* MicroblazeV9: Add support for 64 bit microblaze
* MicroblazeV9: Add support for generation of run time task stats
* MicroblazeV9: Add default implementation for callback functions
---------
Signed-off-by: Mubin Usman Sayyed <mubin.usman.sayyed@xilinx.com>
* Allow access to any buffer in xPortIsAuthorizedToAccessBuffer if xSchedulerRunning is set to pdFALSE
* Allow access to any buffer in xPortIsAuthorizedToAccessBuffer if xSchedulerRunning is set to pdFALSE in the copied ARMv8M Port Files
* Add runtime check to see if the target even has a MPU
* Add missing extern symbols for __ARMCC_VERSION support
* Add default for configTOTAL_MPU_REGIONS and change a runtime assert to compile time error
* Simplify check and link to reference documentation
Co-authored-by: Soren Ptak <ptaksoren@gmail.com>
---------
Co-authored-by: Soren Ptak <ptaksoren@gmail.com>
Co-authored-by: jasonpcarroll <23126711+jasonpcarroll@users.noreply.github.com>
* Introduce portHAS_NESTED_INTERRUPTS to identify if port has nested interrupt or not.
* Update atomic.h to use portHAS_NESTED_INTERRUPTS instead of portSET_INTERRUPT_MASK_FROM_ISR definition.
---------
Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
Co-authored-by: ActoryOu <jay2002824@gmail.com>
* GCC: MSP430F449: Add missing attributes
Apparently at some point in the past, GCC (or TI's GCC) used to define
these attributes. Define them ourselves so that we can compile the demo
application.
* GCC: MSP430F449: Make interrupts return void
If a return type of a function is not specified, it defaults to int. Set
the return type of interrupts to void to avoid warnings.
* GCC: MSP430F449: Define portPOINTER_SIZE_TYPE
portPOINTER_SIZE_TYPE defaults to uint32_t if undefined. Define it to
uint16_t, which is correct for this port.
Verify that the application has correctly installed PendSV
and SVCall handlers. The application can choose to
disable these checks by setting configCHECK_HANDLER_INSTALLATION
to 0 in their FreeRTOSConfig.h.
* Add portMEMORY_BARRIER() to RX MCU ports
* Remove the memory barrier from the SH2A_FPU portable directory
---------
Co-authored-by: Rahul Kar <118818625+kar-rahul-aws@users.noreply.github.com>
Earlier the System Call entry from an unprivileged task
looked like:
1. SVC for entering system call.
2. System call implementation.
3. SVC for exiting system call.
Now, the system call entry needs to make only one SVC
call and everything else is handled internally.
This PR also makes the following changes:
1. Update the Access Control List (ACL) mechanism to
grant access to all the kernel objects before the
scheduler is started.
2. Add one struct param for system calls with 5 parameters.
This removes the need for special handling for system
calls with 5 parameters.
3. Remove raise privilege SVC when MPU wrapper v2 is used.
4. Add additional run time parameter checks to MPU wrappers
for xTaskGenericNotify and xQueueTakeMutexRecursive APIs.
The Cortex-A53 ports are generic and can be used as a starting point
for other Armv8-A application processors. Therefore, rename
`ARM_CA53_64_BIT` to `Arm_AARCH64` and `ARM_CA53_64_BIT_SRE` to
`Arm_AARCH64_SRE`.
With this renaming, existing projects that use old port, should
migrate to renamed port as follows:
* `ARM_CA53_64_BIT` -> `Arm_AARCH64`
* `ARM_CA53_64_BIT_SRE` -> `Arm_AARCH64_SRE`
Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com>
Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
* Support configurable RISC-V chip extension
Added the FREERTOS_RISCV_EXTENSION option to allow the user
to select which chip extension they want included. Removed the
port for pulpino to instead use the new option.
