|
|
|
@ -49,12 +49,15 @@ hparams = HParams(
|
|
|
|
|
# frame that has all values < -3.4
|
|
|
|
|
|
|
|
|
|
### Tacotron Training
|
|
|
|
|
tts_schedule = [(2, 1e-3, 20_000, 24), # Progressive training schedule
|
|
|
|
|
(2, 5e-4, 40_000, 24), # (r, lr, step, batch_size)
|
|
|
|
|
(2, 2e-4, 80_000, 24), #
|
|
|
|
|
(2, 1e-4, 160_000, 24), # r = reduction factor (# of mel frames
|
|
|
|
|
(2, 3e-5, 320_000, 24), # synthesized for each decoder iteration)
|
|
|
|
|
(2, 1e-5, 640_000, 24)], # lr = learning rate
|
|
|
|
|
tts_schedule = [(2, 1e-3, 10_000, 12), # Progressive training schedule
|
|
|
|
|
(2, 5e-4, 15_000, 12), # (r, lr, step, batch_size)
|
|
|
|
|
(2, 2e-4, 20_000, 12), # (r, lr, step, batch_size)
|
|
|
|
|
(2, 1e-4, 30_000, 12), #
|
|
|
|
|
(2, 5e-5, 40_000, 12), #
|
|
|
|
|
(2, 1e-5, 60_000, 12), #
|
|
|
|
|
(2, 5e-6, 160_000, 12), # r = reduction factor (# of mel frames
|
|
|
|
|
(2, 3e-6, 320_000, 12), # synthesized for each decoder iteration)
|
|
|
|
|
(2, 1e-6, 640_000, 12)], # lr = learning rate
|
|
|
|
|
|
|
|
|
|
tts_clip_grad_norm = 1.0, # clips the gradient norm to prevent explosion - set to None if not needed
|
|
|
|
|
tts_eval_interval = 500, # Number of steps between model evaluation (sample generation)
|
|
|
|
|