfd, buf, wait_read_bytes);
if (bytes > 0) {
nb_read += bytes;
wait_read_bytes -= bytes;
if (nb_read == (ssize_t)size) {
break;
}
} else if (bytes == 0) {
break;
} else {
if (errno != EWOULDBLOCK && errno != EAGAIN && errno != EINTR)
break;
}
}
if (nread) {
*nread = nb_read;
}
// On success a non-negative integer indicating the number of bytes actually read is returned
// (a value less than nbyte means the network connection is closed or end of file is reached)
// Otherwise, a value of -1 is returned and errno is set to indicate the error.
if (nb_read != (ssize_t)size) {
// @see https://github.com/ossrs/srs/issues/200
if (nb_read < 0 && errno == ETIME) {
return srs_error_new(ERROR_SOCKET_TIMEOUT, "timeout %d ms", srsu2msi(rtm));
}
if (nb_read >= 0) {
errno = ECONNRESET;
}
return srs_error_new(ERROR_SOCKET_READ_FULLY, "read fully");
}
rbytes += nb_read;
return err;
}
srs_error_t SrsStSocket::write(void* buf, size_t size, ssize_t* nwrite)
{
srs_error_t err = srs_success;
ssize_t nb_write = 0;
struct pollfd pf = { 0 };
pf.fd = stfd;
pf.events = (POLLOUT | POLLERR | POLLHUP);
srs_utime_t wtm = stm;
if (wtm != SRS_UTIME_NO_TIMEOUT)
wtm = stm / 1000;
int wait_write_bytes = size;
while (wait_write_bytes > 0) {
int n = 0;
if ((n = ::write(stfd, buf, size)) < 0) {
if (errno != EINTR && errno != EAGAIN && errno != EWOULDBLOCK) {
break;
}
co_poll(co_get_epoll_ct(), &pf, 1, wtm);
continue;
}
wait_write_bytes -= n;
nb_write += n;
}
if (nwrite) {
*nwrite = nb_write;
}
// On success a non-negative integer equal to nbyte is returned.
// Otherwise, a value of -1 is returned and errno is set to indicate the error.
if (nb_write <= 0) {
// @see https://github.com/ossrs/srs/issues/200
if (nb_write < 0 && errno == ETIME) {
return srs_error_new(ERROR_SOCKET_TIMEOUT, "write timeout %d ms", srsu2msi(stm));
}
return srs_error_new(ERROR_SOCKET_WRITE, "write");
}
sbytes += nb_write;
return err;
}
srs_error_t SrsStSocket::writev(const iovec *iov, int iov_size, ssize_t* nwrite)
{
srs_error_t err = srs_success;
srs_utime_t tm = stm;
if (tm != SRS_UTIME_NO_TIMEOUT)
tm = stm / 1000;
int wait_write_bytes = 0;
for (int i = 0; i < iov_size; ++i)
wait_write_bytes += iov[i].iov_len;
ssize_t nb_write = 0;
iovec* cur_iov = (iovec*)iov;
int cur_iov_size = iov_size;
while (wait_write_bytes > 0) {
int n = 0;
if ((n = ::writev(stfd, cur_iov, cur_iov_size)) < 0) {
if (errno != EINTR && errno != EAGAIN && errno != EWOULDBLOCK) {
break;
}
struct pollfd pf = {0};
pf.fd = stfd;
pf.events = (POLLOUT | POLLERR | POLLHUP);
co_poll(co_get_epoll_ct(), &pf, 1, tm);
continue;
}
wait_write_bytes -= n;
nb_write += n;
while (n >= (int)cur_iov->iov_len) {
n -= cur_iov->iov_len;
--cur_iov_size;
++cur_iov;
}
// FIXME: no modify iov
(*cur_iov).iov_base = (void*)((char*)(*cur_iov).iov_base + n);
(*cur_iov).iov_len -= n;
}
if (nwrite) {
*nwrite = nb_write;
}
// On success a non-negative integer equal to nbyte is returned.
// Otherwise, a value of -1 is returned and errno is set to indicate the error.
if (nb_write <= 0) {
// @see https://github.com/ossrs/srs/issues/200
if (nb_write < 0 && errno == ETIME) {
return srs_error_new(ERROR_SOCKET_TIMEOUT, "writev timeout %d ms", srsu2msi(stm));
}
return srs_error_new(ERROR_SOCKET_WRITE, "writev");
}
sbytes += nb_write;
return err;
}
SrsTcpClient::SrsTcpClient(string h, int p, srs_utime_t tm)
{
stfd = -1;
io = new SrsStSocket();
host = h;
port = p;
timeout = tm;
}
SrsTcpClient::~SrsTcpClient()
{
close();
srs_freep(io);
}
srs_error_t SrsTcpClient::connect()
{
srs_error_t err = srs_success;
close();
srs_assert(stfd == -1);
if ((err = srs_tcp_connect(host, port, timeout, &stfd)) != srs_success) {
return srs_error_wrap(err, "tcp: connect %s:%d to=%dms", host.c_str(), port, srsu2msi(timeout));
}
if ((err = io->initialize(stfd)) != srs_success) {
return srs_error_wrap(err, "tcp: init socket object");
}
return err;
}
void SrsTcpClient::close()
{
// Ignore when already closed.
if (!io) {
return;
}
srs_close_stfd(stfd);
}
void SrsTcpClient::set_recv_timeout(srs_utime_t tm)
{
io->set_recv_timeout(tm);
}
srs_utime_t SrsTcpClient::get_recv_timeout()
{
return io->get_recv_timeout();
}
void SrsTcpClient::set_send_timeout(srs_utime_t tm)
{
io->set_send_timeout(tm);
}
srs_utime_t SrsTcpClient::get_send_timeout()
{
return io->get_send_timeout();
}
int64_t SrsTcpClient::get_recv_bytes()
{
return io->get_recv_bytes();
}
int64_t SrsTcpClient::get_send_bytes()
{
return io->get_send_bytes();
}
srs_error_t SrsTcpClient::read(void* buf, size_t size, ssize_t* nread)
{
return io->read(buf, size, nread);
}
srs_error_t SrsTcpClient::read_fully(void* buf, size_t size, ssize_t* nread)
{
return io->read_fully(buf, size, nread);
}
srs_error_t SrsTcpClient::write(void* buf, size_t size, ssize_t* nwrite)
{
return io->write(buf, size, nwrite);
}
srs_error_t SrsTcpClient::writev(const iovec *iov, int iov_size, ssize_t* nwrite)
{
return io->writev(iov, iov_size, nwrite);
}