Add vits
parent
24cb262c3f
commit
712a53f557
@ -0,0 +1,193 @@
|
|||||||
|
import torch
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
||||||
|
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||||||
|
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||||||
|
|
||||||
|
|
||||||
|
def piecewise_rational_quadratic_transform(inputs,
|
||||||
|
unnormalized_widths,
|
||||||
|
unnormalized_heights,
|
||||||
|
unnormalized_derivatives,
|
||||||
|
inverse=False,
|
||||||
|
tails=None,
|
||||||
|
tail_bound=1.,
|
||||||
|
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||||
|
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||||
|
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||||
|
|
||||||
|
if tails is None:
|
||||||
|
spline_fn = rational_quadratic_spline
|
||||||
|
spline_kwargs = {}
|
||||||
|
else:
|
||||||
|
spline_fn = unconstrained_rational_quadratic_spline
|
||||||
|
spline_kwargs = {
|
||||||
|
'tails': tails,
|
||||||
|
'tail_bound': tail_bound
|
||||||
|
}
|
||||||
|
|
||||||
|
outputs, logabsdet = spline_fn(
|
||||||
|
inputs=inputs,
|
||||||
|
unnormalized_widths=unnormalized_widths,
|
||||||
|
unnormalized_heights=unnormalized_heights,
|
||||||
|
unnormalized_derivatives=unnormalized_derivatives,
|
||||||
|
inverse=inverse,
|
||||||
|
min_bin_width=min_bin_width,
|
||||||
|
min_bin_height=min_bin_height,
|
||||||
|
min_derivative=min_derivative,
|
||||||
|
**spline_kwargs
|
||||||
|
)
|
||||||
|
return outputs, logabsdet
|
||||||
|
|
||||||
|
|
||||||
|
def searchsorted(bin_locations, inputs, eps=1e-6):
|
||||||
|
bin_locations[..., -1] += eps
|
||||||
|
return torch.sum(
|
||||||
|
inputs[..., None] >= bin_locations,
|
||||||
|
dim=-1
|
||||||
|
) - 1
|
||||||
|
|
||||||
|
|
||||||
|
def unconstrained_rational_quadratic_spline(inputs,
|
||||||
|
unnormalized_widths,
|
||||||
|
unnormalized_heights,
|
||||||
|
unnormalized_derivatives,
|
||||||
|
inverse=False,
|
||||||
|
tails='linear',
|
||||||
|
tail_bound=1.,
|
||||||
|
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||||
|
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||||
|
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||||
|
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
||||||
|
outside_interval_mask = ~inside_interval_mask
|
||||||
|
|
||||||
|
outputs = torch.zeros_like(inputs)
|
||||||
|
logabsdet = torch.zeros_like(inputs)
|
||||||
|
|
||||||
|
if tails == 'linear':
|
||||||
|
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
||||||
|
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||||||
|
unnormalized_derivatives[..., 0] = constant
|
||||||
|
unnormalized_derivatives[..., -1] = constant
|
||||||
|
|
||||||
|
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
||||||
|
logabsdet[outside_interval_mask] = 0
|
||||||
|
else:
|
||||||
|
raise RuntimeError('{} tails are not implemented.'.format(tails))
|
||||||
|
|
||||||
|
outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
|
||||||
|
inputs=inputs[inside_interval_mask],
|
||||||
|
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
||||||
|
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
||||||
|
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
||||||
|
inverse=inverse,
|
||||||
|
left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
|
||||||
|
min_bin_width=min_bin_width,
|
||||||
|
min_bin_height=min_bin_height,
|
||||||
|
min_derivative=min_derivative
|
||||||
|
)
|
||||||
|
|
||||||
|
return outputs, logabsdet
|
||||||
|
|
||||||
|
def rational_quadratic_spline(inputs,
|
||||||
|
unnormalized_widths,
|
||||||
|
unnormalized_heights,
|
||||||
|
unnormalized_derivatives,
|
||||||
|
inverse=False,
|
||||||
|
left=0., right=1., bottom=0., top=1.,
|
||||||
|
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||||
|
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||||
|
min_derivative=DEFAULT_MIN_DERIVATIVE):
|
||||||
|
if torch.min(inputs) < left or torch.max(inputs) > right:
|
||||||
|
raise ValueError('Input to a transform is not within its domain')
|
||||||
|
|
||||||
|
num_bins = unnormalized_widths.shape[-1]
|
||||||
|
|
||||||
|
if min_bin_width * num_bins > 1.0:
|
||||||
|
raise ValueError('Minimal bin width too large for the number of bins')
|
||||||
|
if min_bin_height * num_bins > 1.0:
|
||||||
|
raise ValueError('Minimal bin height too large for the number of bins')
|
||||||
|
|
||||||
|
widths = F.softmax(unnormalized_widths, dim=-1)
|
||||||
|
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
||||||
|
cumwidths = torch.cumsum(widths, dim=-1)
|
||||||
|
cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
|
||||||
|
cumwidths = (right - left) * cumwidths + left
|
||||||
|
cumwidths[..., 0] = left
|
||||||
|
cumwidths[..., -1] = right
|
||||||
|
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
||||||
|
|
||||||
|
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
||||||
|
|
||||||
|
heights = F.softmax(unnormalized_heights, dim=-1)
|
||||||
|
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
||||||
|
cumheights = torch.cumsum(heights, dim=-1)
|
||||||
|
cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
|
||||||
|
cumheights = (top - bottom) * cumheights + bottom
|
||||||
|
cumheights[..., 0] = bottom
|
||||||
|
cumheights[..., -1] = top
|
||||||
|
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
||||||
|
|
||||||
|
if inverse:
|
||||||
|
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
||||||
|
else:
|
||||||
|
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
||||||
|
|
||||||
|
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
||||||
|
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
||||||
|
|
||||||
|
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
||||||
|
delta = heights / widths
|
||||||
|
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
||||||
|
|
||||||
|
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
||||||
|
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
||||||
|
|
||||||
|
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
||||||
|
|
||||||
|
if inverse:
|
||||||
|
a = (((inputs - input_cumheights) * (input_derivatives
|
||||||
|
+ input_derivatives_plus_one
|
||||||
|
- 2 * input_delta)
|
||||||
|
+ input_heights * (input_delta - input_derivatives)))
|
||||||
|
b = (input_heights * input_derivatives
|
||||||
|
- (inputs - input_cumheights) * (input_derivatives
|
||||||
|
+ input_derivatives_plus_one
|
||||||
|
- 2 * input_delta))
|
||||||
|
c = - input_delta * (inputs - input_cumheights)
|
||||||
|
|
||||||
|
discriminant = b.pow(2) - 4 * a * c
|
||||||
|
assert (discriminant >= 0).all()
|
||||||
|
|
||||||
|
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
||||||
|
outputs = root * input_bin_widths + input_cumwidths
|
||||||
|
|
||||||
|
theta_one_minus_theta = root * (1 - root)
|
||||||
|
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||||
|
* theta_one_minus_theta)
|
||||||
|
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
|
||||||
|
+ 2 * input_delta * theta_one_minus_theta
|
||||||
|
+ input_derivatives * (1 - root).pow(2))
|
||||||
|
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||||
|
|
||||||
|
return outputs, -logabsdet
|
||||||
|
else:
|
||||||
|
theta = (inputs - input_cumwidths) / input_bin_widths
|
||||||
|
theta_one_minus_theta = theta * (1 - theta)
|
||||||
|
|
||||||
|
numerator = input_heights * (input_delta * theta.pow(2)
|
||||||
|
+ input_derivatives * theta_one_minus_theta)
|
||||||
|
denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
|
||||||
|
* theta_one_minus_theta)
|
||||||
|
outputs = input_cumheights + numerator / denominator
|
||||||
|
|
||||||
|
derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
|
||||||
|
+ 2 * input_delta * theta_one_minus_theta
|
||||||
|
+ input_derivatives * (1 - theta).pow(2))
|
||||||
|
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||||
|
|
||||||
|
return outputs, logabsdet
|
@ -0,0 +1,675 @@
|
|||||||
|
import math
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from torch.nn import Conv1d
|
||||||
|
from torch.nn.utils import weight_norm, remove_weight_norm
|
||||||
|
from utils.util import init_weights, get_padding, convert_pad_shape, convert_pad_shape, subsequent_mask, fused_add_tanh_sigmoid_multiply
|
||||||
|
from .common.transforms import piecewise_rational_quadratic_transform
|
||||||
|
|
||||||
|
LRELU_SLOPE = 0.1
|
||||||
|
|
||||||
|
class LayerNorm(nn.Module):
|
||||||
|
def __init__(self, channels, eps=1e-5):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.eps = eps
|
||||||
|
|
||||||
|
self.gamma = nn.Parameter(torch.ones(channels))
|
||||||
|
self.beta = nn.Parameter(torch.zeros(channels))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = x.transpose(1, -1)
|
||||||
|
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||||
|
return x.transpose(1, -1)
|
||||||
|
|
||||||
|
|
||||||
|
class ConvReluNorm(nn.Module):
|
||||||
|
def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
assert n_layers > 1, "Number of layers should be larger than 0."
