/** * The MIT License (MIT) * * Copyright (c) 2013-2020 Winlin * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include using namespace std; #include #include #include #include #include // nginx also set to 512 #define SERVER_LISTEN_BACKLOG 512 #ifdef __linux__ #include static int set_fd_nonblock(int fd) { int flags; flags = fcntl(fd, F_GETFL, 0); flags |= O_NONBLOCK; flags |= O_NDELAY; int ret = fcntl(fd, F_SETFL, flags); return ret; } bool srs_st_epoll_is_supported(void) { struct epoll_event ev; ev.events = EPOLLIN; ev.data.ptr = NULL; /* Guaranteed to fail */ epoll_ctl(-1, EPOLL_CTL_ADD, -1, &ev); return (errno != ENOSYS); } #endif srs_error_t srs_st_init() { return srs_success; } void srs_close_stfd(srs_netfd_t& stfd) { ::close(stfd); } srs_error_t srs_fd_closeexec(int fd) { int flags = fcntl(fd, F_GETFD); flags |= FD_CLOEXEC; if (fcntl(fd, F_SETFD, flags) == -1) { return srs_error_new(ERROR_SOCKET_SETCLOSEEXEC, "FD_CLOEXEC fd=%v", fd); } return srs_success; } srs_error_t srs_fd_reuseaddr(int fd) { int v = 1; if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &v, sizeof(int)) == -1) { return srs_error_new(ERROR_SOCKET_SETREUSEADDR, "SO_REUSEADDR fd=%v", fd); } return srs_success; } srs_error_t srs_fd_reuseport(int fd) { #if defined(SO_REUSEPORT) int v = 1; if (setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &v, sizeof(int)) == -1) { #ifdef SRS_AUTO_CROSSBUILD srs_warn("SO_REUSEPORT disabled for crossbuild"); return srs_success; #else return srs_error_new(ERROR_SOCKET_SETREUSEADDR, "SO_REUSEPORT fd=%v", fd); #endif } #else #warning "SO_REUSEPORT is not supported by your OS" srs_warn("SO_REUSEPORT is not supported util Linux kernel 3.9"); #endif return srs_success; } srs_error_t srs_fd_keepalive(int fd) { #ifdef SO_KEEPALIVE int v = 1; if (setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, &v, sizeof(int)) == -1) { return srs_error_new(ERROR_SOCKET_SETKEEPALIVE, "SO_KEEPALIVE fd=%d", fd); } #endif return srs_success; } srs_thread_t srs_thread_self() { return (srs_thread_t)co_self(); } srs_error_t srs_tcp_connect(string server, int port, srs_utime_t tm, srs_netfd_t* pstfd) { srs_utime_t timeout = SRS_UTIME_NO_TIMEOUT; if (tm != SRS_UTIME_NO_TIMEOUT) { timeout = tm; } (void)timeout; char sport[8]; snprintf(sport, sizeof(sport), "%d", port); addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; addrinfo* r = NULL; SrsAutoFree(addrinfo, r); if(getaddrinfo(server.c_str(), sport, (const addrinfo*)&hints, &r)) { return srs_error_new(ERROR_SYSTEM_IP_INVALID, "get address info"); } int sock = socket(r->ai_family, r->ai_socktype, r->ai_protocol); if(sock == -1){ return srs_error_new(ERROR_SOCKET_CREATE, "create socket"); } *pstfd = sock; // TODO: timeout if (connect(sock, r->ai_addr, r->ai_addrlen) == -1) { srs_close_stfd(sock); return srs_error_new(ERROR_ST_CONNECT, "connect to %s:%d", server.c_str(), port); } return srs_success; } srs_error_t do_srs_tcp_listen(int fd, addrinfo* r, srs_netfd_t* pfd) { srs_error_t err = srs_success; // Detect alive for TCP connection. // @see https://github.com/ossrs/srs/issues/1044 if ((err = srs_fd_keepalive(fd)) != srs_success) { return srs_error_wrap(err, "set keepalive"); } if ((err = srs_fd_closeexec(fd)) != srs_success) { return srs_error_wrap(err, "set closeexec"); } if ((err = srs_fd_reuseaddr(fd)) != srs_success) { return srs_error_wrap(err, "set reuseaddr"); } if ((err = srs_fd_reuseport(fd)) != srs_success) { return srs_error_wrap(err, "set reuseport"); } if (::bind(fd, r->ai_addr, r->ai_addrlen) == -1) { return srs_error_new(ERROR_SOCKET_BIND, "bind"); } if (::listen(fd, SERVER_LISTEN_BACKLOG) == -1) { return srs_error_new(ERROR_SOCKET_LISTEN, "listen"); } return