Cortex-M Assert when NVIC implements 8 PRIO bits (#639)

* Cortex-M Assert when NVIC implements 8 PRIO bits

* Fix CM3 ports

* Fix ARM_CM3_MPU

* Fix ARM CM3

* Fix ARM_CM4_MPU

* Fix ARM_CM4

* Fix GCC ARM_CM7

* Fix IAR ARM ports

* Uncrustify changes

* Fix MikroC_ARM_CM4F port

* Fix MikroC_ARM_CM4F port-(2)

* Fix RVDS ARM ports

* Revert changes for Tasking/ARM_CM4F port

* Revert changes for Tasking/ARM_CM4F port-(2)

* Update port.c

Fix GCC/ARM_CM4F port

* Update port.c

* update GCC\ARM_CM4F port

* update port.c

* Assert to check configMAX_SYSCALL_INTERRUPT_PRIORITY is set to higher priority

* Fix merge error: remove duplicate code

* Fix typos

---------

Co-authored-by: Gaurav-Aggarwal-AWS <33462878+aggarg@users.noreply.github.com>
Co-authored-by: Ubuntu <ubuntu@ip-172-31-17-174.ec2.internal>
pull/649/head
kar-rahul-aws 2 years ago committed by GitHub
parent 9488ba22d8
commit 99797e14e3
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -219,6 +219,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -250,20 +251,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -272,7 +299,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif
@ -379,9 +406,9 @@ void xPortSysTickHandler( void )
/* Enter a critical section but don't use the taskENTER_CRITICAL()
* method as that will mask interrupts that should exit sleep mode. */
__asm( " cpsid i");
__asm( " dsb");
__asm( " isb");
__asm( " cpsid i" );
__asm( " dsb" );
__asm( " isb" );
/* If a context switch is pending or a task is waiting for the scheduler
* to be unsuspended then abandon the low power entry. */
@ -389,7 +416,7 @@ void xPortSysTickHandler( void )
{
/* Re-enable interrupts - see comments above the cpsid instruction
* above. */
__asm( " cpsie i");
__asm( " cpsie i" );
}
else
{
@ -450,9 +477,9 @@ void xPortSysTickHandler( void )
if( xModifiableIdleTime > 0 )
{
__asm( " dsb");
__asm( " wfi");
__asm( " isb");
__asm( " dsb" );
__asm( " wfi" );
__asm( " isb" );
}
configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
@ -460,17 +487,17 @@ void xPortSysTickHandler( void )
/* Re-enable interrupts to allow the interrupt that brought the MCU
* out of sleep mode to execute immediately. See comments above
* the cpsid instruction above. */
__asm( " cpsie i");
__asm( " dsb");
__asm( " isb");
__asm( " cpsie i" );
__asm( " dsb" );
__asm( " isb" );
/* Disable interrupts again because the clock is about to be stopped
* and interrupts that execute while the clock is stopped will increase
* any slippage between the time maintained by the RTOS and calendar
* time. */
__asm( " cpsid i");
__asm( " dsb");
__asm( " isb");
__asm( " cpsid i" );
__asm( " dsb" );
__asm( " isb" );
/* Disable the SysTick clock without reading the
* portNVIC_SYSTICK_CTRL_REG register to ensure the
@ -578,7 +605,7 @@ void xPortSysTickHandler( void )
vTaskStepTick( ulCompleteTickPeriods );
/* Exit with interrupts enabled. */
__asm( " cpsie i");
__asm( " cpsie i" );
}
}

@ -238,6 +238,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -269,20 +270,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -291,7 +318,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif
@ -404,9 +431,9 @@ void xPortSysTickHandler( void )
/* Enter a critical section but don't use the taskENTER_CRITICAL()
* method as that will mask interrupts that should exit sleep mode. */
__asm( " cpsid i");
__asm( " dsb");
__asm( " isb");
__asm( " cpsid i" );
__asm( " dsb" );
__asm( " isb" );
/* If a context switch is pending or a task is waiting for the scheduler
* to be unsuspended then abandon the low power entry. */
@ -414,7 +441,7 @@ void xPortSysTickHandler( void )
{
/* Re-enable interrupts - see comments above the cpsid instruction
* above. */
__asm( " cpsie i");
__asm( " cpsie i" );
}
else
{
@ -475,9 +502,9 @@ void xPortSysTickHandler( void )
if( xModifiableIdleTime > 0 )
{
__asm( " dsb");
__asm( " wfi");
__asm( " isb");
__asm( " dsb" );
__asm( " wfi" );
__asm( " isb" );
}
configPOST_SLEEP_PROCESSING( xExpectedIdleTime );
@ -485,17 +512,17 @@ void xPortSysTickHandler( void )
/* Re-enable interrupts to allow the interrupt that brought the MCU
* out of sleep mode to execute immediately. See comments above
* the cpsid instruction above. */
__asm( " cpsie i");
__asm( " dsb");
__asm( " isb");
__asm( " cpsie i" );
__asm( " dsb" );
__asm( " isb" );
/* Disable interrupts again because the clock is about to be stopped
* and interrupts that execute while the clock is stopped will increase
* any slippage between the time maintained by the RTOS and calendar
* time. */
__asm( " cpsid i");
__asm( " dsb");
__asm( " isb");
__asm( " cpsid i" );
__asm( " dsb" );
__asm( " isb" );
/* Disable the SysTick clock without reading the
* portNVIC_SYSTICK_CTRL_REG register to ensure the
@ -603,7 +630,7 @@ void xPortSysTickHandler( void )
vTaskStepTick( ulCompleteTickPeriods );
/* Exit with interrupts enabled. */
__asm( " cpsie i");
__asm( " cpsie i" );
}
}