|
||||||
|
|
||||||
|
self.conv_layers = nn.ModuleList()
|
||||||
|
self.norm_layers = nn.ModuleList()
|
||||||
|
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
||||||
|
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||||
|
self.relu_drop = nn.Sequential(
|
||||||
|
nn.ReLU(),
|
||||||
|
nn.Dropout(p_dropout))
|
||||||
|
for _ in range(n_layers-1):
|
||||||
|
self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size//2))
|
||||||
|
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||||
|
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||||
|
self.proj.weight.data.zero_()
|
||||||
|
self.proj.bias.data.zero_()
|
||||||
|
|
||||||
|
def forward(self, x, x_mask):
|
||||||
|
x_org = x
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
x = self.conv_layers[i](x * x_mask)
|
||||||
|
x = self.norm_layers[i](x)
|
||||||
|
x = self.relu_drop(x)
|
||||||
|
x = x_org + self.proj(x)
|
||||||
|
return x * x_mask
|
||||||
|
|
||||||
|
|
||||||
|
class DDSConv(nn.Module):
|
||||||
|
"""
|
||||||
|
Dilated and Depth-Separable Convolution
|
||||||
|
"""
|
||||||
|
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
self.convs_sep = nn.ModuleList()
|
||||||
|
self.convs_1x1 = nn.ModuleList()
|
||||||
|
self.norms_1 = nn.ModuleList()
|
||||||
|
self.norms_2 = nn.ModuleList()
|
||||||
|
for i in range(n_layers):
|
||||||
|
dilation = kernel_size ** i
|
||||||
|
padding = (kernel_size * dilation - dilation) // 2
|
||||||
|
self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
|
||||||
|
groups=channels, dilation=dilation, padding=padding
|
||||||
|
))
|
||||||
|
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
||||||
|
self.norms_1.append(LayerNorm(channels))
|
||||||
|
self.norms_2.append(LayerNorm(channels))
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None):
|
||||||
|
if g is not None:
|
||||||
|
x = x + g
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
y = self.convs_sep[i](x * x_mask)
|
||||||
|
y = self.norms_1[i](y)
|
||||||
|
y = F.gelu(y)
|
||||||
|
y = self.convs_1x1[i](y)
|
||||||
|
y = self.norms_2[i](y)
|
||||||
|
y = F.gelu(y)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = x + y
|
||||||
|
return x * x_mask
|
||||||
|
|
||||||
|
|
||||||
|
class WN(torch.nn.Module):
|
||||||
|
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=0, p_dropout=0):
|
||||||
|
super(WN, self).__init__()
|
||||||
|
assert(kernel_size % 2 == 1)
|
||||||
|
self.hidden_channels =hidden_channels
|
||||||
|
self.kernel_size = kernel_size,
|
||||||
|
self.dilation_rate = dilation_rate
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
|
||||||
|
self.in_layers = torch.nn.ModuleList()
|
||||||
|
self.res_skip_layers = torch.nn.ModuleList()
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
|
||||||
|
if gin_channels != 0:
|
||||||
|
cond_layer = torch.nn.Conv1d(gin_channels, 2*hidden_channels*n_layers, 1)
|
||||||
|
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
|
||||||
|
|
||||||
|
for i in range(n_layers):
|
||||||
|
dilation = dilation_rate ** i
|
||||||
|
padding = int((kernel_size * dilation - dilation) / 2)
|
||||||
|
in_layer = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, kernel_size,
|
||||||
|
dilation=dilation, padding=padding)
|
||||||
|
in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
|
||||||
|
self.in_layers.append(in_layer)
|
||||||
|
|
||||||
|
# last one is not necessary
|
||||||
|
if i < n_layers - 1:
|
||||||
|
res_skip_channels = 2 * hidden_channels
|
||||||
|
else:
|
||||||
|
res_skip_channels = hidden_channels
|
||||||
|
|
||||||
|
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||||
|
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
|
||||||
|
self.res_skip_layers.append(res_skip_layer)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None, **kwargs):
|
||||||
|
output = torch.zeros_like(x)
|
||||||
|
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||||
|
|
||||||
|
if g is not None:
|
||||||
|
g = self.cond_layer(g)
|
||||||
|
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
x_in = self.in_layers[i](x)
|
||||||
|
if g is not None:
|
||||||
|
cond_offset = i * 2 * self.hidden_channels
|
||||||
|
g_l = g[:,cond_offset:cond_offset+2*self.hidden_channels,:]
|
||||||
|
else:
|
||||||
|
g_l = torch.zeros_like(x_in)
|
||||||
|
|
||||||
|
acts = fused_add_tanh_sigmoid_multiply(
|
||||||
|
x_in,
|
||||||
|
g_l,
|
||||||
|
n_channels_tensor)
|
||||||
|
acts = self.drop(acts)
|
||||||
|
|
||||||
|
res_skip_acts = self.res_skip_layers[i](acts)
|
||||||
|
if i < self.n_layers - 1:
|
||||||
|
res_acts = res_skip_acts[:,:self.hidden_channels,:]
|
||||||
|
x = (x + res_acts) * x_mask
|
||||||
|
output = output + res_skip_acts[:,self.hidden_channels:,:]
|
||||||
|
else:
|
||||||
|
output = output + res_skip_acts
|
||||||
|
return output * x_mask
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
if self.gin_channels != 0:
|
||||||
|
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
||||||
|
for l in self.in_layers:
|
||||||
|
torch.nn.utils.remove_weight_norm(l)
|
||||||
|
for l in self.res_skip_layers:
|
||||||
|
torch.nn.utils.remove_weight_norm(l)
|
||||||
|
|
||||||
|
|
||||||
|
class ResBlock1(torch.nn.Module):
|
||||||
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
||||||
|
super(ResBlock1, self).__init__()
|
||||||
|
self.convs1 = nn.ModuleList([
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||||
|
padding=get_padding(kernel_size, dilation[0]))),
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||||
|
padding=get_padding(kernel_size, dilation[1]))),
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
||||||
|
padding=get_padding(kernel_size, dilation[2])))
|
||||||
|
])
|
||||||
|
self.convs1.apply(init_weights)
|
||||||
|
|
||||||
|
self.convs2 = nn.ModuleList([
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||||
|
padding=get_padding(kernel_size, 1))),
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||||
|
padding=get_padding(kernel_size, 1))),
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
||||||
|
padding=get_padding(kernel_size, 1)))
|
||||||
|
])
|
||||||
|
self.convs2.apply(init_weights)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask=None):
|
||||||
|
for c1, c2 in zip(self.convs1, self.convs2):
|
||||||
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||||
|
if x_mask is not None:
|
||||||
|
xt = xt * x_mask
|
||||||
|
xt = c1(xt)
|
||||||
|
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
||||||
|
if x_mask is not None:
|
||||||
|
xt = xt * x_mask
|
||||||
|
xt = c2(xt)
|
||||||
|
x = xt + x
|
||||||
|
if x_mask is not None:
|
||||||
|
x = x * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
for l in self.convs1:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
for l in self.convs2:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
|
||||||
|
|
||||||
|
class ResBlock2(torch.nn.Module):
|
||||||
|
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
||||||
|
super(ResBlock2, self).__init__()
|
||||||
|
self.convs = nn.ModuleList([
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
||||||
|
padding=get_padding(kernel_size, dilation[0]))),
|
||||||
|
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
||||||
|
padding=get_padding(kernel_size, dilation[1])))
|
||||||
|
])
|
||||||
|
self.convs.apply(init_weights)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask=None):
|
||||||
|
for c in self.convs:
|
||||||
|
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||||
|
if x_mask is not None:
|
||||||
|
xt = xt * x_mask
|
||||||
|
xt = c(xt)
|
||||||
|
x = xt + x
|
||||||
|
if x_mask is not None:
|
||||||
|
x = x * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
for l in self.convs:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
|
||||||
|
|
||||||
|
class Log(nn.Module):
|
||||||
|
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||||
|
if not reverse:
|
||||||
|
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
||||||
|
logdet = torch.sum(-y, [1, 2])
|
||||||
|
return y, logdet
|
||||||
|
else:
|
||||||
|
x = torch.exp(x) * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Flip(nn.Module):
|
||||||
|
def forward(self, x, *args, reverse=False, **kwargs):
|
||||||
|
x = torch.flip(x, [1])
|
||||||
|
if not reverse:
|
||||||
|
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
||||||
|
return x, logdet
|
||||||
|
else:
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ElementwiseAffine(nn.Module):
|
||||||
|
def __init__(self, channels):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.m = nn.Parameter(torch.zeros(channels,1))
|
||||||
|
self.logs = nn.Parameter(torch.zeros(channels,1))
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||||
|
if not reverse:
|
||||||
|
y = self.m + torch.exp(self.logs) * x
|
||||||
|
y = y * x_mask
|
||||||
|
logdet = torch.sum(self.logs * x_mask, [1,2])
|
||||||
|
return y, logdet
|
||||||
|
else:
|
||||||
|
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ResidualCouplingLayer(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
channels,
|
||||||
|
hidden_channels,
|
||||||
|
kernel_size,
|
||||||
|
dilation_rate,
|
||||||
|
n_layers,
|
||||||
|
p_dropout=0,
|
||||||
|
gin_channels=0,
|
||||||
|
mean_only=False):
|
||||||
|
assert channels % 2 == 0, "channels should be divisible by 2"
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.dilation_rate = dilation_rate
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.half_channels = channels // 2
|
||||||
|
self.mean_only = mean_only
|
||||||
|
|
||||||
|
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
||||||
|
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, gin_channels=gin_channels)
|
||||||
|
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
||||||
|
self.post.weight.data.zero_()
|
||||||
|
self.post.bias.data.zero_()
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None, reverse=False):
|
||||||
|
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
||||||
|
h = self.pre(x0) * x_mask
|
||||||
|
h = self.enc(h, x_mask, g=g)
|
||||||
|
stats = self.post(h) * x_mask
|
||||||
|
if not self.mean_only:
|
||||||
|
m, logs = torch.split(stats, [self.half_channels]*2, 1)
|
||||||
|
else:
|
||||||
|
m = stats
|
||||||
|
logs = torch.zeros_like(m)
|
||||||
|
|
||||||
|
if not reverse:
|
||||||
|
x1 = m + x1 * torch.exp(logs) * x_mask
|
||||||
|
x = torch.cat([x0, x1], 1)
|
||||||
|
logdet = torch.sum(logs, [1,2])
|
||||||
|
return x, logdet
|
||||||
|
else:
|
||||||
|
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
||||||
|
x = torch.cat([x0, x1], 1)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class ConvFlow(nn.Module):
|
||||||
|
def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.num_bins = num_bins
|
||||||
|
self.tail_bound = tail_bound
|
||||||
|
self.half_channels = in_channels // 2
|
||||||
|
|
||||||
|
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
||||||
|
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
|
||||||
|
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
||||||
|
self.proj.weight.data.zero_()
|
||||||
|
self.proj.bias.data.zero_()
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None, reverse=False):
|
||||||
|
x0, x1 = torch.split(x, [self.half_channels]*2, 1)
|
||||||
|
h = self.pre(x0)
|
||||||
|
h = self.convs(h, x_mask, g=g)
|
||||||
|
h = self.proj(h) * x_mask
|
||||||
|
|
||||||
|
b, c, t = x0.shape
|
||||||
|
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
||||||
|
|
||||||
|
unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
|
||||||
|
unnormalized_heights = h[..., self.num_bins:2*self.num_bins] / math.sqrt(self.filter_channels)
|
||||||
|
unnormalized_derivatives = h[..., 2 * self.num_bins:]
|
||||||
|
|
||||||
|
x1, logabsdet = piecewise_rational_quadratic_transform(x1,
|
||||||
|
unnormalized_widths,
|
||||||
|
unnormalized_heights,
|
||||||
|
unnormalized_derivatives,
|
||||||
|
inverse=reverse,
|
||||||
|
tails='linear',
|
||||||
|
tail_bound=self.tail_bound
|
||||||
|
)
|
||||||
|
|
||||||
|
x = torch.cat([x0, x1], 1) * x_mask
|
||||||
|
logdet = torch.sum(logabsdet * x_mask, [1,2])
|
||||||
|
if not reverse:
|
||||||
|
return x, logdet
|
||||||
|
else:
|
||||||
|
return x
|
||||||
|
|
||||||
|
class Encoder(nn.Module):
|
||||||
|
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.window_size = window_size
|
||||||
|
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
self.attn_layers = nn.ModuleList()
|
||||||
|
self.norm_layers_1 = nn.ModuleList()
|
||||||
|
self.ffn_layers = nn.ModuleList()
|
||||||
|
self.norm_layers_2 = nn.ModuleList()
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
|
||||||
|
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||||
|
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
|
||||||
|
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||||
|
|
||||||
|
def forward(self, x, x_mask):
|
||||||
|
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||||
|
x = x * x_mask
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
y = self.attn_layers[i](x, x, attn_mask)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = self.norm_layers_1[i](x + y)
|
||||||
|
|
||||||
|
y = self.ffn_layers[i](x, x_mask)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = self.norm_layers_2[i](x + y)
|
||||||
|
x = x * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(nn.Module):
|
||||||
|
def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.proximal_bias = proximal_bias
|
||||||
|
self.proximal_init = proximal_init
|
||||||
|
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
self.self_attn_layers = nn.ModuleList()
|
||||||
|
self.norm_layers_0 = nn.ModuleList()
|
||||||
|
self.encdec_attn_layers = nn.ModuleList()
|
||||||
|
self.norm_layers_1 = nn.ModuleList()
|
||||||
|
self.ffn_layers = nn.ModuleList()
|
||||||
|
self.norm_layers_2 = nn.ModuleList()
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
|
||||||
|
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
||||||
|
self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
|
||||||
|
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||||
|
self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
|
||||||
|
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, h, h_mask):
|
||||||
|
"""
|
||||||
|
x: decoder input
|
||||||
|
h: encoder output
|
||||||
|
"""
|
||||||
|
self_attn_mask = subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
||||||
|
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||||
|
x = x * x_mask
|
||||||
|
for i in range(self.n_layers):
|
||||||
|
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = self.norm_layers_0[i](x + y)
|
||||||
|
|
||||||
|
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = self.norm_layers_1[i](x + y)
|
||||||
|
|
||||||
|
y = self.ffn_layers[i](x, x_mask)
|
||||||
|
y = self.drop(y)
|
||||||
|
x = self.norm_layers_2[i](x + y)
|
||||||
|
x = x * x_mask
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class MultiHeadAttention(nn.Module):
|
||||||
|
def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
|
||||||
|
super().__init__()
|
||||||
|
assert channels % n_heads == 0
|
||||||
|
|
||||||
|
self.channels = channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.window_size = window_size
|
||||||
|
self.heads_share = heads_share
|
||||||
|
self.block_length = block_length
|
||||||
|
self.proximal_bias = proximal_bias
|
||||||
|
self.proximal_init = proximal_init
|
||||||
|
self.attn = None
|
||||||
|
|
||||||
|
self.k_channels = channels // n_heads
|
||||||
|
self.conv_q = nn.Conv1d(channels, channels, 1)
|
||||||
|
self.conv_k = nn.Conv1d(channels, channels, 1)
|
||||||
|
self.conv_v = nn.Conv1d(channels, channels, 1)
|
||||||
|
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
|
||||||
|
if window_size is not None:
|
||||||
|
n_heads_rel = 1 if heads_share else n_heads
|
||||||
|
rel_stddev = self.k_channels**-0.5
|
||||||
|
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||||
|
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||||
|
|
||||||
|
nn.init.xavier_uniform_(self.conv_q.weight)
|
||||||
|
nn.init.xavier_uniform_(self.conv_k.weight)
|
||||||
|
nn.init.xavier_uniform_(self.conv_v.weight)
|
||||||
|
if proximal_init:
|
||||||
|
with torch.no_grad():
|
||||||
|
self.conv_k.weight.copy_(self.conv_q.weight)
|
||||||
|
self.conv_k.bias.copy_(self.conv_q.bias)
|
||||||
|
|
||||||
|
def forward(self, x, c, attn_mask=None):
|
||||||
|
q = self.conv_q(x)
|
||||||
|
k = self.conv_k(c)
|
||||||
|
v = self.conv_v(c)
|
||||||
|
|
||||||
|
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||||
|
|
||||||
|
x = self.conv_o(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def attention(self, query, key, value, mask=None):
|
||||||
|
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||||
|
b, d, t_s, t_t = (*key.size(), query.size(2))
|
||||||
|
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
||||||
|
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||||
|
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||||
|
|
||||||
|
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
||||||
|
if self.window_size is not None:
|
||||||
|
assert t_s == t_t, "Relative attention is only available for self-attention."
