jieba
========
"结巴"中文分词: 做最好的Python中文分词组件
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
- _Scroll down for English documentation._
Feature
========
* 支持三种分词模式:
* 精确模式,试图将句子最精确地切开,适合文本分析;
* 全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义;
* 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。
* 支持繁体分词
* 支持自定义词典
在线演示
=========
http://jiebademo.ap01.aws.af.cm/
(Powered by Appfog)
Python Version
==============
* 目前master分支是只支持Python2.x 的
* Python3.x 版本的分支也已经基本可用: https://github.com/fxsjy/jieba/tree/jieba3k
Usage
========
* 全自动安装:`easy_install jieba` 或者 `pip install jieba`
* 半自动安装: 先下载http://pypi.python.org/pypi/jieba/ , 解压后运行python setup.py install
* 手动安装: 将jieba目录放置于当前目录或者site-packages目录
* 通过import jieba 来引用 ( 第一次import时需要构建Trie树, 需要几秒时间)
Algorithm
========
* 基于Trie树结构实现高效的词图扫描, 生成句子中汉字所有可能成词情况所构成的有向无环图( DAG)
* 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合
* 对于未登录词, 采用了基于汉字成词能力的HMM模型, 使用了Viterbi算法
功能 1):分词
==========
* `jieba.cut` 方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2) cut_all参数用来控制是否采用全模式
* `jieba.cut_for_search` 方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
* 注意: 待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
* `jieba.cut` 以及`jieba.cut_for_search`返回的结构都是一个可迭代的generator, 可以使用for循环来获得分词后得到的每一个词语(unicode), 也可以用list(jieba.cut(...))转化为list
代码示例( 分词 )
#encoding =utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print "Full Mode:", "/ ".join(seg_list) #全模式
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #精确模式
seg_list = jieba.cut("他来到了网易杭研大厦") #默认是精确模式
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式
print ", ".join(seg_list)
Output:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
【精确模式】: 我/ 来到/ 北京/ 清华大学
【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处, “杭研”并没有在词典中, 但是也被Viterbi算法识别出来了)
【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
功能 2) :添加自定义词典
================
* 开发者可以指定自己自定义的词典, 以便包含jieba词库里没有的词。虽然jieba有新词识别能力, 但是自行添加新词可以保证更高的正确率
* 用法: jieba.load_userdict(file_name) # file_name为自定义词典的路径
* 词典格式和`dict.txt`一样,一个词占一行;每一行分三部分,一部分为词语,另一部分为词频,最后为词性(可省略),用空格隔开
* 范例:
* 自定义词典: https://github.com/fxsjy/jieba/blob/master/test/userdict.txt
* 用法示例: https://github.com/fxsjy/jieba/blob/master/test/test_userdict.py
* 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
* 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
* "通过用户自定义词典来增强歧义纠错能力" --- https://github.com/fxsjy/jieba/issues/14
功能 3) :关键词提取
================
* jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse
* setence为待提取的文本
* topK为返回几个TF/IDF权重最大的关键词, 默认值为20
代码示例 (关键词提取)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
功能 4) : 词性标注
================
* 标注句子分词后每个词的词性, 采用和ictclas兼容的标记法
* 用法示例
>>> import jieba.posseg as pseg
>>> words =pseg.cut("我爱北京天安门")
>>> for w in words:
... print w.word,w.flag
...
我 r
爱 v
北京 ns
天安门 ns
功能 5) : 并行分词
==================
* 原理: 将目标文本按行分隔后, 把各行文本分配到多个python进程并行分词, 然后归并结果, 从而获得分词速度的可观提升
* 基于python自带的multiprocessing模块, 目前暂不支持windows
* 用法:
* `jieba.enable_parallel(4)` # 开启并行分词模式,参数为并行进程数
* `jieba.disable_parallel()` # 关闭并行分词模式
* 例子:
https://github.com/fxsjy/jieba/blob/master/test/parallel/test_file.py
* 实验结果: 在4核3.4GHz Linux机器上, 对金庸全集进行精确分词, 获得了1MB/s的速度, 是单进程版的3.3倍。
其他词典
========
1. 占用内存较小的词典文件
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
2. 支持繁体分词更好的词典文件
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
下载你所需要的词典, 然后覆盖jieba/dict.txt 即可或者用`jieba.set_dictionary('data/dict.txt.big')`
模块初始化机制的改变:lazy load ( 从0.28版本开始)
================================================
jieba采用延迟加载, "import jieba"不会立即触发词典的加载, 一旦有必要才开始加载词典构建trie。如果你想手工初始jieba, 也可以手动初始化。
import jieba
jieba.initialize() #手动初始化(可选)
在0.28之前的版本是不能指定主词典的路径的,有了延迟加载机制后,你可以改变主词典的路径:
jieba.set_dictionary('data/dict.txt.big')
例子: https://github.com/fxsjy/jieba/blob/master/test/test_change_dictpath.py
分词速度
=========
* 1.5 MB / Second in Full Mode
* 400 KB / Second in Default Mode
* Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
常见问题
=========
1) 模型的数据是如何生成的? https://github.com/fxsjy/jieba/issues/7
2) 这个库的授权是? https://github.com/fxsjy/jieba/issues/2
更多问题请点击: https://github.com/fxsjy/jieba/issues?sort=updated& state=closed
Change Log
==========
http://www.oschina.net/p/jieba/news#list
jieba
========
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
Features
========
* Support three types of segmentation mode:
* 1) Accurate Mode, attempt to cut the sentence into the most accurate segmentation, which is suitable for text analysis;
* 2) Full Mode, break the words of the sentence into words scanned
* 3) Search Engine Mode, based on the Accurate Mode, with an attempt to cut the long words into several short words, which can enhance the recall rate
Usage
========
* Fully automatic installation: `easy_install jieba` or `pip install jieba`
* Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , after extracting run `python setup.py install`
* Manutal installation: place the `jieba` directory in the current directory or python site-packages directory.
