Add the common demo files to the MicroBlaze project - this directory will be removed prior to release.
parent
53d52c0cd3
commit
be9b7e82c8
@ -0,0 +1,308 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Creates six tasks that operate on three queues as follows:
|
||||
*
|
||||
* The first two tasks send and receive an incrementing number to/from a queue.
|
||||
* One task acts as a producer and the other as the consumer. The consumer is a
|
||||
* higher priority than the producer and is set to block on queue reads. The queue
|
||||
* only has space for one item - as soon as the producer posts a message on the
|
||||
* queue the consumer will unblock, pre-empt the producer, and remove the item.
|
||||
*
|
||||
* The second two tasks work the other way around. Again the queue used only has
|
||||
* enough space for one item. This time the consumer has a lower priority than the
|
||||
* producer. The producer will try to post on the queue blocking when the queue is
|
||||
* full. When the consumer wakes it will remove the item from the queue, causing
|
||||
* the producer to unblock, pre-empt the consumer, and immediately re-fill the
|
||||
* queue.
|
||||
*
|
||||
* The last two tasks use the same queue producer and consumer functions. This time the queue has
|
||||
* enough space for lots of items and the tasks operate at the same priority. The
|
||||
* producer will execute, placing items into the queue. The consumer will start
|
||||
* executing when either the queue becomes full (causing the producer to block) or
|
||||
* a context switch occurs (tasks of the same priority will time slice).
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
Changes from V4.1.1
|
||||
|
||||
+ The second set of tasks were created the wrong way around. This has been
|
||||
corrected.
|
||||
*/
|
||||
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Scheduler include files. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "queue.h"
|
||||
|
||||
/* Demo program include files. */
|
||||
#include "BlockQ.h"
|
||||
|
||||
#define blckqSTACK_SIZE configMINIMAL_STACK_SIZE
|
||||
#define blckqNUM_TASK_SETS ( 3 )
|
||||
|
||||
/* Structure used to pass parameters to the blocking queue tasks. */
|
||||
typedef struct BLOCKING_QUEUE_PARAMETERS
|
||||
{
|
||||
xQueueHandle xQueue; /*< The queue to be used by the task. */
|
||||
portTickType xBlockTime; /*< The block time to use on queue reads/writes. */
|
||||
volatile short *psCheckVariable; /*< Incremented on each successful cycle to check the task is still running. */
|
||||
} xBlockingQueueParameters;
|
||||
|
||||
/* Task function that creates an incrementing number and posts it on a queue. */
|
||||
static portTASK_FUNCTION_PROTO( vBlockingQueueProducer, pvParameters );
|
||||
|
||||
/* Task function that removes the incrementing number from a queue and checks that
|
||||
it is the expected number. */
|
||||
static portTASK_FUNCTION_PROTO( vBlockingQueueConsumer, pvParameters );
|
||||
|
||||
/* Variables which are incremented each time an item is removed from a queue, and
|
||||
found to be the expected value.
|
||||
These are used to check that the tasks are still running. */
|
||||
static volatile short sBlockingConsumerCount[ blckqNUM_TASK_SETS ] = { ( unsigned short ) 0, ( unsigned short ) 0, ( unsigned short ) 0 };
|
||||
|
||||
/* Variable which are incremented each time an item is posted on a queue. These
|
||||
are used to check that the tasks are still running. */
|
||||
static volatile short sBlockingProducerCount[ blckqNUM_TASK_SETS ] = { ( unsigned short ) 0, ( unsigned short ) 0, ( unsigned short ) 0 };
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vStartBlockingQueueTasks( unsigned portBASE_TYPE uxPriority )
|
||||
{
|
||||
xBlockingQueueParameters *pxQueueParameters1, *pxQueueParameters2;
|
||||
xBlockingQueueParameters *pxQueueParameters3, *pxQueueParameters4;
|
||||
xBlockingQueueParameters *pxQueueParameters5, *pxQueueParameters6;
|
||||
const unsigned portBASE_TYPE uxQueueSize1 = 1, uxQueueSize5 = 5;
|
||||
const portTickType xBlockTime = ( portTickType ) 1000 / portTICK_RATE_MS;
|
||||
const portTickType xDontBlock = ( portTickType ) 0;
|
||||
|
||||
/* Create the first two tasks as described at the top of the file. */
|
||||
|
||||
/* First create the structure used to pass parameters to the consumer tasks. */
|
||||
pxQueueParameters1 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
|
||||
|
||||
/* Create the queue used by the first two tasks to pass the incrementing number.
|
||||
Pass a pointer to the queue in the parameter structure. */
|
||||
pxQueueParameters1->xQueue = xQueueCreate( uxQueueSize1, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
|
||||
|
||||
/* The consumer is created first so gets a block time as described above. */
|
||||
pxQueueParameters1->xBlockTime = xBlockTime;
|
||||
|
||||
/* Pass in the variable that this task is going to increment so we can check it
|
||||
is still running. */
|
||||
pxQueueParameters1->psCheckVariable = &( sBlockingConsumerCount[ 0 ] );
|
||||
|
||||
/* Create the structure used to pass parameters to the producer task. */
|
||||
pxQueueParameters2 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
|
||||
|
||||
/* Pass the queue to this task also, using the parameter structure. */
|
||||
pxQueueParameters2->xQueue = pxQueueParameters1->xQueue;
|
||||
|
||||
/* The producer is not going to block - as soon as it posts the consumer will
|
||||
wake and remove the item so the producer should always have room to post. */
|
||||
pxQueueParameters2->xBlockTime = xDontBlock;
|
||||
|
||||
/* Pass in the variable that this task is going to increment so we can check
|
||||
it is still running. */
|
||||
pxQueueParameters2->psCheckVariable = &( sBlockingProducerCount[ 0 ] );
|
||||
|
||||
|
||||
/* Note the producer has a lower priority than the consumer when the tasks are
|
||||
spawned. */
|
||||
xTaskCreate( vBlockingQueueConsumer, ( signed char * ) "QConsB1", blckqSTACK_SIZE, ( void * ) pxQueueParameters1, uxPriority, NULL );
|
||||
xTaskCreate( vBlockingQueueProducer, ( signed char * ) "QProdB2", blckqSTACK_SIZE, ( void * ) pxQueueParameters2, tskIDLE_PRIORITY, NULL );
|
||||
|
||||
|
||||
|
||||
/* Create the second two tasks as described at the top of the file. This uses
|
||||
the same mechanism but reverses the task priorities. */
|
||||
|
||||
pxQueueParameters3 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
|
||||
pxQueueParameters3->xQueue = xQueueCreate( uxQueueSize1, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
|
||||
pxQueueParameters3->xBlockTime = xDontBlock;
|
||||
pxQueueParameters3->psCheckVariable = &( sBlockingProducerCount[ 1 ] );
|
||||
|
||||
pxQueueParameters4 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
|
||||
pxQueueParameters4->xQueue = pxQueueParameters3->xQueue;
|
||||
pxQueueParameters4->xBlockTime = xBlockTime;
|
||||
pxQueueParameters4->psCheckVariable = &( sBlockingConsumerCount[ 1 ] );
|
||||
|
||||
xTaskCreate( vBlockingQueueConsumer, ( signed char * ) "QProdB3", blckqSTACK_SIZE, ( void * ) pxQueueParameters3, tskIDLE_PRIORITY, NULL );
|
||||
xTaskCreate( vBlockingQueueProducer, ( signed char * ) "QConsB4", blckqSTACK_SIZE, ( void * ) pxQueueParameters4, uxPriority, NULL );
|
||||
|
||||
|
||||
|
||||
/* Create the last two tasks as described above. The mechanism is again just
|
||||
the same. This time both parameter structures are given a block time. */
|
||||
pxQueueParameters5 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
|
||||
pxQueueParameters5->xQueue = xQueueCreate( uxQueueSize5, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
|
||||
pxQueueParameters5->xBlockTime = xBlockTime;
|
||||
pxQueueParameters5->psCheckVariable = &( sBlockingProducerCount[ 2 ] );
|
||||
|
||||
pxQueueParameters6 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
|
||||
pxQueueParameters6->xQueue = pxQueueParameters5->xQueue;
|
||||
pxQueueParameters6->xBlockTime = xBlockTime;
|
||||
pxQueueParameters6->psCheckVariable = &( sBlockingConsumerCount[ 2 ] );
|
||||
|
||||
xTaskCreate( vBlockingQueueProducer, ( signed char * ) "QProdB5", blckqSTACK_SIZE, ( void * ) pxQueueParameters5, tskIDLE_PRIORITY, NULL );
|
||||
xTaskCreate( vBlockingQueueConsumer, ( signed char * ) "QConsB6", blckqSTACK_SIZE, ( void * ) pxQueueParameters6, tskIDLE_PRIORITY, NULL );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vBlockingQueueProducer, pvParameters )
|
||||
{
|
||||
unsigned short usValue = 0;
|
||||
xBlockingQueueParameters *pxQueueParameters;
|
||||
short sErrorEverOccurred = pdFALSE;
|
||||
|
||||
pxQueueParameters = ( xBlockingQueueParameters * ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
if( xQueueSend( pxQueueParameters->xQueue, ( void * ) &usValue, pxQueueParameters->xBlockTime ) != pdPASS )
|
||||
{
|
||||
sErrorEverOccurred = pdTRUE;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* We have successfully posted a message, so increment the variable
|
||||
used to check we are still running. */
|
||||
if( sErrorEverOccurred == pdFALSE )
|
||||
{
|
||||
( *pxQueueParameters->psCheckVariable )++;
|
||||
}
|
||||
|
||||
/* Increment the variable we are going to post next time round. The
|
||||
consumer will expect the numbers to follow in numerical order. */
|
||||
++usValue;
|
||||
}
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vBlockingQueueConsumer, pvParameters )
|
||||
{
|
||||
unsigned short usData, usExpectedValue = 0;
|
||||
xBlockingQueueParameters *pxQueueParameters;
|
||||
short sErrorEverOccurred = pdFALSE;
|
||||
|
||||
pxQueueParameters = ( xBlockingQueueParameters * ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
if( xQueueReceive( pxQueueParameters->xQueue, &usData, pxQueueParameters->xBlockTime ) == pdPASS )
|
||||
{
|
||||
if( usData != usExpectedValue )
|
||||
{
|
||||
/* Catch-up. */
|
||||
usExpectedValue = usData;
|
||||
|
||||
sErrorEverOccurred = pdTRUE;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* We have successfully received a message, so increment the
|
||||
variable used to check we are still running. */
|
||||
if( sErrorEverOccurred == pdFALSE )
|
||||
{
|
||||
( *pxQueueParameters->psCheckVariable )++;
|
||||
}
|
||||
|
||||
/* Increment the value we expect to remove from the queue next time
|
||||
round. */
|
||||
++usExpectedValue;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* This is called to check that all the created tasks are still running. */
|
||||
portBASE_TYPE xAreBlockingQueuesStillRunning( void )
|
||||
{
|
||||
static short sLastBlockingConsumerCount[ blckqNUM_TASK_SETS ] = { ( unsigned short ) 0, ( unsigned short ) 0, ( unsigned short ) 0 };
|
||||
static short sLastBlockingProducerCount[ blckqNUM_TASK_SETS ] = { ( unsigned short ) 0, ( unsigned short ) 0, ( unsigned short ) 0 };
|
||||
portBASE_TYPE xReturn = pdPASS, xTasks;
|
||||
|
||||
/* Not too worried about mutual exclusion on these variables as they are 16
|
||||
bits and we are only reading them. We also only care to see if they have
|
||||
changed or not.
|
||||
|
||||
Loop through each check variable to and return pdFALSE if any are found not
|
||||
to have changed since the last call. */
|
||||
|
||||
for( xTasks = 0; xTasks < blckqNUM_TASK_SETS; xTasks++ )
|
||||
{
|
||||
if( sBlockingConsumerCount[ xTasks ] == sLastBlockingConsumerCount[ xTasks ] )
|
||||
{
|
||||
xReturn = pdFALSE;
|
||||
}
|
||||
sLastBlockingConsumerCount[ xTasks ] = sBlockingConsumerCount[ xTasks ];
|
||||
|
||||
|
||||
if( sBlockingProducerCount[ xTasks ] == sLastBlockingProducerCount[ xTasks ] )
|
||||
{
|
||||
xReturn = pdFALSE;
|
||||
}
|
||||
sLastBlockingProducerCount[ xTasks ] = sBlockingProducerCount[ xTasks ];
|
||||
}
|
||||
|
||||
return xReturn;
|
||||
}
|
||||
|
@ -0,0 +1,572 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Tests the extra queue functionality introduced in FreeRTOS.org V4.5.0 -
|
||||
* including xQueueSendToFront(), xQueueSendToBack(), xQueuePeek() and
|
||||
* mutex behaviour.
|
||||
*
|
||||
* See the comments above the prvSendFrontAndBackTest() and
|
||||
* prvLowPriorityMutexTask() prototypes below for more information.