|
||||||
|
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
||||||
|
rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
|
||||||
|
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
||||||
|
scores = scores + scores_local
|
||||||
|
if self.proximal_bias:
|
||||||
|
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
||||||
|
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
||||||
|
if mask is not None:
|
||||||
|
scores = scores.masked_fill(mask == 0, -1e4)
|
||||||
|
if self.block_length is not None:
|
||||||
|
assert t_s == t_t, "Local attention is only available for self-attention."
|
||||||
|
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
||||||
|
scores = scores.masked_fill(block_mask == 0, -1e4)
|
||||||
|
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
||||||
|
p_attn = self.drop(p_attn)
|
||||||
|
output = torch.matmul(p_attn, value)
|
||||||
|
if self.window_size is not None:
|
||||||
|
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
||||||
|
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
||||||
|
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
||||||
|
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
||||||
|
return output, p_attn
|
||||||
|
|
||||||
|
def _matmul_with_relative_values(self, x, y):
|
||||||
|
"""
|
||||||
|
x: [b, h, l, m]
|
||||||
|
y: [h or 1, m, d]
|
||||||
|
ret: [b, h, l, d]
|
||||||
|
"""
|
||||||
|
ret = torch.matmul(x, y.unsqueeze(0))
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def _matmul_with_relative_keys(self, x, y):
|
||||||
|
"""
|
||||||
|
x: [b, h, l, d]
|
||||||
|
y: [h or 1, m, d]
|
||||||
|
ret: [b, h, l, m]
|
||||||
|
"""
|
||||||
|
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||||
|
max_relative_position = 2 * self.window_size + 1
|
||||||
|
# Pad first before slice to avoid using cond ops.
|
||||||
|
pad_length = max(length - (self.window_size + 1), 0)
|
||||||
|
slice_start_position = max((self.window_size + 1) - length, 0)
|
||||||
|
slice_end_position = slice_start_position + 2 * length - 1
|
||||||
|
if pad_length > 0:
|
||||||
|
padded_relative_embeddings = F.pad(
|
||||||
|
relative_embeddings,
|
||||||
|
convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
|
||||||
|
else:
|
||||||
|
padded_relative_embeddings = relative_embeddings
|
||||||
|
used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
|
||||||
|
return used_relative_embeddings
|
||||||
|
|
||||||
|
def _relative_position_to_absolute_position(self, x):
|
||||||
|
"""
|
||||||
|
x: [b, h, l, 2*l-1]
|
||||||
|
ret: [b, h, l, l]
|
||||||
|
"""
|
||||||
|
batch, heads, length, _ = x.size()
|
||||||
|
# Concat columns of pad to shift from relative to absolute indexing.
|
||||||
|
x = F.pad(x, convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
|
||||||
|
|
||||||
|
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
||||||
|
x_flat = x.view([batch, heads, length * 2 * length])
|
||||||
|
x_flat = F.pad(x_flat, convert_pad_shape([[0,0],[0,0],[0,length-1]]))
|
||||||
|
|
||||||
|
# Reshape and slice out the padded elements.
|
||||||
|
x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
|
||||||
|
return x_final
|
||||||
|
|
||||||
|
def _absolute_position_to_relative_position(self, x):
|
||||||
|
"""
|
||||||
|
x: [b, h, l, l]
|
||||||
|
ret: [b, h, l, 2*l-1]
|
||||||
|
"""
|
||||||
|
batch, heads, length, _ = x.size()
|
||||||
|
# padd along column
|
||||||
|
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
|
||||||
|
x_flat = x.view([batch, heads, length**2 + length*(length -1)])
|
||||||
|
# add 0's in the beginning that will skew the elements after reshape
|
||||||
|
x_flat = F.pad(x_flat, convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
||||||
|
x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
|
||||||
|
return x_final
|
||||||
|
|
||||||
|
def _attention_bias_proximal(self, length):
|
||||||
|
"""Bias for self-attention to encourage attention to close positions.
|
||||||
|
Args:
|
||||||
|
length: an integer scalar.
|
||||||
|
Returns:
|
||||||
|
a Tensor with shape [1, 1, length, length]
|
||||||
|
"""
|
||||||
|
r = torch.arange(length, dtype=torch.float32)
|
||||||
|
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||||
|
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
||||||
|
|
||||||
|
|
||||||
|
class FFN(nn.Module):
|
||||||
|
def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.activation = activation
|
||||||
|
self.causal = causal
|
||||||
|
|
||||||
|
if causal:
|
||||||
|
self.padding = self._causal_padding
|
||||||
|
else:
|
||||||
|
self.padding = self._same_padding
|
||||||
|
|
||||||
|
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
||||||
|
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask):
|
||||||
|
x = self.conv_1(self.padding(x * x_mask))
|
||||||
|
if self.activation == "gelu":
|
||||||
|
x = x * torch.sigmoid(1.702 * x)
|
||||||
|
else:
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.conv_2(self.padding(x * x_mask))
|
||||||
|
return x * x_mask
|
||||||
|
|
||||||
|
def _causal_padding(self, x):
|
||||||
|
if self.kernel_size == 1:
|
||||||
|
return x
|
||||||
|
pad_l = self.kernel_size - 1
|
||||||
|
pad_r = 0
|
||||||
|
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||||
|
x = F.pad(x, convert_pad_shape(padding))
|
||||||
|
return x
|
||||||
|
|
||||||
|
def _same_padding(self, x):
|
||||||
|
if self.kernel_size == 1:
|
||||||
|
return x
|
||||||
|
pad_l = (self.kernel_size - 1) // 2
|
||||||
|
pad_r = self.kernel_size // 2
|
||||||
|
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||||
|
x = F.pad(x, convert_pad_shape(padding))
|
||||||
|
return x
|
@ -0,0 +1,524 @@
|
|||||||
|
import math
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import functional as F
|
||||||
|
|
||||||
|
from .sublayer.vits_modules import *
|
||||||
|
import monotonic_align
|
||||||
|
|
||||||
|
from .base import Base
|
||||||
|
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
||||||
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
||||||
|
from utils.util import init_weights, get_padding, sequence_mask, rand_slice_segments, generate_path
|
||||||
|
|
||||||
|
|
||||||
|
class StochasticDurationPredictor(nn.Module):
|
||||||
|
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0):
|
||||||
|
super().__init__()
|
||||||
|
filter_channels = in_channels # it needs to be removed from future version.