@ -262,6 +262,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -293,20 +294,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -315,7 +342,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif
@ -756,4 +783,4 @@ __attribute__( ( weak ) ) void vPortSetupTimerInterrupt( void )
configASSERT( ( portAIRCR_REG & portPRIORITY_GROUP_MASK ) <= ulMaxPRIGROUPValue );
}
#endif /* configASSERT_DEFINED */
#endif /* configASSERT_DEFINED */

@ -385,6 +385,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -416,20 +417,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -438,7 +465,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif
@ -923,4 +950,4 @@ void vPortStoreTaskMPUSettings( xMPU_SETTINGS * xMPUSettings,
}
#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/
/*-----------------------------------------------------------*/

@ -251,11 +251,11 @@ static void prvTaskExitError( void )
void vPortSVCHandler( void )
{
__asm volatile (
" ldr r3, pxCurrentTCBConst2 \n"/* Restore the context. */
" ldr r1, [r3] \n"/* Use pxCurrentTCBConst to get the pxCurrentTCB address. */
" ldr r0, [r1] \n"/* The first item in pxCurrentTCB is the task top of stack. */
" ldmia r0!, {r4-r11, r14} \n"/* Pop the registers that are not automatically saved on exception entry and the critical nesting count. */
" msr psp, r0 \n"/* Restore the task stack pointer. */
" ldr r3, pxCurrentTCBConst2 \n" /* Restore the context. */
" ldr r1, [r3] \n" /* Use pxCurrentTCBConst to get the pxCurrentTCB address. */
" ldr r0, [r1] \n" /* The first item in pxCurrentTCB is the task top of stack. */
" ldmia r0!, {r4-r11, r14} \n" /* Pop the registers that are not automatically saved on exception entry and the critical nesting count. */
" msr psp, r0 \n" /* Restore the task stack pointer. */
" isb \n"
" mov r0, #0 \n"
" msr basepri, r0 \n"
@ -274,17 +274,17 @@ static void prvPortStartFirstTask( void )
* would otherwise result in the unnecessary leaving of space in the SVC stack
* for lazy saving of FPU registers. */
__asm volatile (
" ldr r0, =0xE000ED08 \n"/* Use the NVIC offset register to locate the stack. */
" ldr r0, =0xE000ED08 \n" /* Use the NVIC offset register to locate the stack. */
" ldr r0, [r0] \n"
" ldr r0, [r0] \n"
" msr msp, r0 \n"/* Set the msp back to the start of the stack. */
" mov r0, #0 \n"/* Clear the bit that indicates the FPU is in use, see comment above. */
" msr msp, r0 \n" /* Set the msp back to the start of the stack. */
" mov r0, #0 \n" /* Clear the bit that indicates the FPU is in use, see comment above. */
" msr control, r0 \n"
" cpsie i \n"/* Globally enable interrupts. */
" cpsie i \n" /* Globally enable interrupts. */
" cpsie f \n"
" dsb \n"
" isb \n"
" svc 0 \n"/* System call to start first task. */
" svc 0 \n" /* System call to start first task. */
" nop \n"
" .ltorg \n"
);
@ -305,6 +305,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -336,20 +337,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -358,7 +385,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif
@ -453,15 +480,15 @@ void xPortPendSVHandler( void )
" mrs r0, psp \n"
" isb \n"
" \n"
" ldr r3, pxCurrentTCBConst \n"/* Get the location of the current TCB. */
" ldr r3, pxCurrentTCBConst \n" /* Get the location of the current TCB. */
" ldr r2, [r3] \n"
" \n"
" tst r14, #0x10 \n"/* Is the task using the FPU context? If so, push high vfp registers. */
" tst r14, #0x10 \n" /* Is the task using the FPU context? If so, push high vfp registers. */
" it eq \n"
" vstmdbeq r0!, {s16-s31} \n"
" \n"
" stmdb r0!, {r4-r11, r14} \n"/* Save the core registers. */
" str r0, [r2] \n"/* Save the new top of stack into the first member of the TCB. */
" stmdb r0!, {r4-r11, r14} \n" /* Save the core registers. */
" str r0, [r2] \n" /* Save the new top of stack into the first member of the TCB. */
" \n"
" stmdb sp!, {r0, r3} \n"
" mov r0, %0 \n"
@ -473,12 +500,12 @@ void xPortPendSVHandler( void )
" msr basepri, r0 \n"
" ldmia sp!, {r0, r3} \n"
" \n"
" ldr r1, [r3] \n"/* The first item in pxCurrentTCB is the task top of stack. */
" ldr r1, [r3] \n" /* The first item in pxCurrentTCB is the task top of stack. */
" ldr r0, [r1] \n"
" \n"
" ldmia r0!, {r4-r11, r14} \n"/* Pop the core registers. */
" ldmia r0!, {r4-r11, r14} \n" /* Pop the core registers. */
" \n"
" tst r14, #0x10 \n"/* Is the task using the FPU context? If so, pop the high vfp registers too. */
" tst r14, #0x10 \n" /* Is the task using the FPU context? If so, pop the high vfp registers too. */
" it eq \n"
" vldmiaeq r0!, {s16-s31} \n"
" \n"
@ -772,10 +799,10 @@ static void vPortEnableVFP( void )
{
__asm volatile
(
" ldr.w r0, =0xE000ED88 \n"/* The FPU enable bits are in the CPACR. */
" ldr.w r0, =0xE000ED88 \n" /* The FPU enable bits are in the CPACR. */
" ldr r1, [r0] \n"
" \n"
" orr r1, r1, #( 0xf << 20 ) \n"/* Enable CP10 and CP11 coprocessors, then save back. */
" orr r1, r1, #( 0xf << 20 ) \n" /* Enable CP10 and CP11 coprocessors, then save back. */
" str r1, [r0] \n"
" bx r14 \n"
" .ltorg \n"