* Add port GCC_RISC_V_GENERIC and IAR_RISC_V_GENERIC
* Add two rics-v generic ports to support FREERTOS_RISCV_EXTENSION
config
---------
Co-authored-by: Joe Benczarski <jbenczarski@trijicon.com>
Co-authored-by: chinglee-iot <61685396+chinglee-iot@users.noreply.github.com>
Co-authored-by: Ching-Hsin Lee <chinglee@amazon.com>
Co-authored-by: kar-rahul-aws <118818625+kar-rahul-aws@users.noreply.github.com>
Co-authored-by: Soren Ptak <ptaksoren@gmail.com>
According to Armv8-M technical reference manual, if the main extension
is not implemented then PSPLIM_NS is RES0. Update the cortex-M23
port to not use the reserved PSPLIM_NS.
A task's privilege level is stored in ulTaskFlag member in the TCB. Current
implementation of portSWITCH_TO_USER_MODE() does not update this
flag but just lowers the processor's privilege level. This results in many
APIs incorrectly determining task's privilege level and access permissions -
- xPortIsAuthorizedToAccessBuffer
- xPortIsTaskPrivileged
- xPortIsAuthorizedToAccessKernelObject
This PR fixes the portSWITCH_TO_USER_MODE() implementation to correctly
update the ulTaskFlag member in the TCB before lowering the processor's
privilege level.
Add trace hook macro for most ports
In pull request #659 we introduced better support for tracing
tools like systemview. This patchset adds support for more
ports as requested in the original pull request.
This PR adds Access Control to kernel objects on a per task basis to MPU
ports. The following needs to be defined in the `FreeRTOSConfig.h` to
enable this feature:
```c
#define configUSE_MPU_WRAPPERS_V1 0
#define configENABLE_ACCESS_CONTROL_LIST 1
```
This PR adds the following new APIs:
```c
void vGrantAccessToTask( TaskHandle_t xTask,
TaskHandle_t xTaskToGrantAccess );
void vRevokeAccessToTask( TaskHandle_t xTask,
TaskHandle_t xTaskToRevokeAccess );
void vGrantAccessToSemaphore( TaskHandle_t xTask,
SemaphoreHandle_t xSemaphoreToGrantAccess );
void vRevokeAccessToSemaphore( TaskHandle_t xTask,
SemaphoreHandle_t xSemaphoreToRevokeAccess );
void vGrantAccessToQueue( TaskHandle_t xTask,
QueueHandle_t xQueueToGrantAccess );
void vRevokeAccessToQueue( TaskHandle_t xTask,
QueueHandle_t xQueueToRevokeAccess );
void vGrantAccessToQueueSet( TaskHandle_t xTask,
QueueSetHandle_t xQueueSetToGrantAccess );
void vRevokeAccessToQueueSet( TaskHandle_t xTask,
QueueSetHandle_t xQueueSetToRevokeAccess );
void vGrantAccessToEventGroup( TaskHandle_t xTask,
EventGroupHandle_t xEventGroupToGrantAccess );
void vRevokeAccessToEventGroup( TaskHandle_t xTask,
EventGroupHandle_t xEventGroupToRevokeAccess );
void vGrantAccessToStreamBuffer( TaskHandle_t xTask,
StreamBufferHandle_t xStreamBufferToGrantAccess );
void vRevokeAccessToStreamBuffer( TaskHandle_t xTask,
StreamBufferHandle_t xStreamBufferToRevokeAccess );
void vGrantAccessToMessageBuffer( TaskHandle_t xTask,
MessageBufferHandle_t xMessageBufferToGrantAccess );
void vRevokeAccessToMessageBuffer( TaskHandle_t xTask,
MessageBufferHandle_t xMessageBufferToRevokeAccess );
void vGrantAccessToTimer( TaskHandle_t xTask,
TimerHandle_t xTimerToGrantAccess );
void vRevokeAccessToTimer( TaskHandle_t xTask,
TimerHandle_t xTimerToRevokeAccess );
```
An unprivileged task by default has access to itself only and no other
kernel object. The application writer needs to explicitly grant an
unprivileged task access to all the kernel objects it needs. The best
place to do that is before starting the scheduler when all the kernel
objects are created.