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.n_flows = n_flows
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
|
||||||
|
self.log_flow = Log()
|
||||||
|
self.flows = nn.ModuleList()
|
||||||
|
self.flows.append(ElementwiseAffine(2))
|
||||||
|
for i in range(n_flows):
|
||||||
|
self.flows.append(ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||||
|
self.flows.append(Flip())
|
||||||
|
|
||||||
|
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
||||||
|
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||||
|
self.post_convs = DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||||
|
self.post_flows = nn.ModuleList()
|
||||||
|
self.post_flows.append(ElementwiseAffine(2))
|
||||||
|
for i in range(4):
|
||||||
|
self.post_flows.append(ConvFlow(2, filter_channels, kernel_size, n_layers=3))
|
||||||
|
self.post_flows.append(Flip())
|
||||||
|
|
||||||
|
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
||||||
|
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
||||||
|
self.convs = DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout)
|
||||||
|
if gin_channels != 0:
|
||||||
|
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
||||||
|
x = torch.detach(x)
|
||||||
|
x = self.pre(x)
|
||||||
|
if g is not None:
|
||||||
|
g = torch.detach(g)
|
||||||
|
x = x + self.cond(g)
|
||||||
|
x = self.convs(x, x_mask)
|
||||||
|
x = self.proj(x) * x_mask
|
||||||
|
|
||||||
|
if not reverse:
|
||||||
|
flows = self.flows
|
||||||
|
assert w is not None
|
||||||
|
|
||||||
|
logdet_tot_q = 0
|
||||||
|
h_w = self.post_pre(w)
|
||||||
|
h_w = self.post_convs(h_w, x_mask)
|
||||||
|
h_w = self.post_proj(h_w) * x_mask
|
||||||
|
e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask
|
||||||
|
z_q = e_q
|
||||||
|
for flow in self.post_flows:
|
||||||
|
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
||||||
|
logdet_tot_q += logdet_q
|
||||||
|
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
||||||
|
u = torch.sigmoid(z_u) * x_mask
|
||||||
|
z0 = (w - u) * x_mask
|
||||||
|
logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1,2])
|
||||||
|
logq = torch.sum(-0.5 * (math.log(2*math.pi) + (e_q**2)) * x_mask, [1,2]) - logdet_tot_q
|
||||||
|
|
||||||
|
logdet_tot = 0
|
||||||
|
z0, logdet = self.log_flow(z0, x_mask)
|
||||||
|
logdet_tot += logdet
|
||||||
|
z = torch.cat([z0, z1], 1)
|
||||||
|
for flow in flows:
|
||||||
|
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
||||||
|
logdet_tot = logdet_tot + logdet
|
||||||
|
nll = torch.sum(0.5 * (math.log(2*math.pi) + (z**2)) * x_mask, [1,2]) - logdet_tot
|
||||||
|
return nll + logq # [b]
|
||||||
|
else:
|
||||||
|
flows = list(reversed(self.flows))
|
||||||
|
flows = flows[:-2] + [flows[-1]] # remove a useless vflow
|
||||||
|
z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale
|
||||||
|
for flow in flows:
|
||||||
|
z = flow(z, x_mask, g=x, reverse=reverse)
|
||||||
|
z0, z1 = torch.split(z, [1, 1], 1)
|
||||||
|
logw = z0
|
||||||
|
return logw
|
||||||
|
|
||||||
|
|
||||||
|
class DurationPredictor(nn.Module):
|
||||||
|
def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
|
||||||
|
self.drop = nn.Dropout(p_dropout)
|
||||||
|
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
||||||
|
self.norm_1 = LayerNorm(filter_channels)
|
||||||
|
self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size//2)
|
||||||
|
self.norm_2 = LayerNorm(filter_channels)
|
||||||
|
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
||||||
|
|
||||||
|
if gin_channels != 0:
|
||||||
|
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None):
|
||||||
|
x = torch.detach(x)
|
||||||
|
if g is not None:
|
||||||
|
g = torch.detach(g)
|
||||||
|
x = x + self.cond(g)
|
||||||
|
x = self.conv_1(x * x_mask)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.norm_1(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.conv_2(x * x_mask)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.norm_2(x)
|
||||||
|
x = self.drop(x)
|
||||||
|
x = self.proj(x * x_mask)
|
||||||
|
return x * x_mask
|
||||||
|
|
||||||
|
|
||||||
|
class TextEncoder(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
n_vocab,
|
||||||
|
out_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
n_heads,
|
||||||
|
n_layers,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout):
|
||||||
|
super().__init__()
|
||||||
|
self.n_vocab = n_vocab
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
|
||||||
|
self.emb = nn.Embedding(n_vocab, hidden_channels)
|
||||||
|
self.emo_proj = nn.Linear(1024, hidden_channels)
|
||||||
|
|
||||||
|
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
||||||
|
|
||||||
|
self.encoder = Encoder(
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
n_heads,
|
||||||
|
n_layers,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout)
|
||||||
|
self.proj= nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||||
|
|
||||||
|
def forward(self, x, x_lengths, emo):
|
||||||
|
x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h]
|
||||||
|
x = x + self.emo_proj(emo.unsqueeze(1))
|
||||||
|
x = torch.transpose(x, 1, -1) # [b, h, t]
|
||||||
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||||
|
|
||||||
|
x = self.encoder(x * x_mask, x_mask)
|
||||||
|
stats = self.proj(x) * x_mask
|
||||||
|
|
||||||
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||||
|
return x, m, logs, x_mask
|
||||||
|
|
||||||
|
|
||||||
|
class ResidualCouplingBlock(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
channels,
|
||||||
|
hidden_channels,
|
||||||
|
kernel_size,
|
||||||
|
dilation_rate,
|
||||||
|
n_layers,
|
||||||
|
n_flows=4,
|
||||||
|
gin_channels=0):
|
||||||
|
super().__init__()
|
||||||
|
self.channels = channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.dilation_rate = dilation_rate
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.n_flows = n_flows
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
|
||||||
|
self.flows = nn.ModuleList()
|
||||||
|
for i in range(n_flows):
|
||||||
|
self.flows.append(ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels, mean_only=True))
|
||||||
|
self.flows.append(Flip())
|
||||||
|
|
||||||
|
def forward(self, x, x_mask, g=None, reverse=False):
|
||||||
|
if not reverse:
|
||||||
|
for flow in self.flows:
|
||||||
|
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
||||||
|
else:
|
||||||
|
for flow in reversed(self.flows):
|
||||||
|
x = flow(x, x_mask, g=g, reverse=reverse)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class PosteriorEncoder(nn.Module):
|
||||||
|
def __init__(self,
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
hidden_channels,
|
||||||
|
kernel_size,
|
||||||
|
dilation_rate,
|
||||||
|
n_layers,
|
||||||
|
gin_channels=0):
|
||||||
|
super().__init__()
|
||||||
|
self.in_channels = in_channels
|
||||||
|
self.out_channels = out_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.dilation_rate = dilation_rate
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
|
||||||
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||||
|
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, gin_channels=gin_channels)
|
||||||
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
||||||
|
|
||||||
|
def forward(self, x, x_lengths, g=None):
|
||||||
|
x_mask = torch.unsqueeze(sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
|
||||||
|
x = self.pre(x) * x_mask
|
||||||
|
x = self.enc(x, x_mask, g=g)
|
||||||
|
stats = self.proj(x) * x_mask
|
||||||
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
||||||
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
||||||
|
return z, m, logs, x_mask
|
||||||
|
|
||||||
|
|
||||||
|
class Generator(torch.nn.Module):
|
||||||
|
def __init__(self, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=0):
|
||||||
|
super(Generator, self).__init__()
|
||||||
|
self.num_kernels = len(resblock_kernel_sizes)
|
||||||
|
self.num_upsamples = len(upsample_rates)
|
||||||
|
self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
|
||||||
|
resblock = ResBlock1 if resblock == '1' else ResBlock2
|
||||||
|
|
||||||
|
self.ups = nn.ModuleList()
|
||||||
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
||||||
|
self.ups.append(weight_norm(
|
||||||
|
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
||||||
|
k, u, padding=(k-u)//2)))
|
||||||
|
|
||||||
|
self.resblocks = nn.ModuleList()
|
||||||
|
for i in range(len(self.ups)):
|
||||||
|
ch = upsample_initial_channel//(2**(i+1))
|
||||||
|
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
||||||
|
self.resblocks.append(resblock(ch, k, d))
|
||||||
|
|
||||||
|
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
||||||
|
self.ups.apply(init_weights)
|
||||||
|
|
||||||
|
if gin_channels != 0:
|
||||||
|
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
||||||
|
|
||||||
|
def forward(self, x, g=None):
|
||||||
|
x = self.conv_pre(x)
|
||||||
|
if g is not None:
|
||||||
|
x = x + self.cond(g)
|
||||||
|
|
||||||
|
for i in range(self.num_upsamples):
|
||||||
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||||
|
x = self.ups[i](x)
|
||||||
|
xs = None
|
||||||
|
for j in range(self.num_kernels):
|
||||||
|
if xs is None:
|
||||||
|
xs = self.resblocks[i*self.num_kernels+j](x)
|
||||||
|
else:
|
||||||
|
xs += self.resblocks[i*self.num_kernels+j](x)
|
||||||
|
x = xs / self.num_kernels
|
||||||
|
x = F.leaky_relu(x)
|
||||||
|
x = self.conv_post(x)
|
||||||
|
x = torch.tanh(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
def remove_weight_norm(self):
|
||||||
|
print('Removing weight norm...')
|
||||||
|
for l in self.ups:
|
||||||
|
remove_weight_norm(l)
|
||||||
|
for l in self.resblocks:
|
||||||
|
l.remove_weight_norm()
|
||||||
|
|
||||||
|
|
||||||
|
class DiscriminatorP(torch.nn.Module):
|
||||||
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
||||||
|
super(DiscriminatorP, self).__init__()
|
||||||
|
self.period = period
|
||||||
|
self.use_spectral_norm = use_spectral_norm
|
||||||
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||||
|
self.convs = nn.ModuleList([
|
||||||
|
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||||
|
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||||
|
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||||
|
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||||
|
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
|
||||||
|
])
|
||||||
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
fmap = []
|
||||||
|
|
||||||
|
# 1d to 2d
|
||||||
|
b, c, t = x.shape
|
||||||
|
if t % self.period != 0: # pad first
|
||||||
|
n_pad = self.period - (t % self.period)
|
||||||
|
x = F.pad(x, (0, n_pad), "reflect")
|
||||||
|
t = t + n_pad
|
||||||
|
x = x.view(b, c, t // self.period, self.period)
|
||||||
|
|
||||||
|
for l in self.convs:
|
||||||
|
x = l(x)
|
||||||
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||||
|
fmap.append(x)
|
||||||
|
x = self.conv_post(x)
|
||||||
|
fmap.append(x)
|
||||||
|
x = torch.flatten(x, 1, -1)
|
||||||
|
|
||||||
|
return x, fmap
|
||||||
|
|
||||||
|
|
||||||
|
class DiscriminatorS(torch.nn.Module):
|
||||||
|
def __init__(self, use_spectral_norm=False):
|
||||||
|
super(DiscriminatorS, self).__init__()
|
||||||
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
||||||
|
self.convs = nn.ModuleList([
|
||||||
|
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
||||||
|
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
||||||
|
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
||||||
|
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
||||||
|
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
||||||
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
||||||
|
])
|
||||||
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
fmap = []
|
||||||
|
|
||||||
|
for l in self.convs:
|
||||||
|
x = l(x)
|
||||||
|
x = F.leaky_relu(x, LRELU_SLOPE)
|
||||||
|
fmap.append(x)
|
||||||
|
x = self.conv_post(x)
|
||||||
|
fmap.append(x)
|
||||||
|
x = torch.flatten(x, 1, -1)
|
||||||
|
|
||||||
|
return x, fmap
|
||||||
|
|
||||||
|
|
||||||
|
class MultiPeriodDiscriminator(torch.nn.Module):
|
||||||
|
def __init__(self, use_spectral_norm=False):
|
||||||
|
super(MultiPeriodDiscriminator, self).__init__()
|
||||||
|
periods = [2,3,5,7,11]
|
||||||
|
|
||||||
|
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
||||||
|
discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
|
||||||
|
self.discriminators = nn.ModuleList(discs)
|
||||||
|
|
||||||
|
def forward(self, y, y_hat):
|
||||||
|