@ -428,6 +428,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -459,20 +460,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -481,7 +508,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif
@ -1046,4 +1073,4 @@ void vPortStoreTaskMPUSettings( xMPU_SETTINGS * xMPUSettings,
}
#endif /* configASSERT_DEFINED */
/*-----------------------------------------------------------*/
/*-----------------------------------------------------------*/

@ -245,11 +245,11 @@ static void prvTaskExitError( void )
void vPortSVCHandler( void )
{
__asm volatile (
" ldr r3, pxCurrentTCBConst2 \n"/* Restore the context. */
" ldr r1, [r3] \n"/* Use pxCurrentTCBConst to get the pxCurrentTCB address. */
" ldr r0, [r1] \n"/* The first item in pxCurrentTCB is the task top of stack. */
" ldmia r0!, {r4-r11, r14} \n"/* Pop the registers that are not automatically saved on exception entry and the critical nesting count. */
" msr psp, r0 \n"/* Restore the task stack pointer. */
" ldr r3, pxCurrentTCBConst2 \n" /* Restore the context. */
" ldr r1, [r3] \n" /* Use pxCurrentTCBConst to get the pxCurrentTCB address. */
" ldr r0, [r1] \n" /* The first item in pxCurrentTCB is the task top of stack. */
" ldmia r0!, {r4-r11, r14} \n" /* Pop the registers that are not automatically saved on exception entry and the critical nesting count. */
" msr psp, r0 \n" /* Restore the task stack pointer. */
" isb \n"
" mov r0, #0 \n"
" msr basepri, r0 \n"
@ -268,17 +268,17 @@ static void prvPortStartFirstTask( void )
* would otherwise result in the unnecessary leaving of space in the SVC stack
* for lazy saving of FPU registers. */
__asm volatile (
" ldr r0, =0xE000ED08 \n"/* Use the NVIC offset register to locate the stack. */
" ldr r0, =0xE000ED08 \n" /* Use the NVIC offset register to locate the stack. */
" ldr r0, [r0] \n"
" ldr r0, [r0] \n"
" msr msp, r0 \n"/* Set the msp back to the start of the stack. */
" mov r0, #0 \n"/* Clear the bit that indicates the FPU is in use, see comment above. */
" msr msp, r0 \n" /* Set the msp back to the start of the stack. */
" mov r0, #0 \n" /* Clear the bit that indicates the FPU is in use, see comment above. */
" msr control, r0 \n"
" cpsie i \n"/* Globally enable interrupts. */
" cpsie i \n" /* Globally enable interrupts. */
" cpsie f \n"
" dsb \n"
" isb \n"
" svc 0 \n"/* System call to start first task. */
" svc 0 \n" /* System call to start first task. */
" nop \n"
" .ltorg \n"
);
@ -293,6 +293,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -324,20 +325,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -346,7 +373,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif
@ -441,34 +468,34 @@ void xPortPendSVHandler( void )
" mrs r0, psp \n"
" isb \n"
" \n"
" ldr r3, pxCurrentTCBConst \n"/* Get the location of the current TCB. */
" ldr r3, pxCurrentTCBConst \n" /* Get the location of the current TCB. */
" ldr r2, [r3] \n"
" \n"
" tst r14, #0x10 \n"/* Is the task using the FPU context? If so, push high vfp registers. */
" tst r14, #0x10 \n" /* Is the task using the FPU context? If so, push high vfp registers. */
" it eq \n"
" vstmdbeq r0!, {s16-s31} \n"
" \n"
" stmdb r0!, {r4-r11, r14} \n"/* Save the core registers. */
" str r0, [r2] \n"/* Save the new top of stack into the first member of the TCB. */
" stmdb r0!, {r4-r11, r14} \n" /* Save the core registers. */
" str r0, [r2] \n" /* Save the new top of stack into the first member of the TCB. */
" \n"
" stmdb sp!, {r0, r3} \n"
" mov r0, %0 \n"
" cpsid i \n"/* ARM Cortex-M7 r0p1 Errata 837070 workaround. */
" cpsid i \n" /* ARM Cortex-M7 r0p1 Errata 837070 workaround. */
" msr basepri, r0 \n"
" dsb \n"
" isb \n"
" cpsie i \n"/* ARM Cortex-M7 r0p1 Errata 837070 workaround. */
" cpsie i \n" /* ARM Cortex-M7 r0p1 Errata 837070 workaround. */
" bl vTaskSwitchContext \n"
" mov r0, #0 \n"
" msr basepri, r0 \n"
" ldmia sp!, {r0, r3} \n"
" \n"
" ldr r1, [r3] \n"/* The first item in pxCurrentTCB is the task top of stack. */
" ldr r1, [r3] \n" /* The first item in pxCurrentTCB is the task top of stack. */
" ldr r0, [r1] \n"
" \n"
" ldmia r0!, {r4-r11, r14} \n"/* Pop the core registers. */
" ldmia r0!, {r4-r11, r14} \n" /* Pop the core registers. */
" \n"
" tst r14, #0x10 \n"/* Is the task using the FPU context? If so, pop the high vfp registers too. */
" tst r14, #0x10 \n" /* Is the task using the FPU context? If so, pop the high vfp registers too. */
" it eq \n"
" vldmiaeq r0!, {s16-s31} \n"
" \n"
@ -762,10 +789,10 @@ static void vPortEnableVFP( void )
{
__asm volatile
(
" ldr.w r0, =0xE000ED88 \n"/* The FPU enable bits are in the CPACR. */
" ldr.w r0, =0xE000ED88 \n" /* The FPU enable bits are in the CPACR. */
" ldr r1, [r0] \n"
" \n"
" orr r1, r1, #( 0xf << 20 ) \n"/* Enable CP10 and CP11 coprocessors, then save back. */
" orr r1, r1, #( 0xf << 20 ) \n" /* Enable CP10 and CP11 coprocessors, then save back. */
" str r1, [r0] \n"
" bx r14 \n"
" .ltorg \n"

@ -211,6 +211,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -242,20 +243,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -264,7 +291,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif

@ -249,6 +249,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -280,20 +281,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -302,7 +329,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif

@ -194,7 +194,7 @@ extern void vPortRestoreContextOfFirstTask( void ) PRIVILEGED_FUNCTION;
/**
* @brief Enter critical section.
*/
#if( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
#if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
void vPortEnterCritical( void ) FREERTOS_SYSTEM_CALL;
#else
void vPortEnterCritical( void ) PRIVILEGED_FUNCTION;
@ -203,7 +203,7 @@ extern void vPortRestoreContextOfFirstTask( void ) PRIVILEGED_FUNCTION;
/**
* @brief Exit from critical section.
*/
#if( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
#if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
void vPortExitCritical( void ) FREERTOS_SYSTEM_CALL;
#else
void vPortExitCritical( void ) PRIVILEGED_FUNCTION;
@ -316,9 +316,9 @@ void vPortSVCHandler_C( uint32_t * pulParam )
{
__asm volatile
(
" mrs r1, control \n"/* Obtain current control value. */
" bic r1, r1, #1 \n"/* Set privilege bit. */
" msr control, r1 \n"/* Write back new control value. */
" mrs r1, control \n" /* Obtain current control value. */
" bic r1, r1, #1 \n" /* Set privilege bit. */
" msr control, r1 \n" /* Write back new control value. */
::: "r1", "memory"
);
}
@ -328,9 +328,9 @@ void vPortSVCHandler_C( uint32_t * pulParam )
case portSVC_RAISE_PRIVILEGE:
__asm volatile
(
" mrs r1, control \n"/* Obtain current control value. */
" bic r1, r1, #1 \n"/* Set privilege bit. */
" msr control, r1 \n"/* Write back new control value. */
" mrs r1, control \n" /* Obtain current control value. */
" bic r1, r1, #1 \n" /* Set privilege bit. */
" msr control, r1 \n" /* Write back new control value. */
::: "r1", "memory"
);
break;
@ -352,6 +352,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configENABLE_ERRATA_837070_WORKAROUND == 1 )
configASSERT( ( portCPUID == portCORTEX_M7_r0p1_ID ) || ( portCPUID == portCORTEX_M7_r0p0_ID ) );
#else
/* When using this port on a Cortex-M7 r0p0 or r0p1 core, define
* configENABLE_ERRATA_837070_WORKAROUND to 1 in your
* FreeRTOSConfig.h. */
@ -360,74 +361,101 @@ BaseType_t xPortStartScheduler( void )
#endif
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
/* Determine the maximum priority from which ISR safe FreeRTOS API
* functions can be called. ISR safe functions are those that end in
* "FromISR". FreeRTOS maintains separate thread and ISR API functions to
* ensure interrupt entry is as fast and simple as possible.
*
* Save the interrupt priority value that is about to be clobbered. */
ulOriginalPriority = *pucFirstUserPriorityRegister;
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
/* Determine the maximum priority from which ISR safe FreeRTOS API
* functions can be called. ISR safe functions are those that end in
* "FromISR". FreeRTOS maintains separate thread and ISR API functions to
* ensure interrupt entry is as fast and simple as possible.
*
* Save the interrupt priority value that is about to be clobbered. */
ulOriginalPriority = *pucFirstUserPriorityRegister;
/* Determine the number of priority bits available. First write to all
* possible bits. */
*pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
/* Determine the number of priority bits available. First write to all
* possible bits. */
*pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
/* Read the value back to see how many bits stuck. */
ucMaxPriorityValue = *pucFirstUserPriorityRegister;
/* Read the value back to see how many bits stuck. */
ucMaxPriorityValue = *pucFirstUserPriorityRegister;
/* Use the same mask on the maximum system call priority. */
ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
/* Use the same mask on the maximum system call priority. */
ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
/* Check that the maximum system call priority is nonzero after
* accounting for the number of priority bits supported by the
* hardware. A priority of 0 is invalid because setting the BASEPRI
* register to 0 unmasks all interrupts, and interrupts with priority 0
* cannot be masked using BASEPRI.
* See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
configASSERT( ucMaxSysCallPriority );
/* Check that the maximum system call priority is nonzero after
* accounting for the number of priority bits supported by the
* hardware. A priority of 0 is invalid because setting the BASEPRI
* register to 0 unmasks all interrupts, and interrupts with priority 0
* cannot be masked using BASEPRI.
* See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
configASSERT( ucMaxSysCallPriority );
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
}
#endif
#ifdef configPRIO_BITS
{
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
}
#endif
/* Shift the priority group value back to its position within the AIRCR
* register. */
ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
/* Restore the clobbered interrupt priority register to its original
* value. */
*pucFirstUserPriorityRegister = ulOriginalPriority;