For example, let's say an unprivileged tasks needs access to a queue and
an event group, the application writer needs to do the following:
```c
vGrantAccessToQueue( xUnprivilegedTaskHandle, xQueue );
vGrantAccessToEventGroup( xUnprivilegedTaskHandle, xEventGroup );
```
The application writer MUST revoke all the accesses before deleting a
task. Failing to do so will result in undefined behavior. In the above
example, the application writer needs to make the following 2 calls
before deleting the task:
```c
vRevokeAccessToQueue( xUnprivilegedTaskHandle, xQueue );
vRevokeAccessToEventGroup( xUnprivilegedTaskHandle, xEventGroup );
```
* Add Trace Hook Macros and function that returns the start of the stack.
* Remove obsolete functions.
---------
Co-authored-by: kar-rahul-aws <118818625+kar-rahul-aws@users.noreply.github.com>
Co-authored-by: Rahul Kar <karahulx@amazon.com>
Co-authored-by: chinglee-iot <61685396+chinglee-iot@users.noreply.github.com>
* Use new version of CI-CD Actions
* Use cSpell spell check, and use ubuntu-20.04 for formatting check
* Format and spell check all files in the portable directory
* Remove the https:// from #errors and #warnings as uncrustify attempts to change it to /*
* Use checkout@v3 instead of checkout@v2 on all jobs
---------
* Set SysTick CLKSOURCE bit before enabling SysTick
* Use portNVIC_SYSTICK_CLK_BIT_CONFIG
The workaround now uses portNVIC_SYSTICK_CLK_BIT_CONFIG instead of
portNVIC_SYSTICK_CLK_BIT, which saves us from having to explain in the
comments why it's OK to temporarily set the CLKSOURCE bit even if the
user's FreeRTOS configuration clears the CLKSOURCE bit.
Using portNVIC_SYSTICK_CLK_BIT_CONFIG here still correctly prevents the
firmware from triggering the QEMU bug.
Memory Protection Unit (MPU) Enhancements
This commit introduces a new MPU wrapper that places additional
restrictions on unprivileged tasks. The following is the list of changes
introduced with the new MPU wrapper:
1. Opaque and indirectly verifiable integers for kernel object handles:
All the kernel object handles (for example, queue handles) are now
opaque integers. Previously object handles were raw pointers.
2. Saving the task context in Task Control Block (TCB): When a task is
swapped out by the scheduler, the task's context is now saved in its
TCB. Previously the task's context was saved on its stack.
3. Execute system calls on a separate privileged only stack: FreeRTOS
system calls, which execute with elevated privilege, now use a
separate privileged only stack. Previously system calls used the
calling task's stack. The application writer can control the size of
the system call stack using new configSYSTEM_CALL_STACK_SIZE config
macro.
4. Memory bounds checks: FreeRTOS system calls which accept a pointer
and de-reference it, now verify that the calling task has required
permissions to access the memory location referenced by the pointer.
5. System call restrictions: The following system calls are no longer
available to unprivileged tasks:
- vQueueDelete
- xQueueCreateMutex
- xQueueCreateMutexStatic
- xQueueCreateCountingSemaphore
- xQueueCreateCountingSemaphoreStatic
- xQueueGenericCreate
- xQueueGenericCreateStatic
- xQueueCreateSet
- xQueueRemoveFromSet
- xQueueGenericReset
- xTaskCreate
- xTaskCreateStatic
- vTaskDelete
- vTaskPrioritySet
- vTaskSuspendAll
- xTaskResumeAll
- xTaskGetHandle
- xTaskCallApplicationTaskHook
- vTaskList
- vTaskGetRunTimeStats
- xTaskCatchUpTicks
- xEventGroupCreate
- xEventGroupCreateStatic
- vEventGroupDelete
- xStreamBufferGenericCreate
- xStreamBufferGenericCreateStatic
- vStreamBufferDelete
- xStreamBufferReset
Also, an unprivileged task can no longer use vTaskSuspend to suspend
any task other than itself.