y_d_rs = []
|
||||||
|
y_d_gs = []
|
||||||
|
fmap_rs = []
|
||||||
|
fmap_gs = []
|
||||||
|
for i, d in enumerate(self.discriminators):
|
||||||
|
y_d_r, fmap_r = d(y)
|
||||||
|
y_d_g, fmap_g = d(y_hat)
|
||||||
|
y_d_rs.append(y_d_r)
|
||||||
|
y_d_gs.append(y_d_g)
|
||||||
|
fmap_rs.append(fmap_r)
|
||||||
|
fmap_gs.append(fmap_g)
|
||||||
|
|
||||||
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
||||||
|
|
||||||
|
class Vits(Base):
|
||||||
|
"""
|
||||||
|
Synthesizer of Vits
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
n_vocab,
|
||||||
|
spec_channels,
|
||||||
|
segment_size,
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
n_heads,
|
||||||
|
n_layers,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout,
|
||||||
|
resblock,
|
||||||
|
resblock_kernel_sizes,
|
||||||
|
resblock_dilation_sizes,
|
||||||
|
upsample_rates,
|
||||||
|
upsample_initial_channel,
|
||||||
|
upsample_kernel_sizes,
|
||||||
|
stop_threshold,
|
||||||
|
n_speakers=0,
|
||||||
|
gin_channels=0,
|
||||||
|
use_sdp=True,
|
||||||
|
**kwargs):
|
||||||
|
|
||||||
|
super().__init__(stop_threshold)
|
||||||
|
self.n_vocab = n_vocab
|
||||||
|
self.spec_channels = spec_channels
|
||||||
|
self.inter_channels = inter_channels
|
||||||
|
self.hidden_channels = hidden_channels
|
||||||
|
self.filter_channels = filter_channels
|
||||||
|
self.n_heads = n_heads
|
||||||
|
self.n_layers = n_layers
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.p_dropout = p_dropout
|
||||||
|
self.resblock = resblock
|
||||||
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
||||||
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
||||||
|
self.upsample_rates = upsample_rates
|
||||||
|
self.upsample_initial_channel = upsample_initial_channel
|
||||||
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
||||||
|
self.segment_size = segment_size
|
||||||
|
self.n_speakers = n_speakers
|
||||||
|
self.gin_channels = gin_channels
|
||||||
|
|
||||||
|
self.use_sdp = use_sdp
|
||||||
|
|
||||||
|
self.enc_p = TextEncoder(n_vocab,
|
||||||
|
inter_channels,
|
||||||
|
hidden_channels,
|
||||||
|
filter_channels,
|
||||||
|
n_heads,
|
||||||
|
n_layers,
|
||||||
|
kernel_size,
|
||||||
|
p_dropout)
|
||||||
|
self.dec = Generator(inter_channels, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates, upsample_initial_channel, upsample_kernel_sizes, gin_channels=gin_channels)
|
||||||
|
self.enc_q = PosteriorEncoder(spec_channels, inter_channels, hidden_channels, 5, 1, 16, gin_channels=gin_channels)
|
||||||
|
self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels)
|
||||||
|
|
||||||
|
if use_sdp:
|
||||||
|
self.dp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels)
|
||||||
|
else:
|
||||||
|
self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels)
|
||||||
|
|
||||||
|
if n_speakers > 1:
|
||||||
|
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
||||||
|
|
||||||
|
def forward(self, x, x_lengths, y, y_lengths, sid=None, emo=None):
|
||||||
|
|
||||||
|
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths, emo)
|
||||||
|
if self.n_speakers > 0:
|
||||||
|
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
||||||
|
else:
|
||||||
|
g = None
|
||||||
|
|
||||||
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
||||||
|
z_p = self.flow(z, y_mask, g=g)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
# negative cross-entropy
|
||||||
|
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t]
|
||||||
|
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True) # [b, 1, t_s]
|
||||||
|
neg_cent2 = torch.matmul(-0.5 * (z_p ** 2).transpose(1, 2), s_p_sq_r) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
||||||
|
neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) # [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s]
|
||||||
|
neg_cent4 = torch.sum(-0.5 * (m_p ** 2) * s_p_sq_r, [1], keepdim=True) # [b, 1, t_s]
|
||||||
|
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
||||||
|
|
||||||
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
||||||
|
attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
|
||||||
|
|
||||||
|
w = attn.sum(2)
|
||||||
|
if self.use_sdp:
|
||||||
|
l_length = self.dp(x, x_mask, w, g=g)
|
||||||
|
l_length = l_length / torch.sum(x_mask)
|
||||||
|
else:
|
||||||
|
logw_ = torch.log(w + 1e-6) * x_mask
|
||||||
|
logw = self.dp(x, x_mask, g=g)
|
||||||
|
l_length = torch.sum((logw - logw_)**2, [1,2]) / torch.sum(x_mask) # for averaging
|
||||||
|
|
||||||
|
# expand prior
|
||||||
|
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
||||||
|
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
||||||
|
|
||||||
|
z_slice, ids_slice = rand_slice_segments(z, y_lengths, self.segment_size)
|
||||||
|
o = self.dec(z_slice, g=g)
|
||||||
|
return o, l_length, attn, ids_slice, x_mask, y_mask, (z, z_p, m_p, logs_p, m_q, logs_q)
|
||||||
|
|
||||||
|
def infer(self, x, x_lengths, sid=None, emo=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
|
||||||
|
x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths,emo)
|
||||||
|
if self.n_speakers > 0:
|
||||||
|
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
|
||||||
|
else:
|
||||||
|
g = None
|
||||||
|
|
||||||
|
if self.use_sdp:
|
||||||
|
logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
|
||||||
|
else:
|
||||||
|
logw = self.dp(x, x_mask, g=g)
|
||||||
|
w = torch.exp(logw) * x_mask * length_scale
|
||||||
|
w_ceil = torch.ceil(w)
|
||||||
|
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
||||||
|
y_mask = torch.unsqueeze(sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
|
||||||
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
||||||
|
attn = generate_path(w_ceil, attn_mask)
|
||||||
|
|
||||||
|
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
||||||
|
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
|
||||||
|
|
||||||
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
||||||
|
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
||||||
|
o = self.dec((z * y_mask)[:,:,:max_len], g=g)
|
||||||
|
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
||||||
|
|
@ -0,0 +1,50 @@
|
|||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from transformers.models.wav2vec2.modeling_wav2vec2 import (
|
||||||
|
Wav2Vec2Model,
|
||||||
|
Wav2Vec2PreTrainedModel,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class RegressionHead(nn.Module):
|
||||||
|
r"""Classification head."""
|
||||||
|
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||||||
|
self.dropout = nn.Dropout(config.final_dropout)
|
||||||
|
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
||||||
|
|
||||||
|
def forward(self, features, **kwargs):
|
||||||
|
x = features
|
||||||
|
x = self.dropout(x)
|
||||||
|
x = self.dense(x)
|
||||||
|
x = torch.tanh(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
x = self.out_proj(x)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class EmotionExtractorModel(Wav2Vec2PreTrainedModel):
|
||||||
|
r"""Speech emotion classifier."""
|
||||||
|
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__(config)
|
||||||
|
|
||||||
|
self.config = config
|
||||||
|
self.wav2vec2 = Wav2Vec2Model(config)
|
||||||
|
self.classifier = RegressionHead(config)
|
||||||
|
self.init_weights()
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_values,
|
||||||
|
):
|
||||||
|
outputs = self.wav2vec2(input_values)
|
||||||
|
hidden_states = outputs[0]
|
||||||
|
hidden_states = torch.mean(hidden_states, dim=1)
|
||||||
|
logits = self.classifier(hidden_states)
|
||||||
|
|
||||||
|
return hidden_states, logits
|
@ -0,0 +1,389 @@
|
|||||||
|
import os
|
||||||
|
from loguru import logger
|
||||||
|
import torch
|
||||||
|
import glob
|
||||||
|
from torch.nn import functional as F
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
import torch.distributed as dist
|
||||||
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||||
|
from torch.cuda.amp import autocast, GradScaler
|
||||||
|
from utils.audio_utils import mel_spectrogram, spec_to_mel
|
||||||
|
from utils.loss import feature_loss, generator_loss, discriminator_loss, kl_loss
|
||||||
|
from utils.util import slice_segments, clip_grad_value_
|
||||||
|
from models.synthesizer.vits_dataset import (
|
||||||
|
VitsDataset,
|
||||||
|
VitsDatasetCollate,
|
||||||
|
DistributedBucketSampler
|
||||||
|
)
|
||||||
|
from models.synthesizer.models.vits import (
|
||||||
|
Vits,
|
||||||
|
MultiPeriodDiscriminator,
|
||||||
|
)
|
||||||
|
from models.synthesizer.utils.symbols import symbols
|
||||||
|
from models.synthesizer.utils.plot import plot_spectrogram_to_numpy, plot_alignment_to_numpy
|
||||||
|
from pathlib import Path
|
||||||
|
from utils.hparams import HParams
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
# torch.backends.cudnn.benchmark = True
|
||||||
|
global_step = 0
|
||||||
|
|
||||||
|
|
||||||
|
def new_train():
|
||||||
|
"""Assume Single Node Multi GPUs Training Only"""
|
||||||
|
assert torch.cuda.is_available(), "CPU training is not allowed."
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument("--syn_dir", type=str, default="../audiodata/SV2TTS/synthesizer", help= \
|
||||||
|
"Path to the synthesizer directory that contains the ground truth mel spectrograms, "
|
||||||
|
"the wavs, the emos and the embeds.")
|
||||||
|
parser.add_argument("-m", "--model_dir", type=str, default="data/ckpt/synthesizer/vits", help=\
|
||||||
|
"Path to the output directory that will contain the saved model weights and the logs.")
|
||||||
|
parser.add_argument('--ckptG', type=str, required=False,
|
||||||
|
help='original VITS G checkpoint path')
|
||||||
|
parser.add_argument('--ckptD', type=str, required=False,
|
||||||
|
help='original VITS D checkpoint path')
|
||||||
|
args, _ = parser.parse_known_args()
|
||||||
|
|
||||||
|
datasets_root = Path(args.syn_dir)
|
||||||
|
hparams= HParams(
|
||||||
|
model_dir = args.model_dir,
|
||||||
|
)
|
||||||
|
hparams.loadJson(Path(hparams.model_dir).joinpath("config.json"))
|
||||||
|
hparams.data["training_files"] = str(datasets_root.joinpath("train.txt"))
|
||||||
|
hparams.data["validation_files"] = str(datasets_root.joinpath("train.txt"))
|
||||||
|
hparams.data["datasets_root"] = str(datasets_root)
|
||||||
|
hparams.ckptG = args.ckptG
|
||||||
|
hparams.ckptD = args.ckptD
|
||||||
|
n_gpus = torch.cuda.device_count()
|
||||||
|
# for spawn
|
||||||
|
os.environ['MASTER_ADDR'] = 'localhost'
|
||||||
|
os.environ['MASTER_PORT'] = '8899'
|
||||||
|
# mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hparams))
|
||||||
|
run(0, 1, hparams)
|
||||||
|
|
||||||
|
|
||||||
|
def load_checkpoint(checkpoint_path, model, optimizer=None, is_old=False):
|
||||||
|
assert os.path.isfile(checkpoint_path)
|
||||||
|
checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
|
||||||
|
iteration = checkpoint_dict['iteration']
|
||||||
|
learning_rate = checkpoint_dict['learning_rate']
|
||||||
|
if optimizer is not None:
|
||||||
|
if not is_old:
|
||||||
|
optimizer.load_state_dict(checkpoint_dict['optimizer'])
|
||||||
|
else:
|
||||||
|
new_opt_dict = optimizer.state_dict()
|
||||||
|
new_opt_dict_params = new_opt_dict['param_groups'][0]['params']
|
||||||
|
new_opt_dict['param_groups'] = checkpoint_dict['optimizer']['param_groups']
|
||||||
|
new_opt_dict['param_groups'][0]['params'] = new_opt_dict_params
|
||||||
|
optimizer.load_state_dict(new_opt_dict)
|
||||||
|
saved_state_dict = checkpoint_dict['model']
|
||||||
|
if hasattr(model, 'module'):
|
||||||
|
state_dict = model.module.state_dict()
|
||||||
|
else:
|
||||||
|
state_dict = model.state_dict()
|
||||||
|
new_state_dict= {}
|
||||||
|
for k, v in state_dict.items():
|
||||||
|
try:
|
||||||
|
new_state_dict[k] = saved_state_dict[k]
|
||||||
|
except:
|
||||||
|
logger.info("%s is not in the checkpoint" % k)
|
||||||
|
new_state_dict[k] = v
|
||||||
|
if hasattr(model, 'module'):
|
||||||
|
model.module.load_state_dict(new_state_dict, strict=False)
|
||||||
|
else:
|
||||||
|
model.load_state_dict(new_state_dict, strict=False)
|
||||||
|
logger.info("Loaded checkpoint '{}' (iteration {})" .format(
|
||||||
|
checkpoint_path, iteration))
|
||||||
|
return model, optimizer, learning_rate, iteration
|
||||||
|
|
||||||
|
|
||||||
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
||||||
|
logger.info("Saving model and optimizer state at iteration {} to {}".format(
|
||||||
|
iteration, checkpoint_path))
|
||||||
|
if hasattr(model, 'module'):
|
||||||
|
state_dict = model.module.state_dict()
|
||||||