|
||||
*/
|
||||
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Scheduler include files. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "queue.h"
|
||||
#include "semphr.h"
|
||||
|
||||
/* Demo program include files. */
|
||||
#include "GenQTest.h"
|
||||
|
||||
#define genqQUEUE_LENGTH ( 5 )
|
||||
#define genqNO_BLOCK ( 0 )
|
||||
|
||||
#define genqMUTEX_LOW_PRIORITY ( tskIDLE_PRIORITY )
|
||||
#define genqMUTEX_TEST_PRIORITY ( tskIDLE_PRIORITY + 1 )
|
||||
#define genqMUTEX_MEDIUM_PRIORITY ( tskIDLE_PRIORITY + 2 )
|
||||
#define genqMUTEX_HIGH_PRIORITY ( tskIDLE_PRIORITY + 3 )
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
* Tests the behaviour of the xQueueSendToFront() and xQueueSendToBack()
|
||||
* macros by using both to fill a queue, then reading from the queue to
|
||||
* check the resultant queue order is as expected. Queue data is also
|
||||
* peeked.
|
||||
*/
|
||||
static void prvSendFrontAndBackTest( void *pvParameters );
|
||||
|
||||
/*
|
||||
* The following three tasks are used to demonstrate the mutex behaviour.
|
||||
* Each task is given a different priority to demonstrate the priority
|
||||
* inheritance mechanism.
|
||||
*
|
||||
* The low priority task obtains a mutex. After this a high priority task
|
||||
* attempts to obtain the same mutex, causing its priority to be inherited
|
||||
* by the low priority task. The task with the inherited high priority then
|
||||
* resumes a medium priority task to ensure it is not blocked by the medium
|
||||
* priority task while it holds the inherited high priority. Once the mutex
|
||||
* is returned the task with the inherited priority returns to its original
|
||||
* low priority, and is therefore immediately preempted by first the high
|
||||
* priority task and then the medium prioroity task before it can continue.
|
||||
*/
|
||||
static void prvLowPriorityMutexTask( void *pvParameters );
|
||||
static void prvMediumPriorityMutexTask( void *pvParameters );
|
||||
static void prvHighPriorityMutexTask( void *pvParameters );
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* Flag that will be latched to pdTRUE should any unexpected behaviour be
|
||||
detected in any of the tasks. */
|
||||
static portBASE_TYPE xErrorDetected = pdFALSE;
|
||||
|
||||
/* Counters that are incremented on each cycle of a test. This is used to
|
||||
detect a stalled task - a test that is no longer running. */
|
||||
static volatile unsigned portLONG ulLoopCounter = 0;
|
||||
static volatile unsigned portLONG ulLoopCounter2 = 0;
|
||||
|
||||
/* The variable that is guarded by the mutex in the mutex demo tasks. */
|
||||
static volatile unsigned portLONG ulGuardedVariable = 0;
|
||||
|
||||
/* Handles used in the mutext test to suspend and resume the high and medium
|
||||
priority mutex test tasks. */
|
||||
static xTaskHandle xHighPriorityMutexTask, xMediumPriorityMutexTask;
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vStartGenericQueueTasks( unsigned portBASE_TYPE uxPriority )
|
||||
{
|
||||
xQueueHandle xQueue;
|
||||
xSemaphoreHandle xMutex;
|
||||
|
||||
/* Create the queue that we are going to use for the
|
||||
prvSendFrontAndBackTest demo. */
|
||||
xQueue = xQueueCreate( genqQUEUE_LENGTH, sizeof( unsigned portLONG ) );
|
||||
|
||||
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
|
||||
in use. The queue registry is provided as a means for kernel aware
|
||||
debuggers to locate queues and has no purpose if a kernel aware debugger
|
||||
is not being used. The call to vQueueAddToRegistry() will be removed
|
||||
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
|
||||
defined to be less than 1. */
|
||||
vQueueAddToRegistry( xQueue, ( signed portCHAR * ) "Gen_Queue_Test" );
|
||||
|
||||
/* Create the demo task and pass it the queue just created. We are
|
||||
passing the queue handle by value so it does not matter that it is
|
||||
declared on the stack here. */
|
||||
xTaskCreate( prvSendFrontAndBackTest, ( signed portCHAR * )"GenQ", configMINIMAL_STACK_SIZE, ( void * ) xQueue, uxPriority, NULL );
|
||||
|
||||
/* Create the mutex used by the prvMutexTest task. */
|
||||
xMutex = xSemaphoreCreateMutex();
|
||||
|
||||
/* vQueueAddToRegistry() adds the mutex to the registry, if one is
|
||||
in use. The registry is provided as a means for kernel aware
|
||||
debuggers to locate mutexes and has no purpose if a kernel aware debugger
|
||||
is not being used. The call to vQueueAddToRegistry() will be removed
|
||||
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
|
||||
defined to be less than 1. */
|
||||
vQueueAddToRegistry( ( xQueueHandle ) xMutex, ( signed portCHAR * ) "Gen_Queue_Mutex" );
|
||||
|
||||
/* Create the mutex demo tasks and pass it the mutex just created. We are
|
||||
passing the mutex handle by value so it does not matter that it is declared
|
||||
on the stack here. */
|
||||
xTaskCreate( prvLowPriorityMutexTask, ( signed portCHAR * )"MuLow", configMINIMAL_STACK_SIZE, ( void * ) xMutex, genqMUTEX_LOW_PRIORITY, NULL );
|
||||
xTaskCreate( prvMediumPriorityMutexTask, ( signed portCHAR * )"MuMed", configMINIMAL_STACK_SIZE, NULL, genqMUTEX_MEDIUM_PRIORITY, &xMediumPriorityMutexTask );
|
||||
xTaskCreate( prvHighPriorityMutexTask, ( signed portCHAR * )"MuHigh", configMINIMAL_STACK_SIZE, ( void * ) xMutex, genqMUTEX_HIGH_PRIORITY, &xHighPriorityMutexTask );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvSendFrontAndBackTest( void *pvParameters )
|
||||
{
|
||||
unsigned portLONG ulData, ulData2;
|
||||
xQueueHandle xQueue;
|
||||
|
||||
#ifdef USE_STDIO
|
||||
void vPrintDisplayMessage( const portCHAR * const * ppcMessageToSend );
|
||||
|
||||
const portCHAR * const pcTaskStartMsg = "Queue SendToFront/SendToBack/Peek test started.\r\n";
|
||||
|
||||
/* Queue a message for printing to say the task has started. */
|
||||
vPrintDisplayMessage( &pcTaskStartMsg );
|
||||
#endif
|
||||
|
||||
xQueue = ( xQueueHandle ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* The queue is empty, so sending an item to the back of the queue
|
||||
should have the same efect as sending it to the front of the queue.
|
||||
|
||||
First send to the front and check everything is as expected. */
|
||||
xQueueSendToFront( xQueue, ( void * ) &ulLoopCounter, genqNO_BLOCK );
|
||||
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 1 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( xQueueReceive( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* The data we sent to the queue should equal the data we just received
|
||||
from the queue. */
|
||||
if( ulLoopCounter != ulData )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* Then do the same, sending the data to the back, checking everything
|
||||
is as expected. */
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 0 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
xQueueSendToBack( xQueue, ( void * ) &ulLoopCounter, genqNO_BLOCK );
|
||||
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 1 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( xQueueReceive( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 0 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* The data we sent to the queue should equal the data we just received
|
||||
from the queue. */
|
||||
if( ulLoopCounter != ulData )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
/* Place 2, 3, 4 into the queue, adding items to the back of the queue. */
|
||||
for( ulData = 2; ulData < 5; ulData++ )
|
||||
{
|
||||
xQueueSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK );
|
||||
}
|
||||
|
||||
/* Now the order in the queue should be 2, 3, 4, with 2 being the first
|
||||
thing to be read out. Now add 1 then 0 to the front of the queue. */
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 3 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
ulData = 1;
|
||||
xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK );
|
||||
ulData = 0;
|
||||
xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK );
|
||||
|
||||
/* Now the queue should be full, and when we read the data out we
|
||||
should receive 0, 1, 2, 3, 4. */
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 5 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( xQueueSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
|
||||
/* Check the data we read out is in the expected order. */
|
||||
for( ulData = 0; ulData < genqQUEUE_LENGTH; ulData++ )
|
||||
{
|
||||
/* Try peeking the data first. */
|
||||
if( xQueuePeek( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( ulData != ulData2 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
|
||||
/* Now try receiving the data for real. The value should be the
|
||||
same. Clobber the value first so we know we really received it. */
|
||||
ulData2 = ~ulData2;
|
||||
if( xQueueReceive( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( ulData != ulData2 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
}
|
||||
|
||||
/* The queue should now be empty again. */
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 0 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
|
||||
|
||||
/* Our queue is empty once more, add 10, 11 to the back. */
|
||||
ulData = 10;
|
||||
if( xQueueSend( xQueue, &ulData, genqNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
ulData = 11;
|
||||
if( xQueueSend( xQueue, &ulData, genqNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 2 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* Now we should have 10, 11 in the queue. Add 7, 8, 9 to the
|
||||
front. */
|
||||
for( ulData = 9; ulData >= 7; ulData-- )
|
||||
{
|
||||
if( xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
}
|
||||
|
||||
/* Now check that the queue is full, and that receiving data provides
|
||||
the expected sequence of 7, 8, 9, 10, 11. */
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 5 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( xQueueSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
|
||||
/* Check the data we read out is in the expected order. */
|
||||
for( ulData = 7; ulData < ( 7 + genqQUEUE_LENGTH ); ulData++ )
|
||||
{
|
||||
if( xQueueReceive( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( ulData != ulData2 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
}
|
||||
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 0 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
ulLoopCounter++;
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvLowPriorityMutexTask( void *pvParameters )
|
||||
{
|
||||
xSemaphoreHandle xMutex = ( xSemaphoreHandle ) pvParameters;
|
||||
|
||||
#ifdef USE_STDIO
|
||||
void vPrintDisplayMessage( const portCHAR * const * ppcMessageToSend );
|
||||
|
||||
const portCHAR * const pcTaskStartMsg = "Mutex with priority inheritance test started.\r\n";
|
||||
|
||||
/* Queue a message for printing to say the task has started. */
|
||||
vPrintDisplayMessage( &pcTaskStartMsg );
|
||||
#endif
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Take the mutex. It should be available now. */
|
||||
if( xSemaphoreTake( xMutex, genqNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* Set our guarded variable to a known start value. */
|
||||
ulGuardedVariable = 0;
|
||||
|
||||
/* Our priority should be as per that assigned when the task was
|
||||
created. */
|
||||
if( uxTaskPriorityGet( NULL ) != genqMUTEX_LOW_PRIORITY )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* Now unsuspend the high priority task. This will attempt to take the
|
||||
mutex, and block when it finds it cannot obtain it. */
|
||||
vTaskResume( xHighPriorityMutexTask );
|
||||
|
||||
/* We should now have inherited the prioritoy of the high priority task,
|
||||
as by now it will have attempted to get the mutex. */
|
||||
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* We can attempt to set our priority to the test priority - between the
|
||||
idle priority and the medium/high test priorities, but our actual
|
||||
prioroity should remain at the high priority. */
|
||||
vTaskPrioritySet( NULL, genqMUTEX_TEST_PRIORITY );
|
||||
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* Now unsuspend the medium priority task. This should not run as our
|
||||
inherited priority is above that of the medium priority task. */
|
||||
vTaskResume( xMediumPriorityMutexTask );
|
||||
|
||||
/* If the did run then it will have incremented our guarded variable. */
|
||||
if( ulGuardedVariable != 0 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* When we give back the semaphore our priority should be disinherited
|
||||
back to the priority to which we attempted to set ourselves. This means
|
||||
that when the high priority task next blocks, the medium priority task
|
||||
should execute and increment the guarded variable. When we next run
|
||||
both the high and medium priority tasks will have been suspended again. */
|
||||
if( xSemaphoreGive( xMutex ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* Check that the guarded variable did indeed increment... */
|
||||
if( ulGuardedVariable != 1 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* ... and that our priority has been disinherited to
|
||||
genqMUTEX_TEST_PRIORITY. */
|
||||
if( uxTaskPriorityGet( NULL ) != genqMUTEX_TEST_PRIORITY )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* Set our priority back to our original priority ready for the next
|
||||
loop around this test. */
|
||||
vTaskPrioritySet( NULL, genqMUTEX_LOW_PRIORITY );
|
||||
|
||||
/* Just to show we are still running. */
|
||||
ulLoopCounter2++;
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvMediumPriorityMutexTask( void *pvParameters )
|
||||
{
|
||||
( void ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* The medium priority task starts by suspending itself. The low
|
||||
priority task will unsuspend this task when required. */
|
||||
vTaskSuspend( NULL );
|
||||
|
||||
/* When this task unsuspends all it does is increment the guarded
|
||||
variable, this is so the low priority task knows that it has
|
||||
executed. */
|
||||
ulGuardedVariable++;
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvHighPriorityMutexTask( void *pvParameters )
|
||||
{
|
||||
xSemaphoreHandle xMutex = ( xSemaphoreHandle ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* The high priority task starts by suspending itself. The low
|
||||
priority task will unsuspend this task when required. */
|
||||
vTaskSuspend( NULL );
|
||||
|
||||
/* When this task unsuspends all it does is attempt to obtain
|
||||
the mutex. It should find the mutex is not available so a
|
||||
block time is specified. */
|
||||
if( xSemaphoreTake( xMutex, portMAX_DELAY ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* When we eventually obtain the mutex we just give it back then
|
||||
return to suspend ready for the next test. */
|
||||
if( xSemaphoreGive( xMutex ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* This is called to check that all the created tasks are still running. */
|
||||
portBASE_TYPE xAreGenericQueueTasksStillRunning( void )
|
||||
{
|
||||
static unsigned portLONG ulLastLoopCounter = 0, ulLastLoopCounter2 = 0;
|
||||
|
||||
/* If the demo task is still running then we expect the loopcounters to
|
||||
have incremented since this function was last called. */
|
||||
if( ulLastLoopCounter == ulLoopCounter )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( ulLastLoopCounter2 == ulLoopCounter2 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
ulLastLoopCounter = ulLoopCounter;
|
||||
ulLastLoopCounter2 = ulLoopCounter2;
|
||||
|
||||
/* Errors detected in the task itself will have latched xErrorDetected
|
||||
to true. */
|
||||
|
||||
return !xErrorDetected;
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,246 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This version of PollQ. c is for use on systems that have limited stack
|
||||
* space and no display facilities. The complete version can be found in
|
||||
* the Demo/Common/Full directory.