We thank the following people for their inputs in these enhancements:
- David Reiss of Meta Platforms, Inc.
- Lan Luo, Xinhui Shao, Yumeng Wei, Zixia Liu, Huaiyu Yan and Zhen Ling
of School of Computer Science and Engineering, Southeast University,
China.
- Xinwen Fu of Department of Computer Science, University of
Massachusetts Lowell, USA.
- Yuequi Chen, Zicheng Wang, Minghao Lin of University of Colorado
Boulder, USA.
* Remove __NVIC_PRIO_BITS and configPRIO_BITS check in CM3, CM4 and ARMv8.
* Add hardware not implemented bits check. These bits should be zero.
---------
Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
* Armv8-M: Formatting changes
Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com>
* Armv8-M: Add support for interrupt priority check
FreeRTOS provides `FromISR` system calls which can be called directly
from interrupt service routines. It is crucial that the priority of
these ISRs is set to same or lower value (numerically higher) than that
of `configMAX_SYSCALL_INTERRUPT_PRIORITY`. For more information refer
to https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html.
Add a check to trigger an assert when an ISR with priority higher
(numerically lower) than `configMAX_SYSCALL_INTERRUPT_PRIORITY` calls
`FromISR` system calls if `configASSERT` macro is defined.
In addition, add a config option
`configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` to disable interrupt
priority check while running on QEMU. Based on the discussion
https://gitlab.com/qemu-project/qemu/-/issues/1122, The interrupt
priority bits in QEMU do not match the real hardware. Therefore the
assert that checks the number of implemented bits and __NVIC_PRIO_BITS
will always fail. The config option
`configQEMU_DISABLE_INTERRUPT_PRIO_BITS_CHECK` should be defined in the
`FreeRTOSConfig.h` for QEMU targets.
Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com>
* Use SHPR2 for calculating interrupt priority bits
This removes the dependency on the secure software to mark the interrupt
as non-secure.
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
---------
Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com>
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com>
Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
Adjust assertions related to the CMSIS __NVIC_PRIO_BITS and FreeRTOS
configPRIO_BITS configuration macros such that these macros specify the
minimum number of implemented priority bits supported by a config
build rather than the exact number of implemented priority bits.
Related to Qemu issue #1122
FreeRTOS-Kernel/portable/GCC/ARM_CM4F/port.c:399:41: error: conversion from 'uint32_t' {aka 'long unsigned int'} to 'uint8_t' {aka 'unsigned char'} may change value [-Werror=conversion]
Signed-off-by: Vo Trung Chi <chi.votrung@vn.bosch.com>
* Ensure configUSE_TASK_FPU_SUPPORT option is set correctly
If one does enable the FPU of the Cortex-R5 processor, then the GCC
compiler will define the macro __ARM_FP. This can be used to ensure,
that the configUSE_TASK_FPU_SUPPORT is set accordingly.
* Enable the implementation of vPortTaskUsesFPU only if configUSE_TASK_FPU_SUPPORT is set to 1
* Remove error case in pxPortInitialiseStack
The case of configUSE_TASK_FPU_SUPPORT is 0 is now handled
* Enable access to FPU registers only if FPU is enabled
* Make minor formating changes
* Format ARM Cortex-R5 port
* Address review comments from @ChristosZosi
* Minor code review suggestions
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
---------
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
Co-authored-by: Christos Zosimidis <christos.zosimidis@gmail.com>
Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com>
* Interrupt priority assert improvements for CM3/4/7
In the ARM_CM3, ARM_CM4, and ARM_CM7 ports, change the assertion that
`configMAX_SYSCALL_INTERRUPT_PRIORITY` is nonzero to account for the
number of priority bits implemented by the hardware.