|
else:
|
||||||
|
state_dict = model.state_dict()
|
||||||
|
torch.save({'model': state_dict,
|
||||||
|
'iteration': iteration,
|
||||||
|
'optimizer': optimizer.state_dict(),
|
||||||
|
'learning_rate': learning_rate}, checkpoint_path)
|
||||||
|
|
||||||
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
||||||
|
f_list = glob.glob(os.path.join(dir_path, regex))
|
||||||
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
|
||||||
|
x = f_list[-1]
|
||||||
|
print(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
def run(rank, n_gpus, hps):
|
||||||
|
global global_step
|
||||||
|
if rank == 0:
|
||||||
|
logger.info(hps)
|
||||||
|
writer = SummaryWriter(log_dir=hps.model_dir)
|
||||||
|
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
|
||||||
|
|
||||||
|
dist.init_process_group(backend='gloo', init_method='env://', world_size=n_gpus, rank=rank)
|
||||||
|
torch.manual_seed(hps.train.seed)
|
||||||
|
torch.cuda.set_device(rank)
|
||||||
|
train_dataset = VitsDataset(hps.data.training_files, hps.data)
|
||||||
|
train_sampler = DistributedBucketSampler(
|
||||||
|
train_dataset,
|
||||||
|
hps.train.batch_size,
|
||||||
|
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
|
||||||
|
num_replicas=n_gpus,
|
||||||
|
rank=rank,
|
||||||
|
shuffle=True)
|
||||||
|
collate_fn = VitsDatasetCollate()
|
||||||
|
train_loader = DataLoader(train_dataset, num_workers=8, shuffle=False, pin_memory=True,
|
||||||
|
collate_fn=collate_fn, batch_sampler=train_sampler)
|
||||||
|
if rank == 0:
|
||||||
|
eval_dataset = VitsDataset(hps.data.validation_files, hps.data)
|
||||||
|
eval_loader = DataLoader(eval_dataset, num_workers=8, shuffle=False,
|
||||||
|
batch_size=hps.train.batch_size, pin_memory=True,
|
||||||
|
drop_last=False, collate_fn=collate_fn)
|
||||||
|
|
||||||
|
net_g = Vits(
|
||||||
|
len(symbols),
|
||||||
|
hps.data.filter_length // 2 + 1,
|
||||||
|
hps.train.segment_size // hps.data.hop_length,
|
||||||
|
n_speakers=hps.data.n_speakers,
|
||||||
|
**hps.model).cuda(rank)
|
||||||
|
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
||||||
|
optim_g = torch.optim.AdamW(
|
||||||
|
net_g.parameters(),
|
||||||
|
hps.train.learning_rate,
|
||||||
|
betas=hps.train.betas,
|
||||||
|
eps=hps.train.eps)
|
||||||
|
optim_d = torch.optim.AdamW(
|
||||||
|
net_d.parameters(),
|
||||||
|
hps.train.learning_rate,
|
||||||
|
betas=hps.train.betas,
|
||||||
|
eps=hps.train.eps)
|
||||||
|
net_g = DDP(net_g, device_ids=[rank])
|
||||||
|
net_d = DDP(net_d, device_ids=[rank])
|
||||||
|
ckptG = hps.ckptG
|
||||||
|
ckptD = hps.ckptD
|
||||||
|
try:
|
||||||
|
if ckptG is not None:
|
||||||
|
_, _, _, epoch_str = load_checkpoint(ckptG, net_g, optim_g, is_old=True)
|
||||||
|
print("加载原版VITS模型G记录点成功")
|
||||||
|
else:
|
||||||
|
_, _, _, epoch_str = load_checkpoint(latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
|
||||||
|
optim_g)
|
||||||
|
if ckptD is not None:
|
||||||
|
_, _, _, epoch_str = load_checkpoint(ckptG, net_g, optim_g, is_old=True)
|
||||||
|
print("加载原版VITS模型D记录点成功")
|
||||||
|
else:
|
||||||
|
_, _, _, epoch_str = load_checkpoint(latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
|
||||||
|
optim_d)
|
||||||
|
global_step = (epoch_str - 1) * len(train_loader)
|
||||||
|
except:
|
||||||
|
epoch_str = 1
|
||||||
|
global_step = 0
|
||||||
|
if ckptG is not None or ckptD is not None:
|
||||||
|
epoch_str = 1
|
||||||
|
global_step = 0
|
||||||
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
||||||
|
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
|
||||||
|
|
||||||
|
scaler = GradScaler(enabled=hps.train.fp16_run)
|
||||||
|
|
||||||
|
for epoch in range(epoch_str, hps.train.epochs + 1):
|
||||||
|
if rank == 0:
|
||||||
|
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
|
||||||
|
[train_loader, eval_loader], logger, [writer, writer_eval])
|
||||||
|
else:
|
||||||
|
train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d], scaler,
|
||||||
|
[train_loader, None], None, None)
|
||||||
|
scheduler_g.step()
|
||||||
|
scheduler_d.step()
|
||||||
|
|
||||||
|
|
||||||
|
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
|
||||||
|
net_g, net_d = nets
|
||||||
|
optim_g, optim_d = optims
|
||||||
|
scheduler_g, scheduler_d = schedulers
|
||||||
|
train_loader, eval_loader = loaders
|
||||||
|
if writers is not None:
|
||||||
|
writer, writer_eval = writers
|
||||||
|
train_loader.batch_sampler.set_epoch(epoch)
|
||||||
|
global global_step
|
||||||
|
|
||||||
|
net_g.train()
|
||||||
|
net_d.train()
|
||||||
|
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers, emo) in enumerate(train_loader):
|
||||||
|
logger.info(f'====> Step: 1 {batch_idx}')
|
||||||
|
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda(rank, non_blocking=True)
|
||||||
|
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
|
||||||
|
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)
|
||||||
|
speakers = speakers.cuda(rank, non_blocking=True)
|
||||||
|
emo = emo.cuda(rank, non_blocking=True)
|
||||||
|
|
||||||
|
with autocast(enabled=hps.train.fp16_run):
|
||||||
|
y_hat, l_length, attn, ids_slice, x_mask, z_mask, \
|
||||||
|
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(x, x_lengths, spec, spec_lengths, speakers, emo)
|
||||||
|
|
||||||
|
mel = spec_to_mel(
|
||||||
|
spec,
|
||||||
|
hps.data.filter_length,
|
||||||
|
hps.data.n_mel_channels,
|
||||||
|
hps.data.sampling_rate,
|
||||||
|
hps.data.mel_fmin,
|
||||||
|
hps.data.mel_fmax)
|
||||||
|
y_mel = slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
|
||||||
|
y_hat_mel = mel_spectrogram(
|
||||||
|
y_hat.squeeze(1),
|
||||||
|
hps.data.filter_length,
|
||||||
|
hps.data.n_mel_channels,
|
||||||
|
hps.data.sampling_rate,
|
||||||
|
hps.data.hop_length,
|
||||||
|
hps.data.win_length,
|
||||||
|
hps.data.mel_fmin,
|
||||||
|
hps.data.mel_fmax
|
||||||
|
)
|
||||||
|
|
||||||
|
y = slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
|
||||||
|
|
||||||
|
# Discriminator
|
||||||
|
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
|
||||||
|
with autocast(enabled=False):
|
||||||
|
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
||||||
|
loss_disc_all = loss_disc
|
||||||
|
optim_d.zero_grad()
|
||||||
|
scaler.scale(loss_disc_all).backward()
|
||||||
|
scaler.unscale_(optim_d)
|
||||||
|
grad_norm_d = clip_grad_value_(net_d.parameters(), None)
|
||||||
|
scaler.step(optim_d)
|
||||||
|
logger.info(f'====> Step: 2 {batch_idx}')
|
||||||
|
|
||||||
|
with autocast(enabled=hps.train.fp16_run):
|
||||||
|
# Generator
|
||||||
|
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
|
||||||
|
with autocast(enabled=False):
|
||||||
|
loss_dur = torch.sum(l_length.float())
|
||||||
|
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
|
||||||
|
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl
|
||||||
|
|
||||||
|
loss_fm = feature_loss(fmap_r, fmap_g)
|
||||||
|
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
||||||
|
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_dur + loss_kl
|
||||||
|
optim_g.zero_grad()
|
||||||
|
scaler.scale(loss_gen_all.float()).backward()
|
||||||
|
scaler.unscale_(optim_g)
|
||||||
|
grad_norm_g = clip_grad_value_(net_g.parameters(), None)
|
||||||
|
scaler.step(optim_g)
|
||||||
|
scaler.update()
|
||||||
|
# logger.info(f'====> Step: 3 {batch_idx}')
|
||||||
|
if rank == 0:
|
||||||
|
if global_step % hps.train.log_interval == 0:
|
||||||
|
lr = optim_g.param_groups[0]['lr']
|
||||||
|
losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_dur, loss_kl]
|
||||||
|
logger.info('Train Epoch: {} [{:.0f}%]'.format(
|
||||||
|
epoch,
|
||||||
|
100. * batch_idx / len(train_loader)))
|
||||||
|
logger.info([x.item() for x in losses] + [global_step, lr])
|
||||||
|
|
||||||
|
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr,
|
||||||
|
"grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
|
||||||
|
scalar_dict.update(
|
||||||
|
{"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/dur": loss_dur, "loss/g/kl": loss_kl})
|
||||||
|
|
||||||
|
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
|
||||||
|
scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
|
||||||
|
scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
|
||||||
|
image_dict = {
|
||||||
|
"slice/mel_org": plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
|
||||||
|
"slice/mel_gen": plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
|
||||||
|
"all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
|
||||||
|
"all/attn": plot_alignment_to_numpy(attn[0, 0].data.cpu().numpy())
|
||||||
|
}
|
||||||
|
summarize(
|
||||||
|
writer=writer,
|
||||||
|
global_step=global_step,
|
||||||
|
images=image_dict,
|
||||||
|
scalars=scalar_dict)
|
||||||
|
|
||||||
|
if global_step % hps.train.eval_interval == 0:
|
||||||
|
evaluate(hps, net_g, eval_loader, writer_eval)
|
||||||
|
save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
|
||||||
|
os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
|
||||||
|
save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
|
||||||
|
os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
|
||||||
|
global_step += 1
|
||||||
|
|
||||||
|
if rank == 0:
|
||||||
|
logger.info('====> Epoch: {}'.format(epoch))
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate(hps, generator, eval_loader, writer_eval):
|
||||||
|
generator.eval()
|
||||||
|
with torch.no_grad():
|
||||||
|
for batch_idx, (x, x_lengths, spec, spec_lengths, y, y_lengths, speakers, emo) in enumerate(eval_loader):
|
||||||
|
x, x_lengths = x.cuda(0), x_lengths.cuda(0)
|
||||||
|
spec, spec_lengths = spec.cuda(0), spec_lengths.cuda(0)
|
||||||
|
y, y_lengths = y.cuda(0), y_lengths.cuda(0)
|
||||||
|
speakers = speakers.cuda(0)
|
||||||
|
emo = emo.cuda(0)
|
||||||
|
# remove else
|
||||||
|
x = x[:1]
|
||||||
|
x_lengths = x_lengths[:1]
|
||||||
|
spec = spec[:1]
|
||||||
|
spec_lengths = spec_lengths[:1]
|
||||||
|
y = y[:1]
|
||||||
|
y_lengths = y_lengths[:1]
|
||||||
|
speakers = speakers[:1]
|
||||||
|
emo = emo[:1]
|
||||||
|
break
|
||||||
|
y_hat, attn, mask, *_ = generator.module.infer(x, x_lengths, speakers, emo, max_len=1000)
|
||||||
|
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
||||||
|
|
||||||
|
mel = spec_to_mel(
|
||||||
|
spec,
|
||||||
|
hps.data.filter_length,
|
||||||
|
hps.data.n_mel_channels,
|
||||||
|
hps.data.sampling_rate,
|
||||||
|
hps.data.mel_fmin,
|
||||||
|
hps.data.mel_fmax)
|
||||||
|
y_hat_mel = mel_spectrogram(
|
||||||
|
y_hat.squeeze(1).float(),
|
||||||
|
hps.data.filter_length,
|
||||||
|
hps.data.n_mel_channels,
|
||||||
|
hps.data.sampling_rate,
|
||||||
|
hps.data.hop_length,
|
||||||
|
hps.data.win_length,
|
||||||
|
hps.data.mel_fmin,
|
||||||
|
hps.data.mel_fmax
|
||||||
|
)
|
||||||
|
image_dict = {
|
||||||
|
"gen/mel": plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy())
|
||||||
|
}
|
||||||
|
audio_dict = {
|
||||||
|
"gen/audio": y_hat[0, :, :y_hat_lengths[0]]
|
||||||
|
}
|
||||||
|
if global_step == 0:
|
||||||
|
image_dict.update({"gt/mel": plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
|
||||||
|
audio_dict.update({"gt/audio": y[0, :, :y_lengths[0]]})
|
||||||
|
|
||||||
|
summarize(
|
||||||
|
writer=writer_eval,
|
||||||
|
global_step=global_step,
|
||||||
|
images=image_dict,
|
||||||
|
audios=audio_dict,
|
||||||
|
audio_sampling_rate=hps.data.sampling_rate
|
||||||
|
)
|
||||||
|
generator.train()
|
||||||
|
|
||||||
|
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
|
||||||
|
for k, v in scalars.items():
|
||||||
|
writer.add_scalar(k, v, global_step)
|
||||||
|
for k, v in histograms.items():
|
||||||
|
writer.add_histogram(k, v, global_step)
|
||||||
|
for k, v in images.items():
|
||||||
|
writer.add_image(k, v, global_step, dataformats='HWC')
|
||||||
|
for k, v in audios.items():
|
||||||
|
writer.add_audio(k, v, global_step, audio_sampling_rate)
|
||||||
|
|
@ -0,0 +1,280 @@
|
|||||||
|
import os
|
||||||
|
import random
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.utils.data
|
||||||
|
|
||||||
|
from utils.audio_utils import spectrogram, load_wav
|
||||||
|
from utils.util import intersperse
|
||||||
|
from models.synthesizer.utils.text import text_to_sequence
|
||||||
|
|
||||||
|
|
||||||
|
"""Multi speaker version"""
|
||||||
|
class VitsDataset(torch.utils.data.Dataset):
|
||||||
|
"""
|
||||||
|
1) loads audio, speaker_id, text pairs
|
||||||
|
2) normalizes text and converts them to sequences of integers
|
||||||
|
3) computes spectrograms from audio files.