|
||||
*
|
||||
* Creates two tasks that communicate over a single queue. One task acts as a
|
||||
* producer, the other a consumer.
|
||||
*
|
||||
* The producer loops for three iteration, posting an incrementing number onto the
|
||||
* queue each cycle. It then delays for a fixed period before doing exactly the
|
||||
* same again.
|
||||
*
|
||||
* The consumer loops emptying the queue. Each item removed from the queue is
|
||||
* checked to ensure it contains the expected value. When the queue is empty it
|
||||
* blocks for a fixed period, then does the same again.
|
||||
*
|
||||
* All queue access is performed without blocking. The consumer completely empties
|
||||
* the queue each time it runs so the producer should never find the queue full.
|
||||
*
|
||||
* An error is flagged if the consumer obtains an unexpected value or the producer
|
||||
* find the queue is full.
|
||||
*/
|
||||
|
||||
/*
|
||||
Changes from V2.0.0
|
||||
|
||||
+ Delay periods are now specified using variables and constants of
|
||||
portTickType rather than unsigned long.
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Scheduler include files. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "queue.h"
|
||||
|
||||
/* Demo program include files. */
|
||||
#include "PollQ.h"
|
||||
|
||||
#define pollqSTACK_SIZE configMINIMAL_STACK_SIZE
|
||||
#define pollqQUEUE_SIZE ( 10 )
|
||||
#define pollqPRODUCER_DELAY ( ( portTickType ) 200 / portTICK_RATE_MS )
|
||||
#define pollqCONSUMER_DELAY ( pollqPRODUCER_DELAY - ( portTickType ) ( 20 / portTICK_RATE_MS ) )
|
||||
#define pollqNO_DELAY ( ( portTickType ) 0 )
|
||||
#define pollqVALUES_TO_PRODUCE ( ( signed portBASE_TYPE ) 3 )
|
||||
#define pollqINITIAL_VALUE ( ( signed portBASE_TYPE ) 0 )
|
||||
|
||||
/* The task that posts the incrementing number onto the queue. */
|
||||
static portTASK_FUNCTION_PROTO( vPolledQueueProducer, pvParameters );
|
||||
|
||||
/* The task that empties the queue. */
|
||||
static portTASK_FUNCTION_PROTO( vPolledQueueConsumer, pvParameters );
|
||||
|
||||
/* Variables that are used to check that the tasks are still running with no
|
||||
errors. */
|
||||
static volatile signed portBASE_TYPE xPollingConsumerCount = pollqINITIAL_VALUE, xPollingProducerCount = pollqINITIAL_VALUE;
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vStartPolledQueueTasks( unsigned portBASE_TYPE uxPriority )
|
||||
{
|
||||
static xQueueHandle xPolledQueue;
|
||||
|
||||
/* Create the queue used by the producer and consumer. */
|
||||
xPolledQueue = xQueueCreate( pollqQUEUE_SIZE, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
|
||||
|
||||
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
|
||||
in use. The queue registry is provided as a means for kernel aware
|
||||
debuggers to locate queues and has no purpose if a kernel aware debugger
|
||||
is not being used. The call to vQueueAddToRegistry() will be removed
|
||||
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
|
||||
defined to be less than 1. */
|
||||
vQueueAddToRegistry( xPolledQueue, ( signed char * ) "Poll_Test_Queue" );
|
||||
|
||||
/* Spawn the producer and consumer. */
|
||||
xTaskCreate( vPolledQueueConsumer, ( signed char * ) "QConsNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, ( xTaskHandle * ) NULL );
|
||||
xTaskCreate( vPolledQueueProducer, ( signed char * ) "QProdNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, ( xTaskHandle * ) NULL );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vPolledQueueProducer, pvParameters )
|
||||
{
|
||||
unsigned short usValue = ( unsigned short ) 0;
|
||||
signed portBASE_TYPE xError = pdFALSE, xLoop;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
for( xLoop = 0; xLoop < pollqVALUES_TO_PRODUCE; xLoop++ )
|
||||
{
|
||||
/* Send an incrementing number on the queue without blocking. */
|
||||
if( xQueueSend( *( ( xQueueHandle * ) pvParameters ), ( void * ) &usValue, pollqNO_DELAY ) != pdPASS )
|
||||
{
|
||||
/* We should never find the queue full so if we get here there
|
||||
has been an error. */
|
||||
xError = pdTRUE;
|
||||
}
|
||||
else
|
||||
{
|
||||
if( xError == pdFALSE )
|
||||
{
|
||||
/* If an error has ever been recorded we stop incrementing the
|
||||
check variable. */
|
||||
portENTER_CRITICAL();
|
||||
xPollingProducerCount++;
|
||||
portEXIT_CRITICAL();
|
||||
}
|
||||
|
||||
/* Update the value we are going to post next time around. */
|
||||
usValue++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Wait before we start posting again to ensure the consumer runs and
|
||||
empties the queue. */
|
||||
vTaskDelay( pollqPRODUCER_DELAY );
|
||||
}
|
||||
} /*lint !e818 Function prototype must conform to API. */
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vPolledQueueConsumer, pvParameters )
|
||||
{
|
||||
unsigned short usData, usExpectedValue = ( unsigned short ) 0;
|
||||
signed portBASE_TYPE xError = pdFALSE;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Loop until the queue is empty. */
|
||||
while( uxQueueMessagesWaiting( *( ( xQueueHandle * ) pvParameters ) ) )
|
||||
{
|
||||
if( xQueueReceive( *( ( xQueueHandle * ) pvParameters ), &usData, pollqNO_DELAY ) == pdPASS )
|
||||
{
|
||||
if( usData != usExpectedValue )
|
||||
{
|
||||
/* This is not what we expected to receive so an error has
|
||||
occurred. */
|
||||
xError = pdTRUE;
|
||||
|
||||
/* Catch-up to the value we received so our next expected
|
||||
value should again be correct. */
|
||||
usExpectedValue = usData;
|
||||
}
|
||||
else
|
||||
{
|
||||
if( xError == pdFALSE )
|
||||
{
|
||||
/* Only increment the check variable if no errors have
|
||||
occurred. */
|
||||
portENTER_CRITICAL();
|
||||
xPollingConsumerCount++;
|
||||
portEXIT_CRITICAL();
|
||||
}
|
||||
}
|
||||
|
||||
/* Next time round we would expect the number to be one higher. */
|
||||
usExpectedValue++;
|
||||
}
|
||||
}
|
||||
|
||||
/* Now the queue is empty we block, allowing the producer to place more
|
||||
items in the queue. */
|
||||
vTaskDelay( pollqCONSUMER_DELAY );
|
||||
}
|
||||
} /*lint !e818 Function prototype must conform to API. */
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* This is called to check that all the created tasks are still running with no errors. */
|
||||
portBASE_TYPE xArePollingQueuesStillRunning( void )
|
||||
{
|
||||
portBASE_TYPE xReturn;
|
||||
|
||||
/* Check both the consumer and producer poll count to check they have both
|
||||
been changed since out last trip round. We do not need a critical section
|
||||
around the check variables as this is called from a higher priority than
|
||||
the other tasks that access the same variables. */
|
||||
if( ( xPollingConsumerCount == pollqINITIAL_VALUE ) ||
|
||||
( xPollingProducerCount == pollqINITIAL_VALUE )
|
||||
)
|
||||
{
|
||||
xReturn = pdFALSE;
|
||||
}
|
||||
else
|
||||
{
|
||||
xReturn = pdTRUE;
|
||||
}
|
||||
|
||||
/* Set the check variables back down so we know if they have been
|
||||
incremented the next time around. */
|
||||
xPollingConsumerCount = pollqINITIAL_VALUE;
|
||||
xPollingProducerCount = pollqINITIAL_VALUE;
|
||||
|
||||
return xReturn;
|
||||
}
|
@ -0,0 +1,446 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
|
||||
/*
|
||||
* Tests the behaviour when data is peeked from a queue when there are
|
||||
* multiple tasks blocked on the queue.
|
||||
*/
|
||||
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Scheduler include files. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "queue.h"
|
||||
#include "semphr.h"
|
||||
|
||||
/* Demo program include files. */
|
||||
#include "QPeek.h"
|
||||
|
||||
#define qpeekQUEUE_LENGTH ( 5 )
|
||||
#define qpeekNO_BLOCK ( 0 )
|
||||
#define qpeekSHORT_DELAY ( 10 )
|
||||
|
||||
#define qpeekLOW_PRIORITY ( tskIDLE_PRIORITY + 0 )
|
||||
#define qpeekMEDIUM_PRIORITY ( tskIDLE_PRIORITY + 1 )
|
||||
#define qpeekHIGH_PRIORITY ( tskIDLE_PRIORITY + 2 )
|
||||
#define qpeekHIGHEST_PRIORITY ( tskIDLE_PRIORITY + 3 )
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
* The following three tasks are used to demonstrate the peeking behaviour.
|
||||
* Each task is given a different priority to demonstrate the order in which
|
||||
* tasks are woken as data is peeked from a queue.
|
||||
*/
|
||||
static void prvLowPriorityPeekTask( void *pvParameters );
|
||||
static void prvMediumPriorityPeekTask( void *pvParameters );
|
||||
static void prvHighPriorityPeekTask( void *pvParameters );
|
||||
static void prvHighestPriorityPeekTask( void *pvParameters );
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* Flag that will be latched to pdTRUE should any unexpected behaviour be
|
||||
detected in any of the tasks. */
|
||||
static volatile portBASE_TYPE xErrorDetected = pdFALSE;
|
||||
|
||||
/* Counter that is incremented on each cycle of a test. This is used to
|
||||
detect a stalled task - a test that is no longer running. */
|
||||
static volatile unsigned portLONG ulLoopCounter = 0;
|
||||
|
||||
/* Handles to the test tasks. */
|
||||
xTaskHandle xMediumPriorityTask, xHighPriorityTask, xHighestPriorityTask;
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vStartQueuePeekTasks( void )
|
||||
{
|
||||
xQueueHandle xQueue;
|
||||
|
||||
/* Create the queue that we are going to use for the test/demo. */
|
||||
xQueue = xQueueCreate( qpeekQUEUE_LENGTH, sizeof( unsigned portLONG ) );
|
||||
|
||||
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
|
||||
in use. The queue registry is provided as a means for kernel aware
|
||||
debuggers to locate queues and has no purpose if a kernel aware debugger
|
||||
is not being used. The call to vQueueAddToRegistry() will be removed
|
||||
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
|
||||
defined to be less than 1. */
|
||||
vQueueAddToRegistry( xQueue, ( signed portCHAR * ) "QPeek_Test_Queue" );
|
||||
|
||||
/* Create the demo tasks and pass it the queue just created. We are
|
||||
passing the queue handle by value so it does not matter that it is declared
|
||||
on the stack here. */
|
||||
xTaskCreate( prvLowPriorityPeekTask, ( signed portCHAR * )"PeekL", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekLOW_PRIORITY, NULL );
|
||||
xTaskCreate( prvMediumPriorityPeekTask, ( signed portCHAR * )"PeekM", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekMEDIUM_PRIORITY, &xMediumPriorityTask );
|
||||
xTaskCreate( prvHighPriorityPeekTask, ( signed portCHAR * )"PeekH1", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekHIGH_PRIORITY, &xHighPriorityTask );
|
||||
xTaskCreate( prvHighestPriorityPeekTask, ( signed portCHAR * )"PeekH2", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekHIGHEST_PRIORITY, &xHighestPriorityTask );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvHighestPriorityPeekTask( void *pvParameters )
|
||||
{
|
||||
xQueueHandle xQueue = ( xQueueHandle ) pvParameters;
|
||||
unsigned portLONG ulValue;
|
||||
|
||||
#ifdef USE_STDIO
|
||||
{
|
||||
void vPrintDisplayMessage( const portCHAR * const * ppcMessageToSend );
|
||||
|
||||
const portCHAR * const pcTaskStartMsg = "Queue peek test started.\r\n";
|
||||
|
||||
/* Queue a message for printing to say the task has started. */
|
||||
vPrintDisplayMessage( &pcTaskStartMsg );
|
||||
}
|
||||
#endif
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Try peeking from the queue. The queue should be empty so we will
|
||||
block, allowing the high priority task to execute. */
|
||||
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
|
||||
{
|
||||
/* We expected to have received something by the time we unblock. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* When we reach here the high and medium priority tasks should still
|
||||
be blocked on the queue. We unblocked because the low priority task
|
||||
wrote a value to the queue, which we should have peeked. Peeking the
|
||||
data (rather than receiving it) will leave the data on the queue, so
|
||||
the high priority task should then have also been unblocked, but not
|
||||
yet executed. */
|
||||
if( ulValue != 0x11223344 )
|
||||
{
|
||||
/* We did not receive the expected value. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 1 )
|
||||
{
|
||||
/* The message should have been left on the queue. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* Now we are going to actually receive the data, so when the high
|
||||
priority task runs it will find the queue empty and return to the
|
||||
blocked state. */
|
||||
ulValue = 0;
|
||||
if( xQueueReceive( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
/* We expected to receive the value. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( ulValue != 0x11223344 )
|
||||
{
|
||||
/* We did not receive the expected value - which should have been
|
||||
the same value as was peeked. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* Now we will block again as the queue is once more empty. The low
|
||||
priority task can then execute again. */
|
||||
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
|
||||
{
|
||||
/* We expected to have received something by the time we unblock. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* When we get here the low priority task should have again written to the
|
||||
queue. */
|
||||
if( ulValue != 0x01234567 )
|
||||
{
|
||||
/* We did not receive the expected value. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 1 )
|
||||
{
|
||||
/* The message should have been left on the queue. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* We only peeked the data, so suspending ourselves now should enable
|
||||
the high priority task to also peek the data. The high priority task
|
||||
will have been unblocked when we peeked the data as we left the data
|
||||
in the queue. */
|
||||
vTaskSuspend( NULL );
|
||||
|
||||
|
||||
|
||||
/* This time we are going to do the same as the above test, but the
|
||||
high priority task is going to receive the data, rather than peek it.