Change these ports to also use the lowest priority for PendSV and
SysTick, ignoring `configKERNEL_INTERRUPT_PRIORITY`.
* Remove not needed configKERNEL_INTERRUPT_PRIORITY define
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
---------
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com>
* Cortex-M35P: Add Cortex-M35P port
The Cortex-M35P support added to kernel. The port hasn't been
validated yet with TF-M. Hence TF-M support is not included in this
port.
Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com>
* Add portNORETURN to the newly added portmacro.h
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
---------
Signed-off-by: Devaraj Ranganna <devaraj.ranganna@arm.com>
Signed-off-by: Gaurav Aggarwal <aggarg@amazon.com>
Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
Co-authored-by: Gaurav Aggarwal <aggarg@amazon.com>
Co-authored-by: kar-rahul-aws <118818625+kar-rahul-aws@users.noreply.github.com>
* Adding in ability to support a library for freertos_config and a custom freertos_kernel_port (#558)
* Using single name definition for libraries everywhere. (#558)
* Supporting backwards compatibility with FREERTOS_CONFIG_FILE_DIRECTORY (#571)
* Removing compiler warnings for GNU and Clang. (#571)
* Added in documentation on how to consume from a main project. Added default PORT selection for native POSIX and MINGW platforms.
* Only adding freertos_config if it exists. Removing auto generation of it from a FREERTOS_CONFIG_FILE_DIRECTORY.
* Fixing clang and gnu compiler warnings.
* Adding in project information and how to compile for GNU/clang
* Fixing compiler issue with unused variable - no need to declare variable.
* Adding in compile warnings for linux builds that kernel is okay with using.
* Fixing more extra-semi-stmt clang warnings.
* Moving definition of hooks into header files if features are enabled.
* Fixing formatting with uncrustify.
* Fixing merge conflicts with main merge.
* Fixing compiler errors due to merge issues and formatting.
* Fixing Line feeds.
* Adding 'portNORETURN' into portmacros.h. Other Updates based on PR request
* Further clean-up of clang and clang-tidy issues.
* Removing compiler specific pragmas from common c files.
* Fixing missing lexicon entry and uncrustify formatting changes.
* Resolving merge issue multiple defnitions of proto for prvIdleTask
* Fixing formatting issues that are not covered by uncrustify. Use clang-tidy instead if you want this level of control.
* More uncrustify formatting issues.
* Fixing extra bracket in #if statement.
---------
Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
The introduction of `portMEMORY_BARRIER` will ensure
the places in the kernel use a barrier will work.
For example, `xTaskResumeAll` has a memory barrier
to ensure its correctness when compiled with optimization
enabled. Without the barrier `xTaskResumeAll` can fail
(e.g. start reading and writing to address 0 and/or
infinite looping) when `xPendingReadyList` contains more
than one task to restore.
In `xTaskResumeAll` the compiler chooses to cache the
`pxTCB` the first time through the loop for use
in every subsequent loop. This is incorrect as the
removal of `pxTCB->xEventListItem` will actually
change the value of `pxTCB` if it was read again
at the top of the loop. The barrier forces the compiler
to read `pxTCB` again at the top of the loop.
The compiler is operating correctly. The removal
`pxTCB->xEventListItem` executes on a `List_t *`
and `ListItem_t *`. This means that the compiler
can assume that any `MiniListItem_t` values are
unchanged by the loop (i.e. "strict-aliasing").
This allows the compiler to cache `pxTCB` as it
is obtained via a `MiniListItem_t`. This is incorrect
in this case because it is possible for a `ListItem_t *`
to actually alias a `MiniListItem_t`. This is technically
a "violation of aliasing rules" so we use the the barrier
to disable the strict-aliasing optimization in this loop.