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
#ifdef configPRIO_BITS
{
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif
/* Shift the priority group value back to its position within the AIRCR
* register. */
ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
/* Restore the clobbered interrupt priority register to its original
* value. */
*pucFirstUserPriorityRegister = ulOriginalPriority;
}
#endif /* configASSERT_DEFINED */
/* Make PendSV and SysTick the lowest priority interrupts. */
@ -468,32 +496,49 @@ void vPortEndScheduler( void )
void vPortEnterCritical( void )
{
#if( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
if( portIS_PRIVILEGED() == pdFALSE )
{
portRAISE_PRIVILEGE();
portMEMORY_BARRIER();
#if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
if( portIS_PRIVILEGED() == pdFALSE )
{
portRAISE_PRIVILEGE();
portMEMORY_BARRIER();
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
/* This is not the interrupt safe version of the enter critical function so
* assert() if it is being called from an interrupt context. Only API
* functions that end in "FromISR" can be used in an interrupt. Only assert if
* the critical nesting count is 1 to protect against recursive calls if the
* assert function also uses a critical section. */
if( uxCriticalNesting == 1 )
{
configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
}
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
/* This is not the interrupt safe version of the enter critical function so
* assert() if it is being called from an interrupt context. Only API
* functions that end in "FromISR" can be used in an interrupt. Only assert if
* the critical nesting count is 1 to protect against recursive calls if the
* assert function also uses a critical section. */
if( uxCriticalNesting == 1 )
portMEMORY_BARRIER();
portRESET_PRIVILEGE();
portMEMORY_BARRIER();
}
else
{
configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
/* This is not the interrupt safe version of the enter critical function so
* assert() if it is being called from an interrupt context. Only API
* functions that end in "FromISR" can be used in an interrupt. Only assert if
* the critical nesting count is 1 to protect against recursive calls if the
* assert function also uses a critical section. */
if( uxCriticalNesting == 1 )
{
configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
}
}
portMEMORY_BARRIER();
portRESET_PRIVILEGE();
portMEMORY_BARRIER();
}
else
{
#else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
/* This is not the interrupt safe version of the enter critical function so
* assert() if it is being called from an interrupt context. Only API
* functions that end in "FromISR" can be used in an interrupt. Only assert if
@ -503,45 +548,42 @@ void vPortEnterCritical( void )
{
configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
}
}
#else
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
/* This is not the interrupt safe version of the enter critical function so
* assert() if it is being called from an interrupt context. Only API
* functions that end in "FromISR" can be used in an interrupt. Only assert if
* the critical nesting count is 1 to protect against recursive calls if the
* assert function also uses a critical section. */
if( uxCriticalNesting == 1 )
{
configASSERT( ( portNVIC_INT_CTRL_REG & portVECTACTIVE_MASK ) == 0 );
}
#endif
#endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
}
/*-----------------------------------------------------------*/
void vPortExitCritical( void )
{
#if( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
if( portIS_PRIVILEGED() == pdFALSE )
{
portRAISE_PRIVILEGE();
portMEMORY_BARRIER();
#if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
if( portIS_PRIVILEGED() == pdFALSE )
{
portRAISE_PRIVILEGE();
portMEMORY_BARRIER();
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
portMEMORY_BARRIER();
portRESET_PRIVILEGE();
portMEMORY_BARRIER();
}
portMEMORY_BARRIER();
else
{
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
portRESET_PRIVILEGE();
portMEMORY_BARRIER();
}
else
{
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
}
#else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
@ -549,16 +591,7 @@ void vPortExitCritical( void )
{
portENABLE_INTERRUPTS();
}
}
#else
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
#endif
#endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
}
/*-----------------------------------------------------------*/
@ -710,7 +743,7 @@ void vPortStoreTaskMPUSettings( xMPU_SETTINGS * xMPUSettings,
xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress =
( ( uint32_t ) __SRAM_segment_start__ ) | /* Base address. */
( portMPU_REGION_VALID ) |
( portSTACK_REGION ); /* Region number. */
( portSTACK_REGION ); /* Region number. */
xMPUSettings->xRegion[ 0 ].ulRegionAttribute =
( portMPU_REGION_READ_WRITE ) |