|
||||
This means that the medium priority task should never peek the value. */
|
||||
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( ulValue != 0xaabbaabb )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
vTaskSuspend( NULL );
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvHighPriorityPeekTask( void *pvParameters )
|
||||
{
|
||||
xQueueHandle xQueue = ( xQueueHandle ) pvParameters;
|
||||
unsigned portLONG ulValue;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Try peeking from the queue. The queue should be empty so we will
|
||||
block, allowing the medium priority task to execute. Both the high
|
||||
and highest priority tasks will then be blocked on the queue. */
|
||||
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
|
||||
{
|
||||
/* We expected to have received something by the time we unblock. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* When we get here the highest priority task should have peeked the data
|
||||
(unblocking this task) then suspended (allowing this task to also peek
|
||||
the data). */
|
||||
if( ulValue != 0x01234567 )
|
||||
{
|
||||
/* We did not receive the expected value. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 1 )
|
||||
{
|
||||
/* The message should have been left on the queue. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* We only peeked the data, so suspending ourselves now should enable
|
||||
the medium priority task to also peek the data. The medium priority task
|
||||
will have been unblocked when we peeked the data as we left the data
|
||||
in the queue. */
|
||||
vTaskSuspend( NULL );
|
||||
|
||||
|
||||
/* This time we are going actually receive the value, so the medium
|
||||
priority task will never peek the data - we removed it from the queue. */
|
||||
if( xQueueReceive( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( ulValue != 0xaabbaabb )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
vTaskSuspend( NULL );
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvMediumPriorityPeekTask( void *pvParameters )
|
||||
{
|
||||
xQueueHandle xQueue = ( xQueueHandle ) pvParameters;
|
||||
unsigned portLONG ulValue;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Try peeking from the queue. The queue should be empty so we will
|
||||
block, allowing the low priority task to execute. The highest, high
|
||||
and medium priority tasks will then all be blocked on the queue. */
|
||||
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
|
||||
{
|
||||
/* We expected to have received something by the time we unblock. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* When we get here the high priority task should have peeked the data
|
||||
(unblocking this task) then suspended (allowing this task to also peek
|
||||
the data). */
|
||||
if( ulValue != 0x01234567 )
|
||||
{
|
||||
/* We did not receive the expected value. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 1 )
|
||||
{
|
||||
/* The message should have been left on the queue. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* Just so we know the test is still running. */
|
||||
ulLoopCounter++;
|
||||
|
||||
/* Now we can suspend ourselves so the low priority task can execute
|
||||
again. */
|
||||
vTaskSuspend( NULL );
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvLowPriorityPeekTask( void *pvParameters )
|
||||
{
|
||||
xQueueHandle xQueue = ( xQueueHandle ) pvParameters;
|
||||
unsigned portLONG ulValue;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Write some data to the queue. This should unblock the highest
|
||||
priority task that is waiting to peek data from the queue. */
|
||||
ulValue = 0x11223344;
|
||||
if( xQueueSendToBack( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
/* We were expecting the queue to be empty so we should not of
|
||||
had a problem writing to the queue. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* By the time we get here the data should have been removed from
|
||||
the queue. */
|
||||
if( uxQueueMessagesWaiting( xQueue ) != 0 )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* Write another value to the queue, again waking the highest priority
|
||||
task that is blocked on the queue. */
|
||||
ulValue = 0x01234567;
|
||||
if( xQueueSendToBack( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
/* We were expecting the queue to be empty so we should not of
|
||||
had a problem writing to the queue. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* All the other tasks should now have successfully peeked the data.
|
||||
The data is still in the queue so we should be able to receive it. */
|
||||
ulValue = 0;
|
||||
if( xQueueReceive( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
/* We expected to receive the data. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
if( ulValue != 0x01234567 )
|
||||
{
|
||||
/* We did not receive the expected value. */
|
||||
}
|
||||
|
||||
/* Lets just delay a while as this is an intensive test as we don't
|
||||
want to starve other tests of processing time. */
|
||||
vTaskDelay( qpeekSHORT_DELAY );
|
||||
|
||||
/* Unsuspend the other tasks so we can repeat the test - this time
|
||||
however not all the other tasks will peek the data as the high
|
||||
priority task is actually going to remove it from the queue. Send
|
||||
to front is used just to be different. As the queue is empty it
|
||||
makes no difference to the result. */
|
||||
vTaskResume( xMediumPriorityTask );
|
||||
vTaskResume( xHighPriorityTask );
|
||||
vTaskResume( xHighestPriorityTask );
|
||||
|
||||
ulValue = 0xaabbaabb;
|
||||
if( xQueueSendToFront( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
|
||||
{
|
||||
/* We were expecting the queue to be empty so we should not of
|
||||
had a problem writing to the queue. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* This time we should find that the queue is empty. The high priority
|
||||
task actually removed the data rather than just peeking it. */
|
||||
if( xQueuePeek( xQueue, &ulValue, qpeekNO_BLOCK ) != errQUEUE_EMPTY )
|
||||
{
|
||||
/* We expected to receive the data. */
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
/* Unsuspend the highest and high priority tasks so we can go back
|
||||
and repeat the whole thing. The medium priority task should not be
|
||||
suspended as it was not able to peek the data in this last case. */
|
||||
vTaskResume( xHighPriorityTask );
|
||||
vTaskResume( xHighestPriorityTask );
|
||||
|
||||
/* Lets just delay a while as this is an intensive test as we don't
|
||||
want to starve other tests of processing time. */
|
||||
vTaskDelay( qpeekSHORT_DELAY );
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* This is called to check that all the created tasks are still running. */
|
||||
portBASE_TYPE xAreQueuePeekTasksStillRunning( void )
|
||||
{
|
||||
static unsigned portLONG ulLastLoopCounter = 0;
|
||||
|
||||
/* If the demo task is still running then we expect the loopcounter to
|
||||
have incremented since this function was last called. */
|
||||
if( ulLastLoopCounter == ulLoopCounter )
|
||||
{
|
||||
xErrorDetected = pdTRUE;
|
||||
}
|
||||
|
||||
ulLastLoopCounter = ulLoopCounter;
|
||||
|
||||
/* Errors detected in the task itself will have latched xErrorDetected
|
||||
to true. */
|
||||
|
||||
return !xErrorDetected;
|
||||
}
|
||||
|
@ -0,0 +1,493 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
/*
|
||||
* This file contains some test scenarios that ensure tasks do not exit queue
|
||||
* send or receive functions prematurely. A description of the tests is
|
||||
* included within the code.
|
||||
*/
|
||||
|
||||
/* Kernel includes. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "queue.h"
|
||||
|
||||
/* Demo includes. */
|
||||
#include "blocktim.h"
|
||||
|
||||
/* Task priorities. Allow these to be overridden. */
|
||||
#ifndef bktPRIMARY_PRIORITY
|
||||
#define bktPRIMARY_PRIORITY ( configMAX_PRIORITIES - 3 )
|
||||
#endif
|
||||
|
||||
#ifndef bktSECONDARY_PRIORITY
|
||||
#define bktSECONDARY_PRIORITY ( configMAX_PRIORITIES - 4 )
|
||||
#endif
|
||||
|
||||
/* Task behaviour. */
|
||||
#define bktQUEUE_LENGTH ( 5 )
|
||||
#define bktSHORT_WAIT ( ( ( portTickType ) 20 ) / portTICK_RATE_MS )
|
||||
#define bktPRIMARY_BLOCK_TIME ( 10 )
|
||||
#define bktALLOWABLE_MARGIN ( 15 )
|
||||
#define bktTIME_TO_BLOCK ( 175 )
|
||||
#define bktDONT_BLOCK ( ( portTickType ) 0 )
|
||||
#define bktRUN_INDICATOR ( ( unsigned portBASE_TYPE ) 0x55 )
|
||||
|
||||
/* The queue on which the tasks block. */
|
||||
static xQueueHandle xTestQueue;
|
||||
|
||||
/* Handle to the secondary task is required by the primary task for calls
|
||||
to vTaskSuspend/Resume(). */
|
||||
static xTaskHandle xSecondary;
|
||||
|
||||
/* Used to ensure that tasks are still executing without error. */
|
||||
static volatile portBASE_TYPE xPrimaryCycles = 0, xSecondaryCycles = 0;
|
||||
static volatile portBASE_TYPE xErrorOccurred = pdFALSE;
|
||||
|
||||
/* Provides a simple mechanism for the primary task to know when the
|
||||
secondary task has executed. */
|
||||
static volatile unsigned portBASE_TYPE xRunIndicator;
|
||||
|
||||
/* The two test tasks. Their behaviour is commented within the files. */
|
||||
static void vPrimaryBlockTimeTestTask( void *pvParameters );
|
||||
static void vSecondaryBlockTimeTestTask( void *pvParameters );
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vCreateBlockTimeTasks( void )
|
||||
{
|
||||
/* Create the queue on which the two tasks block. */
|
||||
xTestQueue = xQueueCreate( bktQUEUE_LENGTH, sizeof( portBASE_TYPE ) );
|
||||
|
||||
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
|
||||
in use. The queue registry is provided as a means for kernel aware
|
||||
debuggers to locate queues and has no purpose if a kernel aware debugger
|
||||
is not being used. The call to vQueueAddToRegistry() will be removed
|
||||
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
|
||||
defined to be less than 1. */
|
||||
vQueueAddToRegistry( xTestQueue, ( signed char * ) "Block_Time_Queue" );
|
||||
|
||||
/* Create the two test tasks. */
|
||||
xTaskCreate( vPrimaryBlockTimeTestTask, ( signed char * )"BTest1", configMINIMAL_STACK_SIZE, NULL, bktPRIMARY_PRIORITY, NULL );
|
||||
xTaskCreate( vSecondaryBlockTimeTestTask, ( signed char * )"BTest2", configMINIMAL_STACK_SIZE, NULL, bktSECONDARY_PRIORITY, &xSecondary );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void vPrimaryBlockTimeTestTask( void *pvParameters )
|
||||
{
|
||||
portBASE_TYPE xItem, xData;
|
||||
portTickType xTimeWhenBlocking;
|
||||
portTickType xTimeToBlock, xBlockedTime;
|
||||
|
||||
( void ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/*********************************************************************
|
||||
Test 1
|
||||
|
||||
Simple block time wakeup test on queue receives. */
|
||||
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
|
||||
{
|
||||
/* The queue is empty. Attempt to read from the queue using a block
|
||||
time. When we wake, ensure the delta in time is as expected. */
|
||||
xTimeToBlock = bktPRIMARY_BLOCK_TIME << xItem;
|
||||
|
||||
xTimeWhenBlocking = xTaskGetTickCount();
|
||||
|
||||
/* We should unblock after xTimeToBlock having not received
|
||||
anything on the queue. */
|
||||
if( xQueueReceive( xTestQueue, &xData, xTimeToBlock ) != errQUEUE_EMPTY )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* How long were we blocked for? */
|
||||
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
|
||||
|
||||
if( xBlockedTime < xTimeToBlock )
|
||||
{
|
||||
/* Should not have blocked for less than we requested. */
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
if( xBlockedTime > ( xTimeToBlock + bktALLOWABLE_MARGIN ) )
|
||||
{
|
||||
/* Should not have blocked for longer than we requested,
|
||||
although we would not necessarily run as soon as we were
|
||||
unblocked so a margin is allowed. */
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
}
|
||||
|
||||
/*********************************************************************
|
||||
Test 2
|
||||
|
||||
Simple block time wakeup test on queue sends.