* Use `import jieba` to import, which will first build the Trie tree only on first import (takes a few seconds).
Algorithm
========
* Based on the Trie tree structure to achieve efficient word graph scanning; sentences using Chinese characters constitute a directed acyclic graph (DAG)
* Employs memory search to calculate the maximum probability path, in order to identify the maximum tangential points based on word frequency combination
* For unknown words, the character position HMM-based model is used, using the Viterbi algorithm
Function 1): cut
==========
* The `jieba.cut` method accepts to input parameters: 1) the first parameter is the string that requires segmentation, and the 2) second parameter is `cut_all` , a parameter used to control the segmentation pattern.
* `jieba.cut` returned structure is an iterative generator, where you can use a `for` loop to get the word segmentation (in unicode), or `list(jieba.cut( ... ))` to create a list.
* `jieba.cut_for_search` accpets only on parameter: the string that requires segmentation, and it will cut the sentence into short words
Code example: segmentation
==========
#encoding =utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print "Full Mode:", "/ ".join(seg_list) #全模式
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #默认模式
seg_list = jieba.cut("他来到了网易杭研大厦")
print ", ".join(seg_list)
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") #搜索引擎模式
print ", ".join(seg_list)
Output:
[Full Mode]: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学
[Accurate Mode]: 我/ 来到/ 北京/ 清华大学
[Unknown Words Recognize] 他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
[Search Engine Mode]: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在
, 日本, 京都, 大学, 日本京都大学, 深造
Function 2): Add a custom dictionary
==========
* Developers can specify their own custom dictionary to include in the jieba thesaurus. jieba has the ability to identify new words, but adding your own new words can ensure a higher rate of correct segmentation.
* Usage: `jieba.load_userdict(file_name) # file_name is a custom dictionary path`
* The dictionary format is the same as that of `analyse/idf.txt` : one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space
* Example:
云计算 5
李小福 2
创新办 3
之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 /
加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
Function 3): Keyword Extraction
================
* `jieba.analyse.extract_tags(sentence,topK) # needs to first import jieba.analyse`
* `setence` : the text to be extracted
* `topK` : To return several TF / IDF weights for the biggest keywords, the default value is 20
Code sample (keyword extraction)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
Using Other Dictionaries
========
It is possible to supply Jieba with your own custom dictionary, and there are also two dictionaries readily available for download:
1. You can employ a smaller dictionary for a smaller memory footprint:
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.small
2. There is also a bigger file that has better support for traditional characters (繁體):
https://github.com/fxsjy/jieba/raw/master/extra_dict/dict.txt.big
By default, an in-between dictionary is used, called `dict.txt` and included in the distribution.
In either case, download the file you want first, and then call `jieba.set_dictionary('data/dict.txt.big')` or just replace the existing `dict.txt` .
Initialization
========
By default, Jieba employs lazy loading to only build the trie once it is necessary. This takes 1-3 seconds once, after which it is not initialized again. If you want to initialize Jieba manually, you can call:
import jieba
jieba.initialize() #(optional)
You can also specify the dictionary (not supported before version 0.28) :
jieba.set_dictionary('data/dict.txt.big')
Segmentation speed
=========
* 1.5 MB / Second in Full Mode
* 400 KB / Second in Default Mode
* Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
Online demo
=========
http://jiebademo.ap01.aws.af.cm/
(Powered by Appfog)