|
||||||
|
"""
|
||||||
|
def __init__(self, audio_file_path, hparams):
|
||||||
|
with open(audio_file_path, encoding='utf-8') as f:
|
||||||
|
self.audio_metadata = [line.strip().split('|') for line in f]
|
||||||
|
self.text_cleaners = hparams.text_cleaners
|
||||||
|
self.max_wav_value = hparams.max_wav_value
|
||||||
|
self.sampling_rate = hparams.sampling_rate
|
||||||
|
self.filter_length = hparams.filter_length
|
||||||
|
self.hop_length = hparams.hop_length
|
||||||
|
self.win_length = hparams.win_length
|
||||||
|
self.sampling_rate = hparams.sampling_rate
|
||||||
|
|
||||||
|
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
||||||
|
|
||||||
|
self.add_blank = hparams.add_blank
|
||||||
|
self.datasets_root = hparams.datasets_root
|
||||||
|
|
||||||
|
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
||||||
|
self.max_text_len = getattr(hparams, "max_text_len", 190)
|
||||||
|
|
||||||
|
random.seed(1234)
|
||||||
|
random.shuffle(self.audio_metadata)
|
||||||
|
self._filter()
|
||||||
|
|
||||||
|
def _filter(self):
|
||||||
|
"""
|
||||||
|
Filter text & store spec lengths
|
||||||
|
"""
|
||||||
|
# Store spectrogram lengths for Bucketing
|
||||||
|
# wav_length ~= file_size / (wav_channels * Bytes per dim) = file_size / (1 * 2)
|
||||||
|
# spec_length = wav_length // hop_length
|
||||||
|
|
||||||
|
audio_metadata_new = []
|
||||||
|
lengths = []
|
||||||
|
|
||||||
|
# for audiopath, sid, text in self.audio_metadata:
|
||||||
|
sid = 0
|
||||||
|
spk_to_sid = {}
|
||||||
|
for wav_fpath, mel_fpath, embed_path, wav_length, mel_frames, text in self.audio_metadata:
|
||||||
|
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
||||||
|
# TODO: for magic data only
|
||||||
|
speaker_name = wav_fpath.split("_")[1]
|
||||||
|
if speaker_name not in spk_to_sid:
|
||||||
|
sid += 1
|
||||||
|
spk_to_sid[speaker_name] = sid
|
||||||
|
|
||||||
|
audio_metadata_new.append([wav_fpath, mel_fpath, embed_path, wav_length, mel_frames, text, spk_to_sid[speaker_name]])
|
||||||
|
lengths.append(os.path.getsize(f'{self.datasets_root}{os.sep}audio{os.sep}{wav_fpath}') // (2 * self.hop_length))
|
||||||
|
print("found sid:%d", sid)
|
||||||
|
self.audio_metadata = audio_metadata_new
|
||||||
|
self.lengths = lengths
|
||||||
|
|
||||||
|
def get_audio_text_speaker_pair(self, audio_metadata):
|
||||||
|
# separate filename, speaker_id and text
|
||||||
|
wav_fpath, text, sid = audio_metadata[0], audio_metadata[5], audio_metadata[6]
|
||||||
|
text = self.get_text(text)
|
||||||
|
|
||||||
|
spec, wav = self.get_audio(f'{self.datasets_root}{os.sep}audio{os.sep}{wav_fpath}')
|
||||||
|
sid = self.get_sid(sid)
|
||||||
|
emo = torch.FloatTensor(np.load(f'{self.datasets_root}{os.sep}emo{os.sep}{wav_fpath.replace("audio", "emo")}'))
|
||||||
|
return (text, spec, wav, sid, emo)
|
||||||
|
|
||||||
|
def get_audio(self, filename):
|
||||||
|
# audio, sampling_rate = load_wav(filename)
|
||||||
|
|
||||||
|
# if sampling_rate != self.sampling_rate:
|
||||||
|
# raise ValueError("{} {} SR doesn't match target {} SR".format(
|
||||||
|
# sampling_rate, self.sampling_rate))
|
||||||
|
# audio = torch.load(filename)
|
||||||
|
audio = torch.FloatTensor(np.load(filename).astype(np.float32))
|
||||||
|
audio = audio.unsqueeze(0)
|
||||||
|
# audio_norm = audio / self.max_wav_value
|
||||||
|
# audio_norm = audio_norm.unsqueeze(0)
|
||||||
|
# spec_filename = filename.replace(".wav", ".spec.pt")
|
||||||
|
# if os.path.exists(spec_filename):
|
||||||
|
# spec = torch.load(spec_filename)
|
||||||
|
# else:
|
||||||
|
# spec = spectrogram(audio, self.filter_length,
|
||||||
|
# self.sampling_rate, self.hop_length, self.win_length,
|
||||||
|
# center=False)
|
||||||
|
# spec = torch.squeeze(spec, 0)
|
||||||
|
# torch.save(spec, spec_filename)
|
||||||
|
spec = spectrogram(audio, self.filter_length, self.hop_length, self.win_length,
|
||||||
|
center=False)
|
||||||
|
spec = torch.squeeze(spec, 0)
|
||||||
|
return spec, audio
|
||||||
|
|
||||||
|
def get_text(self, text):
|
||||||
|
if self.cleaned_text:
|
||||||
|
text_norm = text_to_sequence(text, self.text_cleaners)
|
||||||
|
if self.add_blank:
|
||||||
|
text_norm = intersperse(text_norm, 0)
|
||||||
|
text_norm = torch.LongTensor(text_norm)
|
||||||
|
return text_norm
|
||||||
|
|
||||||
|
def get_sid(self, sid):
|
||||||
|
sid = torch.LongTensor([int(sid)])
|
||||||
|
return sid
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
return self.get_audio_text_speaker_pair(self.audio_metadata[index])
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.audio_metadata)
|
||||||
|
|
||||||
|
|
||||||
|
class VitsDatasetCollate():
|
||||||
|
""" Zero-pads model inputs and targets
|
||||||
|
"""
|
||||||
|
def __init__(self, return_ids=False):
|
||||||
|
self.return_ids = return_ids
|
||||||
|
|
||||||
|
def __call__(self, batch):
|
||||||
|
"""Collate's training batch from normalized text, audio and speaker identities
|
||||||
|
PARAMS
|
||||||
|
------
|
||||||
|
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
||||||
|
"""
|
||||||
|
# Right zero-pad all one-hot text sequences to max input length
|
||||||
|
_, ids_sorted_decreasing = torch.sort(
|
||||||
|
torch.LongTensor([x[1].size(1) for x in batch]),
|
||||||
|
dim=0, descending=True)
|
||||||
|
|
||||||
|
max_text_len = max([len(x[0]) for x in batch])
|
||||||
|
max_spec_len = max([x[1].size(1) for x in batch])
|
||||||
|
max_wav_len = max([x[2].size(1) for x in batch])
|
||||||
|
|
||||||
|
text_lengths = torch.LongTensor(len(batch))
|
||||||
|
spec_lengths = torch.LongTensor(len(batch))
|
||||||
|
wav_lengths = torch.LongTensor(len(batch))
|
||||||
|
sid = torch.LongTensor(len(batch))
|
||||||
|
|
||||||
|
text_padded = torch.LongTensor(len(batch), max_text_len)
|
||||||
|
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
||||||
|
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
||||||
|
emo = torch.FloatTensor(len(batch), 1024)
|
||||||
|
|
||||||
|
text_padded.zero_()
|
||||||
|
spec_padded.zero_()
|
||||||
|
wav_padded.zero_()
|
||||||
|
emo.zero_()
|
||||||
|
|
||||||
|
for i in range(len(ids_sorted_decreasing)):
|
||||||
|
row = batch[ids_sorted_decreasing[i]]
|
||||||
|
|
||||||
|
text = row[0]
|
||||||
|
text_padded[i, :text.size(0)] = text
|
||||||
|
text_lengths[i] = text.size(0)
|
||||||
|
|
||||||
|
spec = row[1]
|
||||||
|
spec_padded[i, :, :spec.size(1)] = spec
|
||||||
|
spec_lengths[i] = spec.size(1)
|
||||||
|
|
||||||
|
wav = row[2]
|
||||||
|
wav_padded[i, :, :wav.size(1)] = wav
|
||||||
|
wav_lengths[i] = wav.size(1)
|
||||||
|
|
||||||
|
sid[i] = row[3]
|
||||||
|
|
||||||
|
emo[i, :] = row[4]
|
||||||
|
|
||||||
|
if self.return_ids:
|
||||||
|
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, ids_sorted_decreasing
|
||||||
|
return text_padded, text_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, sid, emo
|
||||||
|
|
||||||
|
|
||||||
|
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
||||||
|
"""
|
||||||
|
Maintain similar input lengths in a batch.