err; } srs_error_t srs_tcp_listen(std::string ip, int port, srs_netfd_t* pfd) { srs_error_t err = srs_success; char sport[8]; snprintf(sport, sizeof(sport), "%d", port); addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_flags = AI_NUMERICHOST; addrinfo* r = NULL; SrsAutoFree(addrinfo, r); if(getaddrinfo(ip.c_str(), sport, (const addrinfo*)&hints, &r)) { return srs_error_new(ERROR_SYSTEM_IP_INVALID, "getaddrinfo hints=(%d,%d,%d)", hints.ai_family, hints.ai_socktype, hints.ai_flags); } int fd = 0; if ((fd = socket(r->ai_family, r->ai_socktype, r->ai_protocol)) == -1) { return srs_error_new(ERROR_SOCKET_CREATE, "socket domain=%d, type=%d, protocol=%d", r->ai_family, r->ai_socktype, r->ai_protocol); } set_fd_nonblock(fd); if ((err = do_srs_tcp_listen(fd, r, pfd)) != srs_success) { ::close(fd); return srs_error_wrap(err, "fd=%d", fd); } *pfd = fd; return err; } srs_error_t do_srs_udp_listen(int fd, addrinfo* r, srs_netfd_t* pfd) { srs_error_t err = srs_success; if ((err = srs_fd_closeexec(fd)) != srs_success) { return srs_error_wrap(err, "set closeexec"); } if ((err = srs_fd_reuseaddr(fd)) != srs_success) { return srs_error_wrap(err, "set reuseaddr"); } if ((err = srs_fd_reuseport(fd)) != srs_success) { return srs_error_wrap(err, "set reuseport"); } if (bind(fd, r->ai_addr, r->ai_addrlen) == -1) { return srs_error_new(ERROR_SOCKET_BIND, "bind"); } return err; } srs_error_t srs_udp_listen(std::string ip, int port, srs_netfd_t* pfd) { srs_error_t err = srs_success; char sport[8]; snprintf(sport, sizeof(sport), "%d", port); addrinfo hints; memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_DGRAM; hints.ai_flags = AI_NUMERICHOST; addrinfo* r = NULL; SrsAutoFree(addrinfo, r); if(getaddrinfo(ip.c_str(), sport, (const addrinfo*)&hints, &r)) { return srs_error_new(ERROR_SYSTEM_IP_INVALID, "getaddrinfo hints=(%d,%d,%d)", hints.ai_family, hints.ai_socktype, hints.ai_flags); } int fd = 0; if ((fd = socket(r->ai_family, r->ai_socktype, r->ai_protocol)) == -1) { return srs_error_new(ERROR_SOCKET_CREATE, "socket domain=%d, type=%d, protocol=%d", r->ai_family, r->ai_socktype, r->ai_protocol); } if ((err = do_srs_udp_listen(fd, r, pfd)) != srs_success) { ::close(fd); return srs_error_wrap(err, "fd=%d", fd); } return err; } srs_cond_t srs_cond_new() { return (srs_cond_t)co_cond_alloc(); } int srs_cond_destroy(srs_cond_t cond) { return co_cond_free((stCoCond_t*)cond); } int srs_cond_wait(srs_cond_t cond) { return co_cond_timedwait((stCoCond_t*)cond, -1); } int srs_cond_timedwait(srs_cond_t cond, srs_utime_t timeout) { return co_cond_timedwait((stCoCond_t*)cond, timeout); } int srs_cond_signal(srs_cond_t cond) { return co_cond_signal((stCoCond_t*)cond); } srs_mutex_t srs_mutex_new() { return NULL; } int srs_mutex_destroy(srs_mutex_t mutex) { return 0; } int srs_mutex_lock(srs_mutex_t mutex) { return 0; } int srs_mutex_unlock(srs_mutex_t mutex) { return 0; } int srs_netfd_fileno(srs_netfd_t stfd) { return stfd; } int srs_usleep(srs_utime_t usecs) { // XXX: libco has no API like co_sleep, use co_cond_timedwait instead stCoCond_t* cond = co_cond_alloc(); co_cond_timedwait(cond, usecs/1000.0); return 0; } srs_netfd_t srs_netfd_open_socket(int osfd) { set_fd_nonblock(osfd); return osfd; } srs_netfd_t srs_netfd_open(int osfd) { set_fd_nonblock(osfd); return osfd; } int srs_recvfrom(srs_netfd_t stfd, void *buf, int len, struct sockaddr *from, int *fromlen, srs_utime_t timeout) { // TODO: timeout return recvfrom(stfd, buf, len, 0, from, (socklen_t*)fromlen); } srs_netfd_t srs_accept(srs_netfd_t stfd, struct sockaddr *addr, int *addrlen, srs_utime_t timeout) { struct pollfd pf = { 0 }; pf.fd = stfd; pf.events = (POLLIN | POLLERR | POLLHUP); srs_utime_t atm = timeout; if (atm != SRS_UTIME_NO_TIMEOUT) atm /= 1000; int client_fd; while ((client_fd = accept(stfd, addr, (socklen_t*)addrlen)) < 0) { if (errno != EINTR && errno != EAGAIN && errno != EWOULDBLOCK) { return -1; } co_poll(co_get_epoll_ct(), &pf, 1, atm); } set_fd_nonblock(client_fd); return client_fd; } ssize_t srs_read(srs_netfd_t stfd, void *buf, size_t nbyte, srs_utime_t timeout) { struct pollfd pf = { 0 }; pf.fd = stfd; pf.events = (POLLIN | POLLERR | POLLHUP); int n; while ((n = ::read(stfd, buf, nbyte)) < 0) { if (errno != EINTR && errno != EAGAIN && errno != EWOULDBLOCK) { return -1; } co_poll(co_get_epoll_ct(), &pf, 1, timeout); } return n; } bool srs_is_never_timeout(srs_utime_t tm) { return tm == SRS_UTIME_NO_TIMEOUT; } SrsStSocket::SrsStSocket() { stm = rtm = SRS_UTIME_NO_TIMEOUT; rbytes = sbytes = 0; } SrsStSocket::~SrsStSocket() { } srs_error_t SrsStSocket::initialize(srs_netfd_t fd) { stfd = fd; return srs_success; } void SrsStSocket::set_recv_timeout(srs_utime_t tm) { rtm = tm; } srs_utime_t SrsStSocket::get_recv_timeout() { return rtm; } void SrsStSocket::set_send_timeout(srs_utime_t tm) { stm = tm; } srs_utime_t SrsStSocket::get_send_timeout() { return stm; } int64_t SrsStSocket::get_recv_bytes() { return rbytes; } int64_t SrsStSocket::get_send_bytes() { return sbytes; } srs_error_t SrsStSocket::read(void* buf, size_t size, ssize_t* nread) { srs_error_t err = srs_success; ssize_t nb_read; if (rtm == SRS_UTIME_NO_TIMEOUT) { nb_read = srs_read(stfd, buf, size, -1); } else { nb_read = srs_read(stfd, buf, size, rtm / 1000); } if (nread) { *nread = nb_read; } // On success a non-negative integer indicating the number of bytes actually read is returned // (a value of 0 means the network connection is closed or end of file is reached). // Otherwise, a value of -1 is returned and errno is set to indicate the error. if (nb_read <= 0) { // @see https://github.com/ossrs/srs/issues/200 if (nb_read < 0 && errno == ETIME) { return srs_error_new(ERROR_SOCKET_TIMEOUT, "timeout %d ms", srsu2msi(rtm)); } if (nb_read == 0) { errno = ECONNRESET; } return srs_error_new(ERROR_SOCKET_READ, "read"); } rbytes += nb_read; return err; } srs_error_t SrsStSocket::read_fully(void* buf, size_t size, ssize_t* nread) { srs_error_t err = srs_success; ssize_t nb_read = 0; int wait_read_bytes = size; while (wait_read_bytes > 0) { int bytes = ::read(stfd, buf, wait_read_bytes); if (bytes > 0) { nb_read += bytes; wait_read_bytes -= bytes; if (nb_read == (ssize_t)size) { break; } } else if (bytes == 0) { break; } else { if (errno != EWOULDBLOCK && errno != EAGAIN && errno != EINTR) break; } } if (nread) { *nread = nb_read; } // On success a non-negative integer indicating the number of bytes actually read is returned // (a value less than nbyte means the network connection is closed or end of file is reached) // Otherwise, a value of -1 is returned and errno is set to indicate the error. if (nb_read != (ssize_t)size) { // @see https://github.com/ossrs/srs/issues/200 if (nb_read < 0 && errno == ETIME) { return srs_error_new(ERROR_SOCKET_TIMEOUT, "timeout %d ms", srsu2msi(rtm)); } if (nb_read >= 0) { errno = ECONNRESET; } return srs_error_new(ERROR_SOCKET_READ_FULLY, "read fully"); } rbytes += nb_read; return err; } srs_error_t SrsStSocket::write(void* buf, size_t size, ssize_t* nwrite) { srs_error_t err = srs_success; ssize_t nb_write = 0; struct pollfd pf = { 0 }; pf.fd = stfd; pf.events = (POLLOUT | POLLERR | POLLHUP); srs_utime_t wtm = stm; if (wtm != SRS_UTIME_NO_TIMEOUT) wtm = stm / 1000; int wait_write_bytes = size; while (wait_write_bytes > 0) { int n = 0; if ((n = ::write(stfd, buf, size)) < 0) { if (errno != EINTR && errno != EAGAIN && errno != EWOULDBLOCK) { break; } co_poll(co_get_epoll_ct(), &pf, 1, wtm); continue; } wait_write_bytes -= n; nb_write += n; } if (nwrite) { *nwrite = nb_write; } // On success a non-negative integer equal to nbyte is returned. // Otherwise, a value of -1 is returned and errno is set to indicate the error. if (nb_write <= 0) { // @see https://github.com/ossrs/srs/issues/200 if (nb_write < 0 && errno == ETIME) { return srs_error_new(ERROR_SOCKET_TIMEOUT, "write timeout %d ms", srsu2msi(stm)); } return srs_error_new(ERROR_SOCKET_WRITE, "write"); } sbytes += nb_write; return err; } srs_error_t SrsStSocket::writev(const iovec *iov, int iov_size, ssize_t* nwrite) { srs_error_t err = srs_success; srs_utime_t tm = stm; if (tm != SRS_UTIME_NO_TIMEOUT) tm = stm / 1000; int wait_write_bytes = 0; for (int i = 0; i < iov_size; ++i) wait_write_bytes += iov[i].iov_len; ssize_t nb_write = 0; iovec* cur_iov = (iovec*)iov; int cur_iov_size = iov_size; while (wait_write_bytes > 0) { int n = 0; if ((n = ::writev(stfd, cur_iov, cur_iov_size)) < 0) { if (errno != EINTR && errno != EAGAIN && errno != EWOULDBLOCK) { break; } struct pollfd pf = {0}; pf.fd = stfd; pf.events = (POLLOUT | POLLERR | POLLHUP); co_poll(co_get_epoll_ct(), &pf, 1, tm); continue; } wait_write_bytes -= n; nb_write += n; while (n >= (int)cur_iov->iov_len) { n -= cur_iov->iov_len; --cur_iov_size; ++cur_iov; } // FIXME: no modify iov (*cur_iov).iov_base = (void*)((char*)(*cur_iov).iov_base + n); (*cur_iov).iov_len -= n; } if (nwrite) { *nwrite = nb_write; } // On success a non-negative integer equal to nbyte is returned. // Otherwise, a value of -1 is returned and errno is set to indicate the error. if (nb_write <= 0) { // @see https://github.com/ossrs/srs/issues/200 if (nb_write < 0 && errno == ETIME) { return srs_error_new(ERROR_SOCKET_TIMEOUT, "writev timeout %d ms", srsu2msi(stm)); } return srs_error_new(ERROR_SOCKET_WRITE, "writev"); } sbytes += nb_write; return err; } SrsTcpClient::SrsTcpClient(string h, int p, srs_utime_t tm) { stfd = -1; io = new SrsStSocket(); host = h; port = p; timeout = tm; } SrsTcpClient::~SrsTcpClient() { close(); srs_freep(io); } srs_error_t SrsTcpClient::connect() { srs_error_t err = srs_success; close(); srs_assert(stfd == -1); if ((err = srs_tcp_connect(host, port, timeout, &stfd)) != srs_success) { return srs_error_wrap(err, "tcp: connect %s:%d to=%dms", host.c_str(), port, srsu2msi(timeout)); } if ((err = io->initialize(stfd)) != srs_success) { return srs_error_wrap(err, "tcp: init socket object"); } return err; } void SrsTcpClient::close() { // Ignore when already closed. if (!io) { return; } srs_close_stfd(stfd); } void SrsTcpClient::set_recv_timeout(srs_utime_t tm) { io->set_recv_timeout(tm); } srs_utime_t SrsTcpClient::get_recv_timeout() { return io->get_recv_timeout(); } void SrsTcpClient::set_send_timeout(srs_utime_t tm) { io->set_send_timeout(tm); } srs_utime_t SrsTcpClient::get_send_timeout() { return io->get_send_timeout(); } int64_t SrsTcpClient::get_recv_bytes() { return io->get_recv_bytes(); } int64_t SrsTcpClient::get_send_bytes() { return io->get_send_bytes(); } srs_error_t SrsTcpClient::read(void* buf, size_t size, ssize_t* nread) { return io->read(buf, size, nread); } srs_error_t SrsTcpClient::read_fully(void* buf, size_t size, ssize_t* nread) { return io->read_fully(buf, size, nread); } srs_error_t SrsTcpClient::write(void* buf, size_t size, ssize_t* nwrite) { return io->write(buf, size, nwrite); } srs_error_t SrsTcpClient::writev(const iovec *iov, int iov_size, ssize_t* nwrite) { return io->writev(iov, iov_size, nwrite); }