@ -237,6 +237,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -268,20 +269,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -290,7 +317,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif

@ -299,6 +299,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * const ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -330,20 +331,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -352,7 +379,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif

@ -264,6 +264,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -295,20 +296,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -317,7 +344,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif

@ -330,6 +330,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -361,20 +362,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -383,7 +410,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif

@ -201,7 +201,7 @@ void vResetPrivilege( void );
/**
* @brief Enter critical section.
*/
#if( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
#if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
void vPortEnterCritical( void ) FREERTOS_SYSTEM_CALL;
#else
void vPortEnterCritical( void ) PRIVILEGED_FUNCTION;
@ -210,7 +210,7 @@ void vResetPrivilege( void );
/**
* @brief Exit from critical section.
*/
#if( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
#if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
void vPortExitCritical( void ) FREERTOS_SYSTEM_CALL;
#else
void vPortExitCritical( void ) PRIVILEGED_FUNCTION;
@ -412,6 +412,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configENABLE_ERRATA_837070_WORKAROUND == 1 )
configASSERT( ( portCPUID == portCORTEX_M7_r0p1_ID ) || ( portCPUID == portCORTEX_M7_r0p0_ID ) );
#else
/* When using this port on a Cortex-M7 r0p0 or r0p1 core, define
* configENABLE_ERRATA_837070_WORKAROUND to 1 in your
* FreeRTOSConfig.h. */
@ -420,74 +421,101 @@ BaseType_t xPortStartScheduler( void )
#endif
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint8_t * const pucFirstUserPriorityRegister = ( volatile uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
/* Determine the maximum priority from which ISR safe FreeRTOS API
* functions can be called. ISR safe functions are those that end in
* "FromISR". FreeRTOS maintains separate thread and ISR API functions to
* ensure interrupt entry is as fast and simple as possible.
*
* Save the interrupt priority value that is about to be clobbered. */
ulOriginalPriority = *pucFirstUserPriorityRegister;
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
/* Determine the maximum priority from which ISR safe FreeRTOS API
* functions can be called. ISR safe functions are those that end in
* "FromISR". FreeRTOS maintains separate thread and ISR API functions to
* ensure interrupt entry is as fast and simple as possible.
*
* Save the interrupt priority value that is about to be clobbered. */
ulOriginalPriority = *pucFirstUserPriorityRegister;
/* Determine the number of priority bits available. First write to all
* possible bits. */
*pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
/* Determine the number of priority bits available. First write to all
* possible bits. */
*pucFirstUserPriorityRegister = portMAX_8_BIT_VALUE;
/* Read the value back to see how many bits stuck. */
ucMaxPriorityValue = *pucFirstUserPriorityRegister;
/* Read the value back to see how many bits stuck. */
ucMaxPriorityValue = *pucFirstUserPriorityRegister;
/* Use the same mask on the maximum system call priority. */
ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
/* Use the same mask on the maximum system call priority. */
ucMaxSysCallPriority = configMAX_SYSCALL_INTERRUPT_PRIORITY & ucMaxPriorityValue;
/* Check that the maximum system call priority is nonzero after
* accounting for the number of priority bits supported by the
* hardware. A priority of 0 is invalid because setting the BASEPRI