|
||||||
|
Length groups are specified by boundaries.
|
||||||
|
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
||||||
|
|
||||||
|
It removes samples which are not included in the boundaries.
|
||||||
|
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
||||||
|
"""
|
||||||
|
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
||||||
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
||||||
|
self.lengths = dataset.lengths
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.boundaries = boundaries
|
||||||
|
|
||||||
|
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
||||||
|
self.total_size = sum(self.num_samples_per_bucket)
|
||||||
|
self.num_samples = self.total_size // self.num_replicas
|
||||||
|
|
||||||
|
def _create_buckets(self):
|
||||||
|
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
||||||
|
for i in range(len(self.lengths)):
|
||||||
|
length = self.lengths[i]
|
||||||
|
idx_bucket = self._bisect(length)
|
||||||
|
if idx_bucket != -1:
|
||||||
|
buckets[idx_bucket].append(i)
|
||||||
|
|
||||||
|
for i in range(len(buckets) - 1, 0, -1):
|
||||||
|
if len(buckets[i]) == 0:
|
||||||
|
buckets.pop(i)
|
||||||
|
self.boundaries.pop(i+1)
|
||||||
|
|
||||||
|
num_samples_per_bucket = []
|
||||||
|
for i in range(len(buckets)):
|
||||||
|
len_bucket = len(buckets[i])
|
||||||
|
total_batch_size = self.num_replicas * self.batch_size
|
||||||
|
rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
|
||||||
|
num_samples_per_bucket.append(len_bucket + rem)
|
||||||
|
return buckets, num_samples_per_bucket
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
# deterministically shuffle based on epoch
|
||||||
|
g = torch.Generator()
|
||||||
|
g.manual_seed(self.epoch)
|
||||||
|
|
||||||
|
indices = []
|
||||||
|
if self.shuffle:
|
||||||
|
for bucket in self.buckets:
|
||||||
|
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
||||||
|
else:
|
||||||
|
for bucket in self.buckets:
|
||||||
|
indices.append(list(range(len(bucket))))
|
||||||
|
|
||||||
|
batches = []
|
||||||
|
for i in range(len(self.buckets)):
|
||||||
|
bucket = self.buckets[i]
|
||||||
|
len_bucket = len(bucket)
|
||||||
|
ids_bucket = indices[i]
|
||||||
|
num_samples_bucket = self.num_samples_per_bucket[i]
|
||||||
|
|
||||||
|
# add extra samples to make it evenly divisible
|
||||||
|
rem = num_samples_bucket - len_bucket
|
||||||
|
ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
|
||||||
|
|
||||||
|
# subsample
|
||||||
|
ids_bucket = ids_bucket[self.rank::self.num_replicas]
|
||||||
|
|
||||||
|
# batching
|
||||||
|
for j in range(len(ids_bucket) // self.batch_size):
|
||||||
|
batch = [bucket[idx] for idx in ids_bucket[j*self.batch_size:(j+1)*self.batch_size]]
|
||||||
|
batches.append(batch)
|
||||||
|
|
||||||
|
if self.shuffle:
|
||||||
|
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
||||||
|
batches = [batches[i] for i in batch_ids]
|
||||||
|
self.batches = batches
|
||||||
|
|
||||||
|
assert len(self.batches) * self.batch_size == self.num_samples
|
||||||
|
return iter(self.batches)
|
||||||
|
|
||||||
|
def _bisect(self, x, lo=0, hi=None):
|
||||||
|
if hi is None:
|
||||||
|
hi = len(self.boundaries) - 1
|
||||||
|
|
||||||
|
if hi > lo:
|
||||||
|
mid = (hi + lo) // 2
|
||||||
|
if self.boundaries[mid] < x and x <= self.boundaries[mid+1]:
|
||||||
|
return mid
|
||||||
|
elif x <= self.boundaries[mid]:
|
||||||
|
return self._bisect(x, lo, mid)
|
||||||
|
else:
|
||||||
|
return self._bisect(x, mid + 1, hi)
|
||||||
|
else:
|
||||||
|
return -1
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.num_samples // self.batch_size
|
@ -0,0 +1,110 @@
|
|||||||
|
import yaml
|
||||||
|
import json
|
||||||
|
import ast
|
||||||
|
|
||||||
|
def load_hparams_json(filename):
|
||||||
|
with open(filename, "r") as f:
|
||||||
|
data = f.read()
|
||||||
|
config = json.loads(data)
|
||||||
|
|
||||||
|
hparams = HParams(**config)
|
||||||
|
return hparams
|
||||||
|
|
||||||
|
|
||||||
|
def load_hparams_yaml(filename):
|
||||||
|
stream = open(filename, 'r')
|
||||||
|
docs = yaml.safe_load_all(stream)
|
||||||
|
hparams_dict = dict()
|
||||||
|
for doc in docs:
|
||||||
|
for k, v in doc.items():
|
||||||
|
hparams_dict[k] = v
|
||||||
|
return hparams_dict
|
||||||
|
|
||||||
|
def merge_dict(user, default):
|
||||||
|
if isinstance(user, dict) and isinstance(default, dict):
|
||||||
|
for k, v in default.items():
|
||||||
|
if k not in user:
|
||||||
|
user[k] = v
|
||||||
|
else:
|
||||||
|
user[k] = merge_dict(user[k], v)
|
||||||
|
return user
|
||||||
|
|
||||||
|
class Dotdict(dict):
|
||||||
|
"""
|
||||||
|
a dictionary that supports dot notation
|
||||||
|
as well as dictionary access notation
|
||||||
|
usage: d = DotDict() or d = DotDict({'val1':'first'})
|
||||||
|
set attributes: d.val2 = 'second' or d['val2'] = 'second'
|
||||||
|
get attributes: d.val2 or d['val2']
|
||||||
|
"""
|
||||||
|
__getattr__ = dict.__getitem__
|
||||||
|
__setattr__ = dict.__setitem__
|
||||||
|
__delattr__ = dict.__delitem__
|
||||||
|
|
||||||
|
def __init__(self, dct=None):
|
||||||
|
dct = dict() if not dct else dct
|
||||||
|
for key, value in dct.items():
|
||||||
|
if hasattr(value, 'keys'):
|
||||||
|
value = Dotdict(value)
|
||||||
|
self[key] = value
|
||||||
|
|
||||||
|
class HpsYaml(Dotdict):
|
||||||
|
def __init__(self, yaml_file):
|
||||||
|
super(Dotdict, self).__init__()
|
||||||
|
hps = load_hparams_yaml(yaml_file)
|
||||||
|
hp_dict = Dotdict(hps)
|
||||||
|
for k, v in hp_dict.items():
|
||||||
|
setattr(self, k, v)
|
||||||
|
|
||||||
|
__getattr__ = Dotdict.__getitem__
|
||||||
|
__setattr__ = Dotdict.__setitem__
|
||||||
|
__delattr__ = Dotdict.__delitem__
|
||||||
|
|
||||||
|
class HParams():
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
for k, v in kwargs.items():
|
||||||
|
if type(v) == dict:
|
||||||
|
v = HParams(**v)
|
||||||
|
self[k] = v
|
||||||
|
def keys(self):
|
||||||
|
return self.__dict__.keys()
|
||||||
|
def __setitem__(self, key, value): setattr(self, key, value)
|
||||||
|
def __getitem__(self, key): return getattr(self, key)
|
||||||
|
def keys(self): return self.__dict__.keys()
|
||||||
|
def items(self): return self.__dict__.items()
|
||||||
|
def values(self): return self.__dict__.values()
|
||||||
|
def __contains__(self, key): return key in self.__dict__
|
||||||
|
def __repr__(self):
|
||||||
|
return self.__dict__.__repr__()
|
||||||
|
|
||||||
|
def parse(self, string):
|
||||||
|
# Overrides hparams from a comma-separated string of name=value pairs
|
||||||
|
if len(string) > 0:
|
||||||
|
overrides = [s.split("=") for s in string.split(",")]
|
||||||
|
keys, values = zip(*overrides)
|
||||||
|
keys = list(map(str.strip, keys))
|
||||||
|
values = list(map(str.strip, values))
|
||||||
|
for k in keys:
|
||||||
|
self.__dict__[k] = ast.literal_eval(values[keys.index(k)])
|
||||||
|
return self
|
||||||
|
|
||||||
|
def loadJson(self, fpath):
|
||||||
|
with fpath.open("r", encoding="utf-8") as f:
|
||||||
|
print("\Loading the json with %s\n", fpath)
|
||||||
|
data = json.load(f)
|
||||||
|
for k in data.keys():
|
||||||
|
if k not in ["tts_schedule", "tts_finetune_layers"]:
|
||||||
|
v = data[k]
|
||||||
|
if type(v) == dict:
|
||||||
|
v = HParams(**v)
|
||||||
|
self.__dict__[k] = v
|
||||||
|
return self
|
||||||
|
|
||||||
|
def dumpJson(self, fp):
|
||||||
|
print("\Saving the json with %s\n", fp)
|
||||||
|
with fp.open("w", encoding="utf-8") as f:
|
||||||
|
json.dump(self.__dict__, f)
|
||||||
|
return self
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -1,58 +0,0 @@
|
|||||||
import yaml
|
|
||||||
|
|
||||||
|
|
||||||
def load_hparams(filename):
|
|
||||||
stream = open(filename, 'r')
|
|
||||||
docs = yaml.safe_load_all(stream)
|
|
||||||
hparams_dict = dict()
|
|
||||||
for doc in docs:
|
|
||||||
for k, v in doc.items():
|
|
||||||
hparams_dict[k] = v
|
|
||||||
return hparams_dict
|
|
||||||
|
|
||||||
def merge_dict(user, default):
|
|
||||||
if isinstance(user, dict) and isinstance(default, dict):
|
|
||||||
for k, v in default.items():
|
|
||||||
if k not in user:
|
|
||||||
user[k] = v
|
|
||||||
else:
|
|
||||||
user[k] = merge_dict(user[k], v)
|
|
||||||
return user
|
|
||||||
|
|
||||||
class Dotdict(dict):
|
|
||||||
"""
|
|
||||||
a dictionary that supports dot notation
|
|
||||||
as well as dictionary access notation
|
|
||||||
usage: d = DotDict() or d = DotDict({'val1':'first'})
|
|
||||||
set attributes: d.val2 = 'second' or d['val2'] = 'second'
|
|
||||||
get attributes: d.val2 or d['val2']
|
|
||||||
"""
|
|
||||||
__getattr__ = dict.__getitem__
|
|
||||||
__setattr__ = dict.__setitem__
|
|
||||||
__delattr__ = dict.__delitem__
|
|
||||||
|
|
||||||
def __init__(self, dct=None):
|
|
||||||
dct = dict() if not dct else dct
|
|
||||||
for key, value in dct.items():
|
|
||||||
if hasattr(value, 'keys'):
|
|
||||||
value = Dotdict(value)
|
|
||||||
self[key] = value
|
|
||||||
|
|
||||||
class HpsYaml(Dotdict):
|
|
||||||
def __init__(self, yaml_file):
|
|
||||||
super(Dotdict, self).__init__()
|
|
||||||
hps = load_hparams(yaml_file)
|
|
||||||
hp_dict = Dotdict(hps)
|
|
||||||
for k, v in hp_dict.items():
|
|
||||||
setattr(self, k, v)
|
|
||||||
|
|
||||||
__getattr__ = Dotdict.__getitem__
|
|
||||||
__setattr__ = Dotdict.__setitem__
|
|
||||||
__delattr__ = Dotdict.__delitem__
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue