mirror of https://github.com/fxsjy/jieba.git
add a example of using sklearn+jieba
parent
a8f902545c
commit
4300f79788
@ -0,0 +1,63 @@
|
|||||||
|
import sys
|
||||||
|
sys.path.append("../")
|
||||||
|
from sklearn.feature_extraction.text import CountVectorizer
|
||||||
|
from sklearn.feature_extraction.text import TfidfTransformer
|
||||||
|
from sklearn import decomposition
|
||||||
|
|
||||||
|
import jieba
|
||||||
|
import time
|
||||||
|
import glob
|
||||||
|
import sys
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
|
||||||
|
if len(sys.argv)<2:
|
||||||
|
print "usage: extract_topic.py directory [n_topic] [n_top_words]"
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
|
n_topic = 10
|
||||||
|
n_top_words = 25
|
||||||
|
|
||||||
|
if len(sys.argv)>2:
|
||||||
|
n_topic = int(sys.argv[2])
|
||||||
|
|
||||||
|
if len(sys.argv)>3:
|
||||||
|
n_top_words = int(sys.argv[3])
|
||||||
|
|
||||||
|
count_vect = CountVectorizer()
|
||||||
|
docs = []
|
||||||
|
|
||||||
|
pattern = os.path.join(sys.argv[1],"*.txt")
|
||||||
|
print "read "+pattern
|
||||||
|
|
||||||
|
for f_name in glob.glob(pattern):
|
||||||
|
with open(f_name) as f:
|
||||||
|
print "read file:", f_name
|
||||||
|
for line in f: #one line as a document
|
||||||
|
words = " ".join(jieba.cut(line))
|
||||||
|
docs.append(words)
|
||||||
|
|
||||||
|
random.shuffle(docs)
|
||||||
|
|
||||||
|
print "read done."
|
||||||
|
|
||||||
|
print "transform"
|
||||||
|
counts = count_vect.fit_transform(docs)
|
||||||
|
tfidf = TfidfTransformer().fit_transform(counts)
|
||||||
|
print tfidf.shape
|
||||||
|
|
||||||
|
|
||||||
|
t0 = time.time()
|
||||||
|
print "training..."
|
||||||
|
|
||||||
|
nmf = decomposition.NMF(n_components=n_topic).fit(tfidf)
|
||||||
|
print("done in %0.3fs." % (time.time() - t0))
|
||||||
|
|
||||||
|
# Inverse the vectorizer vocabulary to be able
|
||||||
|
feature_names = count_vect.get_feature_names()
|
||||||
|
|
||||||
|
for topic_idx, topic in enumerate(nmf.components_):
|
||||||
|
print("Topic #%d:" % topic_idx)
|
||||||
|
print(" ".join([feature_names[i]
|
||||||
|
for i in topic.argsort()[:-n_top_words - 1:-1]]))
|
||||||
|
print("")
|
Loading…
Reference in New Issue