* register to 0 unmasks all interrupts, and interrupts with priority 0
* cannot be masked using BASEPRI.
* See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
configASSERT( ucMaxSysCallPriority );
/* Check that the maximum system call priority is nonzero after
* accounting for the number of priority bits supported by the
* hardware. A priority of 0 is invalid because setting the BASEPRI
* register to 0 unmasks all interrupts, and interrupts with priority 0
* cannot be masked using BASEPRI.
* See https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
configASSERT( ucMaxSysCallPriority );
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
}
#endif
#ifdef configPRIO_BITS
{
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
}
#endif
/* Shift the priority group value back to its position within the AIRCR
* register. */
ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
/* Restore the clobbered interrupt priority register to its original
* value. */
*pucFirstUserPriorityRegister = ulOriginalPriority;
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
#ifdef configPRIO_BITS
{
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif
/* Shift the priority group value back to its position within the AIRCR
* register. */
ulMaxPRIGROUPValue <<= portPRIGROUP_SHIFT;
ulMaxPRIGROUPValue &= portPRIORITY_GROUP_MASK;
/* Restore the clobbered interrupt priority register to its original
* value. */
*pucFirstUserPriorityRegister = ulOriginalPriority;
}
#endif /* configASSERT_DEFINED */
/* Make PendSV and SysTick the same priority as the kernel, and the SVC
@ -559,53 +587,63 @@ void vPortEndScheduler( void )
void vPortEnterCritical( void )
{
#if( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
if( portIS_PRIVILEGED() == pdFALSE )
{
portRAISE_PRIVILEGE();
portMEMORY_BARRIER();
#if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
if( portIS_PRIVILEGED() == pdFALSE )
{
portRAISE_PRIVILEGE();
portMEMORY_BARRIER();
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
portMEMORY_BARRIER();
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
portMEMORY_BARRIER();
portRESET_PRIVILEGE();
portMEMORY_BARRIER();
}
else
{
portRESET_PRIVILEGE();
portMEMORY_BARRIER();
}
else
{
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
}
#else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
}
#else
portDISABLE_INTERRUPTS();
uxCriticalNesting++;
#endif
#endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
}
/*-----------------------------------------------------------*/
void vPortExitCritical( void )
{
#if( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
if( portIS_PRIVILEGED() == pdFALSE )
{
portRAISE_PRIVILEGE();
portMEMORY_BARRIER();
#if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 )
if( portIS_PRIVILEGED() == pdFALSE )
{
portRAISE_PRIVILEGE();
portMEMORY_BARRIER();
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
portMEMORY_BARRIER();
portRESET_PRIVILEGE();
portMEMORY_BARRIER();
}
portMEMORY_BARRIER();
else
{
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
portRESET_PRIVILEGE();
portMEMORY_BARRIER();
}
else
{
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
}
#else /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
@ -613,16 +651,7 @@ void vPortExitCritical( void )
{
portENABLE_INTERRUPTS();
}
}
#else
configASSERT( uxCriticalNesting );
uxCriticalNesting--;
if( uxCriticalNesting == 0 )
{
portENABLE_INTERRUPTS();
}
#endif
#endif /* if ( configALLOW_UNPRIVILEGED_CRITICAL_SECTIONS == 1 ) */
}
/*-----------------------------------------------------------*/
@ -910,7 +939,7 @@ void vPortStoreTaskMPUSettings( xMPU_SETTINGS * xMPUSettings,
xMPUSettings->xRegion[ 0 ].ulRegionBaseAddress =
( ( uint32_t ) __SRAM_segment_start__ ) | /* Base address. */
( portMPU_REGION_VALID ) |
( portSTACK_REGION ); /* Region number. */
( portSTACK_REGION ); /* Region number. */
xMPUSettings->xRegion[ 0 ].ulRegionAttribute =
( portMPU_REGION_READ_WRITE ) |

@ -314,6 +314,7 @@ BaseType_t xPortStartScheduler( void )
#if ( configASSERT_DEFINED == 1 )
{
volatile uint32_t ulOriginalPriority;
volatile uint32_t ulImplementedPrioBits = 0;
volatile uint8_t * const pucFirstUserPriorityRegister = ( uint8_t * ) ( portNVIC_IP_REGISTERS_OFFSET_16 + portFIRST_USER_INTERRUPT_NUMBER );
volatile uint8_t ucMaxPriorityValue;
@ -345,20 +346,46 @@ BaseType_t xPortStartScheduler( void )
/* Calculate the maximum acceptable priority group value for the number
* of bits read back. */
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS;
while( ( ucMaxPriorityValue & portTOP_BIT_OF_BYTE ) == portTOP_BIT_OF_BYTE )
{
ulMaxPRIGROUPValue--;
ulImplementedPrioBits++;
ucMaxPriorityValue <<= ( uint8_t ) 0x01;
}
if( ulImplementedPrioBits == 8 )
{
/* When the hardware implements 8 priority bits, there is no way for
* the software to configure PRIGROUP to not have sub-priorities. As
* a result, the least significant bit is always used for sub-priority
* and there are 128 preemption priorities and 2 sub-priorities.
*
* This may cause some confusion in some cases - for example, if
* configMAX_SYSCALL_INTERRUPT_PRIORITY is set to 5, both 5 and 4
* priority interrupts will be masked in Critical Sections as those
* are at the same preemption priority. This may appear confusing as
* 4 is higher (numerically lower) priority than
* configMAX_SYSCALL_INTERRUPT_PRIORITY and therefore, should not
* have been masked. Instead, if we set configMAX_SYSCALL_INTERRUPT_PRIORITY
* to 4, this confusion does not happen and the behaviour remains the same.
*
* The following assert ensures that the sub-priority bit in the
* configMAX_SYSCALL_INTERRUPT_PRIORITY is clear to avoid the above mentioned
* confusion. */
configASSERT( ( configMAX_SYSCALL_INTERRUPT_PRIORITY & 0x1U ) == 0U );
ulMaxPRIGROUPValue = 0;
}
else
{
ulMaxPRIGROUPValue = portMAX_PRIGROUP_BITS - ulImplementedPrioBits;
}
#ifdef __NVIC_PRIO_BITS
{
/* Check the CMSIS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == __NVIC_PRIO_BITS );
configASSERT( ulImplementedPrioBits == __NVIC_PRIO_BITS );
}
#endif
@ -367,7 +394,7 @@ BaseType_t xPortStartScheduler( void )
/* Check the FreeRTOS configuration that defines the number of
* priority bits matches the number of priority bits actually queried
* from the hardware. */
configASSERT( ( portMAX_PRIGROUP_BITS - ulMaxPRIGROUPValue ) == configPRIO_BITS );
configASSERT( ulImplementedPrioBits == configPRIO_BITS );
}
#endif

@ -266,5 +266,4 @@ void prvSetupTimerInterrupt( void )
/* Configure SysTick to interrupt at the requested rate. */
*( portNVIC_SYSTICK_LOAD ) = ( configCPU_CLOCK_HZ / configTICK_RATE_HZ ) - 1UL;
*( portNVIC_SYSTICK_CTRL ) = portNVIC_SYSTICK_CLK | portNVIC_SYSTICK_INT | portNVIC_SYSTICK_ENABLE;
}
/*-----------------------------------------------------------*/
}
Loading…
Cancel
Save