|
||||
|
||||
First fill the queue. It should be empty so all sends should pass. */
|
||||
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
|
||||
{
|
||||
if( xQueueSend( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
}
|
||||
|
||||
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
|
||||
{
|
||||
/* The queue is full. Attempt to write to the queue using a block
|
||||
time. When we wake, ensure the delta in time is as expected. */
|
||||
xTimeToBlock = bktPRIMARY_BLOCK_TIME << xItem;
|
||||
|
||||
xTimeWhenBlocking = xTaskGetTickCount();
|
||||
|
||||
/* We should unblock after xTimeToBlock having not received
|
||||
anything on the queue. */
|
||||
if( xQueueSend( xTestQueue, &xItem, xTimeToBlock ) != errQUEUE_FULL )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* How long were we blocked for? */
|
||||
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
|
||||
|
||||
if( xBlockedTime < xTimeToBlock )
|
||||
{
|
||||
/* Should not have blocked for less than we requested. */
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
if( xBlockedTime > ( xTimeToBlock + bktALLOWABLE_MARGIN ) )
|
||||
{
|
||||
/* Should not have blocked for longer than we requested,
|
||||
although we would not necessarily run as soon as we were
|
||||
unblocked so a margin is allowed. */
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
}
|
||||
|
||||
/*********************************************************************
|
||||
Test 3
|
||||
|
||||
Wake the other task, it will block attempting to post to the queue.
|
||||
When we read from the queue the other task will wake, but before it
|
||||
can run we will post to the queue again. When the other task runs it
|
||||
will find the queue still full, even though it was woken. It should
|
||||
recognise that its block time has not expired and return to block for
|
||||
the remains of its block time.
|
||||
|
||||
Wake the other task so it blocks attempting to post to the already
|
||||
full queue. */
|
||||
xRunIndicator = 0;
|
||||
vTaskResume( xSecondary );
|
||||
|
||||
/* We need to wait a little to ensure the other task executes. */
|
||||
while( xRunIndicator != bktRUN_INDICATOR )
|
||||
{
|
||||
/* The other task has not yet executed. */
|
||||
vTaskDelay( bktSHORT_WAIT );
|
||||
}
|
||||
/* Make sure the other task is blocked on the queue. */
|
||||
vTaskDelay( bktSHORT_WAIT );
|
||||
xRunIndicator = 0;
|
||||
|
||||
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
|
||||
{
|
||||
/* Now when we make space on the queue the other task should wake
|
||||
but not execute as this task has higher priority. */
|
||||
if( xQueueReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* Now fill the queue again before the other task gets a chance to
|
||||
execute. If the other task had executed we would find the queue
|
||||
full ourselves, and the other task have set xRunIndicator. */
|
||||
if( xQueueSend( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
if( xRunIndicator == bktRUN_INDICATOR )
|
||||
{
|
||||
/* The other task should not have executed. */
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* Raise the priority of the other task so it executes and blocks
|
||||
on the queue again. */
|
||||
vTaskPrioritySet( xSecondary, bktPRIMARY_PRIORITY + 2 );
|
||||
|
||||
/* The other task should now have re-blocked without exiting the
|
||||
queue function. */
|
||||
if( xRunIndicator == bktRUN_INDICATOR )
|
||||
{
|
||||
/* The other task should not have executed outside of the
|
||||
queue function. */
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* Set the priority back down. */
|
||||
vTaskPrioritySet( xSecondary, bktSECONDARY_PRIORITY );
|
||||
}
|
||||
|
||||
/* Let the other task timeout. When it unblockes it will check that it
|
||||
unblocked at the correct time, then suspend itself. */
|
||||
while( xRunIndicator != bktRUN_INDICATOR )
|
||||
{
|
||||
vTaskDelay( bktSHORT_WAIT );
|
||||
}
|
||||
vTaskDelay( bktSHORT_WAIT );
|
||||
xRunIndicator = 0;
|
||||
|
||||
|
||||
/*********************************************************************
|
||||
Test 4
|
||||
|
||||
As per test 3 - but with the send and receive the other way around.
|
||||
The other task blocks attempting to read from the queue.
|
||||
|
||||
Empty the queue. We should find that it is full. */
|
||||
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
|
||||
{
|
||||
if( xQueueReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
}
|
||||
|
||||
/* Wake the other task so it blocks attempting to read from the
|
||||
already empty queue. */
|
||||
vTaskResume( xSecondary );
|
||||
|
||||
/* We need to wait a little to ensure the other task executes. */
|
||||
while( xRunIndicator != bktRUN_INDICATOR )
|
||||
{
|
||||
vTaskDelay( bktSHORT_WAIT );
|
||||
}
|
||||
vTaskDelay( bktSHORT_WAIT );
|
||||
xRunIndicator = 0;
|
||||
|
||||
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
|
||||
{
|
||||
/* Now when we place an item on the queue the other task should
|
||||
wake but not execute as this task has higher priority. */
|
||||
if( xQueueSend( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* Now empty the queue again before the other task gets a chance to
|
||||
execute. If the other task had executed we would find the queue
|
||||
empty ourselves, and the other task would be suspended. */
|
||||
if( xQueueReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
if( xRunIndicator == bktRUN_INDICATOR )
|
||||
{
|
||||
/* The other task should not have executed. */
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* Raise the priority of the other task so it executes and blocks
|
||||
on the queue again. */
|
||||
vTaskPrioritySet( xSecondary, bktPRIMARY_PRIORITY + 2 );
|
||||
|
||||
/* The other task should now have re-blocked without exiting the
|
||||
queue function. */
|
||||
if( xRunIndicator == bktRUN_INDICATOR )
|
||||
{
|
||||
/* The other task should not have executed outside of the
|
||||
queue function. */
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
vTaskPrioritySet( xSecondary, bktSECONDARY_PRIORITY );
|
||||
}
|
||||
|
||||
/* Let the other task timeout. When it unblockes it will check that it
|
||||
unblocked at the correct time, then suspend itself. */
|
||||
while( xRunIndicator != bktRUN_INDICATOR )
|
||||
{
|
||||
vTaskDelay( bktSHORT_WAIT );
|
||||
}
|
||||
vTaskDelay( bktSHORT_WAIT );
|
||||
|
||||
xPrimaryCycles++;
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void vSecondaryBlockTimeTestTask( void *pvParameters )
|
||||
{
|
||||
portTickType xTimeWhenBlocking, xBlockedTime;
|
||||
portBASE_TYPE xData;
|
||||
|
||||
( void ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/*********************************************************************
|
||||
Test 1 and 2
|
||||
|
||||
This task does does not participate in these tests. */
|
||||
vTaskSuspend( NULL );
|
||||
|
||||
/*********************************************************************
|
||||
Test 3
|
||||
|
||||
The first thing we do is attempt to read from the queue. It should be
|
||||
full so we block. Note the time before we block so we can check the
|
||||
wake time is as per that expected. */
|
||||
xTimeWhenBlocking = xTaskGetTickCount();
|
||||
|
||||
/* We should unblock after bktTIME_TO_BLOCK having not sent
|
||||
anything to the queue. */
|
||||
xData = 0;
|
||||
xRunIndicator = bktRUN_INDICATOR;
|
||||
if( xQueueSend( xTestQueue, &xData, bktTIME_TO_BLOCK ) != errQUEUE_FULL )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* How long were we inside the send function? */
|
||||
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
|
||||
|
||||
/* We should not have blocked for less time than bktTIME_TO_BLOCK. */
|
||||
if( xBlockedTime < bktTIME_TO_BLOCK )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* We should of not blocked for much longer than bktALLOWABLE_MARGIN
|
||||
either. A margin is permitted as we would not necessarily run as
|
||||
soon as we unblocked. */
|
||||
if( xBlockedTime > ( bktTIME_TO_BLOCK + bktALLOWABLE_MARGIN ) )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* Suspend ready for test 3. */
|
||||
xRunIndicator = bktRUN_INDICATOR;
|
||||
vTaskSuspend( NULL );
|
||||
|
||||
/*********************************************************************
|
||||
Test 4
|
||||
|
||||
As per test three, but with the send and receive reversed. */
|
||||
xTimeWhenBlocking = xTaskGetTickCount();
|
||||
|
||||
/* We should unblock after bktTIME_TO_BLOCK having not received
|
||||
anything on the queue. */
|
||||
xRunIndicator = bktRUN_INDICATOR;
|
||||
if( xQueueReceive( xTestQueue, &xData, bktTIME_TO_BLOCK ) != errQUEUE_EMPTY )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
|
||||
|
||||
/* We should not have blocked for less time than bktTIME_TO_BLOCK. */
|
||||
if( xBlockedTime < bktTIME_TO_BLOCK )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* We should of not blocked for much longer than bktALLOWABLE_MARGIN
|
||||
either. A margin is permitted as we would not necessarily run as soon
|
||||
as we unblocked. */
|
||||
if( xBlockedTime > ( bktTIME_TO_BLOCK + bktALLOWABLE_MARGIN ) )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
xRunIndicator = bktRUN_INDICATOR;
|
||||
|
||||
xSecondaryCycles++;
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
portBASE_TYPE xAreBlockTimeTestTasksStillRunning( void )
|
||||
{
|
||||
static portBASE_TYPE xLastPrimaryCycleCount = 0, xLastSecondaryCycleCount = 0;
|
||||
portBASE_TYPE xReturn = pdPASS;
|
||||
|
||||
/* Have both tasks performed at least one cycle since this function was
|
||||
last called? */
|
||||
if( xPrimaryCycles == xLastPrimaryCycleCount )
|
||||
{
|
||||
xReturn = pdFAIL;
|
||||
}
|
||||
|
||||
if( xSecondaryCycles == xLastSecondaryCycleCount )
|
||||
{
|
||||
xReturn = pdFAIL;
|
||||
}
|
||||
|
||||
if( xErrorOccurred == pdTRUE )
|
||||
{
|
||||
xReturn = pdFAIL;
|
||||
}
|
||||
|
||||
xLastSecondaryCycleCount = xSecondaryCycles;
|
||||
xLastPrimaryCycleCount = xPrimaryCycles;
|
||||
|
||||
return xReturn;
|
||||
}
|
@ -0,0 +1,255 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
/**
|
||||
* Create a single persistent task which periodically dynamically creates another
|
||||
* two tasks. The original task is called the creator task, the two tasks it
|
||||
* creates are called suicidal tasks.
|
||||
*
|
||||
* One of the created suicidal tasks kill one other suicidal task before killing
|
||||
* itself - leaving just the original task remaining.
|
||||
*
|
||||
* The creator task must be spawned after all of the other demo application tasks
|
||||
* as it keeps a check on the number of tasks under the scheduler control. The
|
||||
* number of tasks it expects to see running should never be greater than the
|
||||
* number of tasks that were in existence when the creator task was spawned, plus
|
||||
* one set of four suicidal tasks. If this number is exceeded an error is flagged.
|
||||
*
|
||||
* \page DeathC death.c
|
||||
* \ingroup DemoFiles
|
||||
* <HR>
|
||||
*/
|
||||
|
||||
/*
|
||||
Changes from V3.0.0
|
||||
+ CreationCount sizes changed from unsigned portBASE_TYPE to
|
||||
unsigned short to minimize the risk of overflowing.
|
||||
|
||||
+ Reset of usLastCreationCount added
|
||||
|
||||
Changes from V3.1.0
|
||||
+ Changed the dummy calculation to use variables of type long, rather than
|
||||
float. This allows the file to be used with ports that do not support
|
||||
floating point.
|
||||
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Scheduler include files. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
|
||||
/* Demo program include files. */
|
||||
#include "death.h"
|
||||
|
||||
#define deathSTACK_SIZE ( configMINIMAL_STACK_SIZE + 60 )
|
||||
|
||||
/* The task originally created which is responsible for periodically dynamically
|
||||
creating another four tasks. */
|
||||
static portTASK_FUNCTION_PROTO( vCreateTasks, pvParameters );
|
||||
|
||||
/* The task function of the dynamically created tasks. */
|
||||
static portTASK_FUNCTION_PROTO( vSuicidalTask, pvParameters );
|
||||
|
||||
/* A variable which is incremented every time the dynamic tasks are created. This
|
||||
is used to check that the task is still running. */
|
||||
static volatile unsigned short usCreationCount = 0;
|
||||
|
||||
/* Used to store the number of tasks that were originally running so the creator
|
||||
task can tell if any of the suicidal tasks have failed to die.
|
||||
*/
|
||||
static volatile unsigned portBASE_TYPE uxTasksRunningAtStart = 0;
|
||||
|
||||
/* Tasks are deleted by the idle task. Under heavy load the idle task might
|
||||
not get much processing time, so it would be legitimate for several tasks to
|
||||
remain undeleted for a short period. */
|
||||
static const unsigned portBASE_TYPE uxMaxNumberOfExtraTasksRunning = 2;
|
||||
|
||||
/* Used to store a handle to the task that should be killed by a suicidal task,
|
||||
before it kills itself. */
|
||||
xTaskHandle xCreatedTask;
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vCreateSuicidalTasks( unsigned portBASE_TYPE uxPriority )
|
||||
{
|
||||
unsigned portBASE_TYPE *puxPriority;
|
||||
|
||||
/* Create the Creator tasks - passing in as a parameter the priority at which
|
||||
the suicidal tasks should be created. */
|
||||
puxPriority = ( unsigned portBASE_TYPE * ) pvPortMalloc( sizeof( unsigned portBASE_TYPE ) );
|
||||
*puxPriority = uxPriority;
|
||||
|
||||
xTaskCreate( vCreateTasks, ( signed char * ) "CREATOR", deathSTACK_SIZE, ( void * ) puxPriority, uxPriority, NULL );
|
||||
|
||||
/* Record the number of tasks that are running now so we know if any of the
|
||||
suicidal tasks have failed to be killed. */
|
||||
uxTasksRunningAtStart = ( unsigned portBASE_TYPE ) uxTaskGetNumberOfTasks();
|
||||
|
||||
/* FreeRTOS.org versions before V3.0 started the idle-task as the very
|
||||
first task. The idle task was then already included in uxTasksRunningAtStart.
|
||||
From FreeRTOS V3.0 on, the idle task is started when the scheduler is
|
||||
started. Therefore the idle task is not yet accounted for. We correct
|
||||
this by increasing uxTasksRunningAtStart by 1. */
|
||||
uxTasksRunningAtStart++;
|
||||
|
||||
/* From FreeRTOS version 7.0.0 can optionally create a timer service task.
|
||||
If this is done, then uxTasksRunningAtStart needs incrementing again as that
|
||||
too is created when the scheduler is started. */
|
||||
#if configUSE_TIMERS == 1
|
||||
uxTasksRunningAtStart++;
|
||||
#endif
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vSuicidalTask, pvParameters )
|
||||
{
|
||||
volatile long l1, l2;
|
||||
xTaskHandle xTaskToKill;
|
||||
const portTickType xDelay = ( portTickType ) 200 / portTICK_RATE_MS;
|
||||
|
||||
if( pvParameters != NULL )
|
||||
{
|
||||
/* This task is periodically created four times. Two created tasks are
|
||||
passed a handle to the other task so it can kill it before killing itself.
|
||||
The other task is passed in null. */
|
||||
xTaskToKill = *( xTaskHandle* )pvParameters;
|
||||
}
|
||||
else
|
||||
{
|
||||
xTaskToKill = NULL;
|
||||
}
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Do something random just to use some stack and registers. */
|
||||
l1 = 2;
|
||||
l2 = 89;
|
||||
l2 *= l1;
|
||||
vTaskDelay( xDelay );
|
||||
|
||||
if( xTaskToKill != NULL )
|
||||
{
|
||||
/* Make sure the other task has a go before we delete it. */
|
||||
vTaskDelay( ( portTickType ) 0 );
|
||||
|
||||
/* Kill the other task that was created by vCreateTasks(). */
|
||||
vTaskDelete( xTaskToKill );
|
||||
|
||||
/* Kill ourselves. */
|
||||
vTaskDelete( NULL );
|
||||
}
|
||||
}
|
||||
}/*lint !e818 !e550 Function prototype must be as per standard for task functions. */
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vCreateTasks, pvParameters )
|
||||
{
|
||||
const portTickType xDelay = ( portTickType ) 1000 / portTICK_RATE_MS;
|
||||
unsigned portBASE_TYPE uxPriority;
|
||||
|
||||
uxPriority = *( unsigned portBASE_TYPE * ) pvParameters;
|
||||
vPortFree( pvParameters );
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Just loop round, delaying then creating the four suicidal tasks. */
|
||||
vTaskDelay( xDelay );
|
||||
|
||||
xCreatedTask = NULL;
|
||||
|
||||
xTaskCreate( vSuicidalTask, ( signed char * ) "SUICID1", configMINIMAL_STACK_SIZE, NULL, uxPriority, &xCreatedTask );
|
||||
xTaskCreate( vSuicidalTask, ( signed char * ) "SUICID2", configMINIMAL_STACK_SIZE, &xCreatedTask, uxPriority, NULL );
|
||||
|
||||
++usCreationCount;
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* This is called to check that the creator task is still running and that there
|
||||
are not any more than four extra tasks. */
|
||||
portBASE_TYPE xIsCreateTaskStillRunning( void )
|
||||
{
|
||||
static unsigned short usLastCreationCount = 0xfff;
|
||||
portBASE_TYPE xReturn = pdTRUE;
|
||||
static unsigned portBASE_TYPE uxTasksRunningNow;
|
||||
|
||||
if( usLastCreationCount == usCreationCount )
|
||||
{
|
||||
xReturn = pdFALSE;
|
||||
}
|
||||
else
|
||||
{
|
||||
usLastCreationCount = usCreationCount;
|
||||
}
|
||||
|
||||
uxTasksRunningNow = ( unsigned portBASE_TYPE ) uxTaskGetNumberOfTasks();
|
||||
|
||||
if( uxTasksRunningNow < uxTasksRunningAtStart )
|
||||
{
|
||||
xReturn = pdFALSE;
|
||||
}
|
||||
else if( ( uxTasksRunningNow - uxTasksRunningAtStart ) > uxMaxNumberOfExtraTasksRunning )
|
||||
{
|
||||
xReturn = pdFALSE;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Everything is okay. */
|
||||
}
|
||||
|
||||
return xReturn;
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,427 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The first test creates three tasks - two counter tasks (one continuous count
|
||||
* and one limited count) and one controller. A "count" variable is shared
|
||||
* between all three tasks. The two counter tasks should never be in a "ready"
|
||||
* state at the same time. The controller task runs at the same priority as
|
||||
* the continuous count task, and at a lower priority than the limited count
|
||||
* task.
|
||||
*
|
||||
* One counter task loops indefinitely, incrementing the shared count variable
|
||||
* on each iteration. To ensure it has exclusive access to the variable it
|
||||
* raises it's priority above that of the controller task before each
|
||||
* increment, lowering it again to it's original priority before starting the
|
||||
* next iteration.
|
||||
*
|
||||
* The other counter task increments the shared count variable on each
|
||||
* iteration of it's loop until the count has reached a limit of 0xff - at
|
||||
* which point it suspends itself. It will not start a new loop until the
|
||||
* controller task has made it "ready" again by calling vTaskResume ().
|
||||
* This second counter task operates at a higher priority than controller
|
||||
* task so does not need to worry about mutual exclusion of the counter
|
||||
* variable.
|
||||
*
|
||||
* The controller task is in two sections. The first section controls and
|
||||
* monitors the continuous count task. When this section is operational the
|
||||
* limited count task is suspended. Likewise, the second section controls
|
||||
* and monitors the limited count task. When this section is operational the
|
||||
* continuous count task is suspended.
|
||||
*
|
||||
* In the first section the controller task first takes a copy of the shared
|
||||
* count variable. To ensure mutual exclusion on the count variable it
|
||||
* suspends the continuous count task, resuming it again when the copy has been
|
||||
* taken. The controller task then sleeps for a fixed period - during which
|
||||
* the continuous count task will execute and increment the shared variable.
|
||||
* When the controller task wakes it checks that the continuous count task
|
||||
* has executed by comparing the copy of the shared variable with its current
|
||||
* value. This time, to ensure mutual exclusion, the scheduler itself is
|
||||
* suspended with a call to vTaskSuspendAll (). This is for demonstration
|
||||
* purposes only and is not a recommended technique due to its inefficiency.
|
||||
*
|
||||
* After a fixed number of iterations the controller task suspends the
|
||||
* continuous count task, and moves on to its second section.
|
||||
*
|
||||
* At the start of the second section the shared variable is cleared to zero.
|
||||
* The limited count task is then woken from it's suspension by a call to
|
||||
* vTaskResume (). As this counter task operates at a higher priority than
|
||||
* the controller task the controller task should not run again until the
|
||||
* shared variable has been counted up to the limited value causing the counter
|
||||
* task to suspend itself. The next line after vTaskResume () is therefore
|
||||
* a check on the shared variable to ensure everything is as expected.
|
||||
*
|
||||
*
|
||||
* The second test consists of a couple of very simple tasks that post onto a
|
||||
* queue while the scheduler is suspended. This test was added to test parts
|
||||
* of the scheduler not exercised by the first test.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Scheduler include files. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "semphr.h"
|
||||
|
||||
/* Demo app include files. */
|
||||
#include "dynamic.h"
|
||||
|
||||
/* Function that implements the "limited count" task as described above. */
|
||||
static portTASK_FUNCTION_PROTO( vLimitedIncrementTask, pvParameters );
|
||||
|
||||
/* Function that implements the "continuous count" task as described above. */
|
||||
static portTASK_FUNCTION_PROTO( vContinuousIncrementTask, pvParameters );
|
||||
|
||||
/* Function that implements the controller task as described above. */
|
||||
static portTASK_FUNCTION_PROTO( vCounterControlTask, pvParameters );
|
||||
|
||||
static portTASK_FUNCTION_PROTO( vQueueReceiveWhenSuspendedTask, pvParameters );
|
||||
static portTASK_FUNCTION_PROTO( vQueueSendWhenSuspendedTask, pvParameters );
|
||||
|
||||
/* Demo task specific constants. */
|
||||
#define priSTACK_SIZE ( configMINIMAL_STACK_SIZE )
|
||||
#define priSLEEP_TIME ( ( portTickType ) 128 / portTICK_RATE_MS )
|
||||
#define priLOOPS ( 5 )
|
||||
#define priMAX_COUNT ( ( unsigned long ) 0xff )
|
||||
#define priNO_BLOCK ( ( portTickType ) 0 )
|
||||
#define priSUSPENDED_QUEUE_LENGTH ( 1 )
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* Handles to the two counter tasks. These could be passed in as parameters
|
||||
to the controller task to prevent them having to be file scope. */
|
||||
static xTaskHandle xContinousIncrementHandle, xLimitedIncrementHandle;
|
||||
|
||||
/* The shared counter variable. This is passed in as a parameter to the two
|
||||
counter variables for demonstration purposes. */
|
||||
static unsigned long ulCounter;
|
||||
|
||||
/* Variables used to check that the tasks are still operating without error.
|
||||
Each complete iteration of the controller task increments this variable
|
||||
provided no errors have been found. The variable maintaining the same value
|
||||
is therefore indication of an error. */
|
||||
static volatile unsigned short usCheckVariable = ( unsigned short ) 0;
|
||||
static volatile portBASE_TYPE xSuspendedQueueSendError = pdFALSE;
|
||||
static volatile portBASE_TYPE xSuspendedQueueReceiveError = pdFALSE;
|
||||
|
||||
/* Queue used by the second test. */
|
||||
xQueueHandle xSuspendedTestQueue;
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
/*
|
||||
* Start the three tasks as described at the top of the file.
|
||||
* Note that the limited count task is given a higher priority.
|
||||
*/
|
||||
void vStartDynamicPriorityTasks( void )
|
||||
{
|
||||
xSuspendedTestQueue = xQueueCreate( priSUSPENDED_QUEUE_LENGTH, sizeof( unsigned long ) );
|
||||
|
||||
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
|
||||
in use. The queue registry is provided as a means for kernel aware
|
||||
debuggers to locate queues and has no purpose if a kernel aware debugger
|
||||
is not being used. The call to vQueueAddToRegistry() will be removed
|
||||
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
|
||||
defined to be less than 1. */
|
||||
vQueueAddToRegistry( xSuspendedTestQueue, ( signed char * ) "Suspended_Test_Queue" );
|
||||
|
||||
xTaskCreate( vContinuousIncrementTask, ( signed char * ) "CNT_INC", priSTACK_SIZE, ( void * ) &ulCounter, tskIDLE_PRIORITY, &xContinousIncrementHandle );
|
||||
xTaskCreate( vLimitedIncrementTask, ( signed char * ) "LIM_INC", priSTACK_SIZE, ( void * ) &ulCounter, tskIDLE_PRIORITY + 1, &xLimitedIncrementHandle );
|
||||
xTaskCreate( vCounterControlTask, ( signed char * ) "C_CTRL", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
|
||||
xTaskCreate( vQueueSendWhenSuspendedTask, ( signed char * ) "SUSP_TX", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
|
||||
xTaskCreate( vQueueReceiveWhenSuspendedTask, ( signed char * ) "SUSP_RX", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
* Just loops around incrementing the shared variable until the limit has been
|
||||
* reached. Once the limit has been reached it suspends itself.
|
||||
*/
|
||||
static portTASK_FUNCTION( vLimitedIncrementTask, pvParameters )
|
||||
{
|
||||
unsigned long *pulCounter;
|
||||
|
||||
/* Take a pointer to the shared variable from the parameters passed into
|
||||
the task. */
|
||||
pulCounter = ( unsigned long * ) pvParameters;
|
||||
|
||||
/* This will run before the control task, so the first thing it does is
|
||||
suspend - the control task will resume it when ready. */
|
||||
vTaskSuspend( NULL );
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Just count up to a value then suspend. */
|
||||
( *pulCounter )++;
|
||||
|
||||
if( *pulCounter >= priMAX_COUNT )
|
||||
{
|
||||
vTaskSuspend( NULL );
|
||||
}
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
* Just keep counting the shared variable up. The control task will suspend
|
||||
* this task when it wants.
|
||||
*/
|
||||
static portTASK_FUNCTION( vContinuousIncrementTask, pvParameters )
|
||||
{
|
||||
unsigned long *pulCounter;
|
||||
unsigned portBASE_TYPE uxOurPriority;
|
||||
|
||||
/* Take a pointer to the shared variable from the parameters passed into
|
||||
the task. */
|
||||
pulCounter = ( unsigned long * ) pvParameters;
|
||||
|
||||
/* Query our priority so we can raise it when exclusive access to the
|
||||
shared variable is required. */
|
||||
uxOurPriority = uxTaskPriorityGet( NULL );
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Raise our priority above the controller task to ensure a context
|
||||
switch does not occur while we are accessing this variable. */
|
||||
vTaskPrioritySet( NULL, uxOurPriority + 1 );
|
||||
( *pulCounter )++;
|
||||
vTaskPrioritySet( NULL, uxOurPriority );
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
* Controller task as described above.
|
||||
*/
|
||||
static portTASK_FUNCTION( vCounterControlTask, pvParameters )
|
||||
{
|
||||
unsigned long ulLastCounter;
|
||||
short sLoops;
|
||||
short sError = pdFALSE;
|
||||
|
||||
/* Just to stop warning messages. */
|
||||
( void ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Start with the counter at zero. */
|
||||
ulCounter = ( unsigned long ) 0;
|
||||
|
||||
/* First section : */
|
||||
|
||||
/* Check the continuous count task is running. */
|
||||
for( sLoops = 0; sLoops < priLOOPS; sLoops++ )
|
||||
{
|
||||
/* Suspend the continuous count task so we can take a mirror of the
|
||||
shared variable without risk of corruption. */
|
||||
vTaskSuspend( xContinousIncrementHandle );
|
||||
ulLastCounter = ulCounter;
|
||||
vTaskResume( xContinousIncrementHandle );
|
||||
|
||||
/* Now delay to ensure the other task has processor time. */
|
||||
vTaskDelay( priSLEEP_TIME );
|
||||
|
||||
/* Check the shared variable again. This time to ensure mutual
|
||||
exclusion the whole scheduler will be locked. This is just for
|
||||
demo purposes! */
|
||||
vTaskSuspendAll();
|
||||
{
|
||||
if( ulLastCounter == ulCounter )
|
||||
{
|
||||
/* The shared variable has not changed. There is a problem
|
||||
with the continuous count task so flag an error. */
|
||||
sError = pdTRUE;
|
||||
}
|
||||
}
|
||||
xTaskResumeAll();
|
||||
}
|
||||
|
||||
|
||||
/* Second section: */
|
||||
|
||||
/* Suspend the continuous counter task so it stops accessing the shared variable. */
|
||||
vTaskSuspend( xContinousIncrementHandle );
|
||||
|
||||
/* Reset the variable. */
|
||||
ulCounter = ( unsigned long ) 0;
|
||||
|
||||
/* Resume the limited count task which has a higher priority than us.
|
||||
We should therefore not return from this call until the limited count
|
||||
task has suspended itself with a known value in the counter variable. */
|
||||
vTaskResume( xLimitedIncrementHandle );
|
||||
|
||||
/* Does the counter variable have the expected value? */
|
||||
if( ulCounter != priMAX_COUNT )
|
||||
{
|
||||
sError = pdTRUE;
|
||||
}
|
||||
|
||||
if( sError == pdFALSE )
|
||||
{
|
||||
/* If no errors have occurred then increment the check variable. */
|
||||
portENTER_CRITICAL();
|
||||
usCheckVariable++;
|
||||
portEXIT_CRITICAL();
|
||||
}
|
||||
|
||||
/* Resume the continuous count task and do it all again. */
|
||||
vTaskResume( xContinousIncrementHandle );
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vQueueSendWhenSuspendedTask, pvParameters )
|
||||
{
|
||||
static unsigned long ulValueToSend = ( unsigned long ) 0;
|
||||
|
||||
/* Just to stop warning messages. */
|
||||
( void ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
vTaskSuspendAll();
|
||||
{
|
||||
/* We must not block while the scheduler is suspended! */
|
||||
if( xQueueSend( xSuspendedTestQueue, ( void * ) &ulValueToSend, priNO_BLOCK ) != pdTRUE )
|
||||
{
|
||||
xSuspendedQueueSendError = pdTRUE;
|
||||
}
|
||||
}
|
||||
xTaskResumeAll();
|
||||
|
||||
vTaskDelay( priSLEEP_TIME );
|
||||
|
||||
++ulValueToSend;
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vQueueReceiveWhenSuspendedTask, pvParameters )
|
||||
{
|
||||
static unsigned long ulExpectedValue = ( unsigned long ) 0, ulReceivedValue;
|
||||
portBASE_TYPE xGotValue;
|
||||
|
||||
/* Just to stop warning messages. */
|
||||
( void ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
do
|
||||
{
|
||||
/* Suspending the scheduler here is fairly pointless and
|
||||
undesirable for a normal application. It is done here purely
|
||||
to test the scheduler. The inner xTaskResumeAll() should
|
||||
never return pdTRUE as the scheduler is still locked by the
|
||||
outer call. */
|
||||
vTaskSuspendAll();
|
||||
{
|
||||
vTaskSuspendAll();
|
||||
{
|
||||
xGotValue = xQueueReceive( xSuspendedTestQueue, ( void * ) &ulReceivedValue, priNO_BLOCK );
|
||||
}
|
||||
if( xTaskResumeAll() )
|
||||
{
|
||||
xSuspendedQueueReceiveError = pdTRUE;
|
||||
}
|
||||
}
|
||||
xTaskResumeAll();
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
{
|
||||
taskYIELD();
|
||||
}
|
||||
#endif
|
||||
|
||||
} while( xGotValue == pdFALSE );
|
||||
|
||||
if( ulReceivedValue != ulExpectedValue )
|
||||
{
|
||||
xSuspendedQueueReceiveError = pdTRUE;
|
||||
}
|
||||
|
||||
++ulExpectedValue;
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* Called to check that all the created tasks are still running without error. */
|
||||
portBASE_TYPE xAreDynamicPriorityTasksStillRunning( void )
|
||||
{
|
||||
/* Keep a history of the check variables so we know if it has been incremented
|
||||
since the last call. */
|
||||
static unsigned short usLastTaskCheck = ( unsigned short ) 0;
|
||||
portBASE_TYPE xReturn = pdTRUE;
|
||||
|
||||
/* Check the tasks are still running by ensuring the check variable
|
||||
is still incrementing. */
|
||||
|
||||
if( usCheckVariable == usLastTaskCheck )
|
||||
{
|
||||
/* The check has not incremented so an error exists. */
|
||||
xReturn = pdFALSE;
|
||||
}
|
||||
|
||||
if( xSuspendedQueueSendError == pdTRUE )
|
||||
{
|
||||
xReturn = pdFALSE;
|
||||
}
|
||||
|
||||
if( xSuspendedQueueReceiveError == pdTRUE )
|
||||
{
|
||||
xReturn = pdFALSE;
|
||||
}
|
||||
|
||||
usLastTaskCheck = usCheckVariable;
|
||||
return xReturn;
|
||||
}
|
@ -0,0 +1,145 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
/**
|
||||
* This version of flash .c is for use on systems that have limited stack space
|
||||
* and no display facilities. The complete version can be found in the
|
||||
* Demo/Common/Full directory.
|
||||
*
|
||||
* Three tasks are created, each of which flash an LED at a different rate. The first
|
||||
* LED flashes every 200ms, the second every 400ms, the third every 600ms.
|
||||
*
|
||||
* The LED flash tasks provide instant visual feedback. They show that the scheduler
|
||||
* is still operational.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Scheduler include files. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
|
||||
/* Demo program include files. */
|
||||
#include "partest.h"
|
||||
#include "flash.h"
|
||||
|
||||
#define ledSTACK_SIZE configMINIMAL_STACK_SIZE
|
||||
#define ledNUMBER_OF_LEDS ( 3 )
|
||||
#define ledFLASH_RATE_BASE ( ( portTickType ) 333 )
|
||||
|
||||
/* Variable used by the created tasks to calculate the LED number to use, and
|
||||
the rate at which they should flash the LED. */
|
||||
static volatile unsigned portBASE_TYPE uxFlashTaskNumber = 0;
|
||||
|
||||
/* The task that is created three times. */
|
||||
static portTASK_FUNCTION_PROTO( vLEDFlashTask, pvParameters );
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vStartLEDFlashTasks( unsigned portBASE_TYPE uxPriority )
|
||||
{
|
||||
signed portBASE_TYPE xLEDTask;
|
||||
|
||||
/* Create the three tasks. */
|
||||
for( xLEDTask = 0; xLEDTask < ledNUMBER_OF_LEDS; ++xLEDTask )
|
||||
{
|
||||
/* Spawn the task. */
|
||||
xTaskCreate( vLEDFlashTask, ( signed char * ) "LEDx", ledSTACK_SIZE, NULL, uxPriority, ( xTaskHandle * ) NULL );
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vLEDFlashTask, pvParameters )
|
||||
{
|
||||
portTickType xFlashRate, xLastFlashTime;
|
||||
unsigned portBASE_TYPE uxLED;
|
||||
|
||||
/* The parameters are not used. */
|
||||
( void ) pvParameters;
|
||||
|
||||
/* Calculate the LED and flash rate. */
|
||||
portENTER_CRITICAL();
|
||||
{
|
||||
/* See which of the eight LED's we should use. */
|
||||
uxLED = uxFlashTaskNumber;
|
||||
|
||||
/* Update so the next task uses the next LED. */
|
||||
uxFlashTaskNumber++;
|
||||
}
|
||||
portEXIT_CRITICAL();
|
||||
|
||||
xFlashRate = ledFLASH_RATE_BASE + ( ledFLASH_RATE_BASE * ( portTickType ) uxLED );
|
||||
xFlashRate /= portTICK_RATE_MS;
|
||||
|
||||
/* We will turn the LED on and off again in the delay period, so each
|
||||
delay is only half the total period. */
|
||||
xFlashRate /= ( portTickType ) 2;
|
||||
|
||||
/* We need to initialise xLastFlashTime prior to the first call to
|
||||
vTaskDelayUntil(). */
|
||||
xLastFlashTime = xTaskGetTickCount();
|
||||
|
||||
for(;;)
|
||||
{
|
||||
/* Delay for half the flash period then turn the LED on. */
|
||||
vTaskDelayUntil( &xLastFlashTime, xFlashRate );
|
||||
vParTestToggleLED( uxLED );
|
||||
|
||||
/* Delay for half the flash period then turn the LED off. */
|
||||
vTaskDelayUntil( &xLastFlashTime, xFlashRate );
|
||||
vParTestToggleLED( uxLED );
|
||||
}
|
||||
} /*lint !e715 !e818 !e830 Function definition must be standard for task creation. */
|
||||
|
@ -0,0 +1,62 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
#ifndef BLOCK_Q_H
|
||||
#define BLOCK_Q_H
|
||||
|
||||
void vStartBlockingQueueTasks( unsigned portBASE_TYPE uxPriority );
|
||||
portBASE_TYPE xAreBlockingQueuesStillRunning( void );
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -0,0 +1,63 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
#ifndef GEN_Q_TEST_H
|
||||
#define GEN_Q_TEST_H
|
||||
|
||||
void vStartGenericQueueTasks( unsigned portBASE_TYPE uxPriority );
|
||||
portBASE_TYPE xAreGenericQueueTasksStillRunning( void );
|
||||
|
||||
#endif /* GEN_Q_TEST_H */
|
||||
|
||||
|
||||
|
@ -0,0 +1,62 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
#ifndef POLLED_Q_H
|
||||
#define POLLED_Q_H
|
||||
|
||||
void vStartPolledQueueTasks( unsigned portBASE_TYPE uxPriority );
|
||||
portBASE_TYPE xArePollingQueuesStillRunning( void );
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -0,0 +1,63 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
#ifndef Q_PEEK_TEST_H
|
||||
#define Q_PEEK_TEST_H
|
||||
|
||||
void vStartQueuePeekTasks( void );
|
||||
portBASE_TYPE xAreQueuePeekTasksStillRunning( void );
|
||||
|
||||
#endif /* Q_PEEK_TEST_H */
|
||||
|
||||
|
||||
|
@ -0,0 +1,62 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
#ifndef BLOCK_TIME_TEST_H
|
||||
#define BLOCK_TIME_TEST_H
|
||||
|
||||
void vCreateBlockTimeTasks( void );
|
||||
portBASE_TYPE xAreBlockTimeTestTasksStillRunning( void );
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -0,0 +1,62 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
#ifndef SUICIDE_TASK_H
|
||||
#define SUICIDE_TASK_H
|
||||
|
||||
void vCreateSuicidalTasks( unsigned portBASE_TYPE uxPriority );
|
||||
portBASE_TYPE xIsCreateTaskStillRunning( void );
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -0,0 +1,62 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
#ifndef DYNAMIC_MANIPULATION_H
|
||||
#define DYNAMIC_MANIPULATION_H
|
||||
|
||||
void vStartDynamicPriorityTasks( void );
|
||||
portBASE_TYPE xAreDynamicPriorityTasksStillRunning( void );
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -0,0 +1,60 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
#ifndef FLASH_LED_H
|
||||
#define FLASH_LED_H
|
||||
|
||||
void vStartLEDFlashTasks( unsigned portBASE_TYPE uxPriority );
|
||||
|
||||
#endif
|
||||
|
@ -0,0 +1,62 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
#ifndef FLOP_TASKS_H
|
||||
#define FLOP_TASKS_H
|
||||
|
||||
void vStartMathTasks( unsigned portBASE_TYPE uxPriority );
|
||||
portBASE_TYPE xAreMathsTaskStillRunning( void );
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -0,0 +1,64 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
#ifndef PARTEST_H
|
||||
#define PARTEST_H
|
||||
|
||||
#define partstDEFAULT_PORT_ADDRESS ( ( unsigned short ) 0x378 )
|
||||
|
||||
void vParTestInitialise( void );
|
||||
void vParTestSetLED( unsigned portBASE_TYPE uxLED, signed portBASE_TYPE xValue );
|
||||
void vParTestToggleLED( unsigned portBASE_TYPE uxLED );
|
||||
|
||||
#endif
|
||||
|
@ -0,0 +1,61 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
#ifndef RECURSIVE_MUTEX_TEST_H
|
||||
#define RECURSIVE_MUTEX_TEST_H
|
||||
|
||||
void vStartRecursiveMutexTasks( void );
|
||||
portBASE_TYPE xAreRecursiveMutexTasksStillRunning( void );
|
||||
|
||||
#endif
|
||||
|
@ -0,0 +1,61 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
#ifndef SEMAPHORE_TEST_H
|
||||
#define SEMAPHORE_TEST_H
|
||||
|
||||
void vStartSemaphoreTasks( unsigned portBASE_TYPE uxPriority );
|
||||
portBASE_TYPE xAreSemaphoreTasksStillRunning( void );
|
||||
|
||||
#endif
|
||||
|
@ -0,0 +1,395 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
/*
|
||||
The tasks defined on this page demonstrate the use of recursive mutexes.
|
||||
|
||||
For recursive mutex functionality the created mutex should be created using
|
||||
xSemaphoreCreateRecursiveMutex(), then be manipulated
|
||||
using the xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() API
|
||||
functions.
|
||||
|
||||
This demo creates three tasks all of which access the same recursive mutex:
|
||||
|
||||
prvRecursiveMutexControllingTask() has the highest priority so executes
|
||||
first and grabs the mutex. It then performs some recursive accesses -
|
||||
between each of which it sleeps for a short period to let the lower
|
||||
priority tasks execute. When it has completed its demo functionality
|
||||
it gives the mutex back before suspending itself.
|
||||
|
||||
prvRecursiveMutexBlockingTask() attempts to access the mutex by performing
|
||||
a blocking 'take'. The blocking task has a lower priority than the
|
||||
controlling task so by the time it executes the mutex has already been
|
||||
taken by the controlling task, causing the blocking task to block. It
|
||||
does not unblock until the controlling task has given the mutex back,
|
||||
and it does not actually run until the controlling task has suspended
|
||||
itself (due to the relative priorities). When it eventually does obtain
|
||||
the mutex all it does is give the mutex back prior to also suspending
|
||||
itself. At this point both the controlling task and the blocking task are
|
||||
suspended.
|
||||
|
||||
prvRecursiveMutexPollingTask() runs at the idle priority. It spins round
|
||||
a tight loop attempting to obtain the mutex with a non-blocking call. As
|
||||
the lowest priority task it will not successfully obtain the mutex until
|
||||
both the controlling and blocking tasks are suspended. Once it eventually
|
||||
does obtain the mutex it first unsuspends both the controlling task and
|
||||
blocking task prior to giving the mutex back - resulting in the polling
|
||||
task temporarily inheriting the controlling tasks priority.
|
||||
*/
|
||||
|
||||
/* Scheduler include files. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "semphr.h"
|
||||
|
||||
/* Demo app include files. */
|
||||
#include "recmutex.h"
|
||||
|
||||
/* Priorities assigned to the three tasks. */
|
||||
#define recmuCONTROLLING_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 )
|
||||
#define recmuBLOCKING_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 )
|
||||
#define recmuPOLLING_TASK_PRIORITY ( tskIDLE_PRIORITY + 0 )
|
||||
|
||||
/* The recursive call depth. */
|
||||
#define recmuMAX_COUNT ( 10 )
|
||||
|
||||
/* Misc. */
|
||||
#define recmuSHORT_DELAY ( 20 / portTICK_RATE_MS )
|
||||
#define recmuNO_DELAY ( ( portTickType ) 0 )
|
||||
#define recmuTWO_TICK_DELAY ( ( portTickType ) 2 )
|
||||
|
||||
/* The three tasks as described at the top of this file. */
|
||||
static void prvRecursiveMutexControllingTask( void *pvParameters );
|
||||
static void prvRecursiveMutexBlockingTask( void *pvParameters );
|
||||
static void prvRecursiveMutexPollingTask( void *pvParameters );
|
||||
|
||||
/* The mutex used by the demo. */
|
||||
static xSemaphoreHandle xMutex;
|
||||
|
||||
/* Variables used to detect and latch errors. */
|
||||
static volatile portBASE_TYPE xErrorOccurred = pdFALSE, xControllingIsSuspended = pdFALSE, xBlockingIsSuspended = pdFALSE;
|
||||
static volatile unsigned portBASE_TYPE uxControllingCycles = 0, uxBlockingCycles = 0, uxPollingCycles = 0;
|
||||
|
||||
/* Handles of the two higher priority tasks, required so they can be resumed
|
||||
(unsuspended). */
|
||||
static xTaskHandle xControllingTaskHandle, xBlockingTaskHandle;
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vStartRecursiveMutexTasks( void )
|
||||
{
|
||||
/* Just creates the mutex and the three tasks. */
|
||||
|
||||
xMutex = xSemaphoreCreateRecursiveMutex();
|
||||
|
||||
/* vQueueAddToRegistry() adds the mutex to the registry, if one is
|
||||
in use. The registry is provided as a means for kernel aware
|
||||
debuggers to locate mutex and has no purpose if a kernel aware debugger
|
||||
is not being used. The call to vQueueAddToRegistry() will be removed
|
||||
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
|
||||
defined to be less than 1. */
|
||||
vQueueAddToRegistry( ( xQueueHandle ) xMutex, ( signed portCHAR * ) "Recursive_Mutex" );
|
||||
|
||||
|
||||
if( xMutex != NULL )
|
||||
{
|
||||
xTaskCreate( prvRecursiveMutexControllingTask, ( signed portCHAR * ) "Rec1", configMINIMAL_STACK_SIZE, NULL, recmuCONTROLLING_TASK_PRIORITY, &xControllingTaskHandle );
|
||||
xTaskCreate( prvRecursiveMutexBlockingTask, ( signed portCHAR * ) "Rec2", configMINIMAL_STACK_SIZE, NULL, recmuBLOCKING_TASK_PRIORITY, &xBlockingTaskHandle );
|
||||
xTaskCreate( prvRecursiveMutexPollingTask, ( signed portCHAR * ) "Rec3", configMINIMAL_STACK_SIZE, NULL, recmuPOLLING_TASK_PRIORITY, NULL );
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvRecursiveMutexControllingTask( void *pvParameters )
|
||||
{
|
||||
unsigned portBASE_TYPE ux;
|
||||
|
||||
/* Just to remove compiler warning. */
|
||||
( void ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Should not be able to 'give' the mutex, as we have not yet 'taken'
|
||||
it. The first time through, the mutex will not have been used yet,
|
||||
subsequent times through, at this point the mutex will be held by the
|
||||
polling task. */
|
||||
if( xSemaphoreGiveRecursive( xMutex ) == pdPASS )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
for( ux = 0; ux < recmuMAX_COUNT; ux++ )
|
||||
{
|
||||
/* We should now be able to take the mutex as many times as
|
||||
we like.
|
||||
|
||||
The first time through the mutex will be immediately available, on
|
||||
subsequent times through the mutex will be held by the polling task
|
||||
at this point and this Take will cause the polling task to inherit
|
||||
the priority of this task. In this case the block time must be
|
||||
long enough to ensure the polling task will execute again before the
|
||||
block time expires. If the block time does expire then the error
|
||||
flag will be set here. */
|
||||
if( xSemaphoreTakeRecursive( xMutex, recmuTWO_TICK_DELAY ) != pdPASS )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* Ensure the other task attempting to access the mutex (and the
|
||||
other demo tasks) are able to execute to ensure they either block
|
||||
(where a block time is specified) or return an error (where no
|
||||
block time is specified) as the mutex is held by this task. */
|
||||
vTaskDelay( recmuSHORT_DELAY );
|
||||
}
|
||||
|
||||
/* For each time we took the mutex, give it back. */
|
||||
for( ux = 0; ux < recmuMAX_COUNT; ux++ )
|
||||
{
|
||||
/* Ensure the other task attempting to access the mutex (and the
|
||||
other demo tasks) are able to execute. */
|
||||
vTaskDelay( recmuSHORT_DELAY );
|
||||
|
||||
/* We should now be able to give the mutex as many times as we
|
||||
took it. When the mutex is available again the Blocking task
|
||||
should be unblocked but not run because it has a lower priority
|
||||
than this task. The polling task should also not run at this point
|
||||
as it too has a lower priority than this task. */
|
||||
if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
}
|
||||
|
||||
/* Having given it back the same number of times as it was taken, we
|
||||
should no longer be the mutex owner, so the next give sh ould fail. */
|
||||
if( xSemaphoreGiveRecursive( xMutex ) == pdPASS )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* Keep count of the number of cycles this task has performed so a
|
||||
stall can be detected. */
|
||||
uxControllingCycles++;
|
||||
|
||||
/* Suspend ourselves to the blocking task can execute. */
|
||||
xControllingIsSuspended = pdTRUE;
|
||||
vTaskSuspend( NULL );
|
||||
xControllingIsSuspended = pdFALSE;
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvRecursiveMutexBlockingTask( void *pvParameters )
|
||||
{
|
||||
/* Just to remove compiler warning. */
|
||||
( void ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* This task will run while the controlling task is blocked, and the
|
||||
controlling task will block only once it has the mutex - therefore
|
||||
this call should block until the controlling task has given up the
|
||||
mutex, and not actually execute past this call until the controlling
|
||||
task is suspended. */
|
||||
if( xSemaphoreTakeRecursive( xMutex, portMAX_DELAY ) == pdPASS )
|
||||
{
|
||||
if( xControllingIsSuspended != pdTRUE )
|
||||
{
|
||||
/* Did not expect to execute until the controlling task was
|
||||
suspended. */
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Give the mutex back before suspending ourselves to allow
|
||||
the polling task to obtain the mutex. */
|
||||
if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
xBlockingIsSuspended = pdTRUE;
|
||||
vTaskSuspend( NULL );
|
||||
xBlockingIsSuspended = pdFALSE;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* We should not leave the xSemaphoreTakeRecursive() function
|
||||
until the mutex was obtained. */
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* The controlling and blocking tasks should be in lock step. */
|
||||
if( uxControllingCycles != ( uxBlockingCycles + 1 ) )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* Keep count of the number of cycles this task has performed so a
|
||||
stall can be detected. */
|
||||
uxBlockingCycles++;
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvRecursiveMutexPollingTask( void *pvParameters )
|
||||
{
|
||||
/* Just to remove compiler warning. */
|
||||
( void ) pvParameters;
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Keep attempting to obtain the mutex. We should only obtain it when
|
||||
the blocking task has suspended itself, which in turn should only
|
||||
happen when the controlling task is also suspended. */
|
||||
if( xSemaphoreTakeRecursive( xMutex, recmuNO_DELAY ) == pdPASS )
|
||||
{
|
||||
/* Is the blocking task suspended? */
|
||||
if( ( xBlockingIsSuspended != pdTRUE ) || ( xControllingIsSuspended != pdTRUE ) )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Keep count of the number of cycles this task has performed
|
||||
so a stall can be detected. */
|
||||
uxPollingCycles++;
|
||||
|
||||
/* We can resume the other tasks here even though they have a
|
||||
higher priority than the polling task. When they execute they
|
||||
will attempt to obtain the mutex but fail because the polling
|
||||
task is still the mutex holder. The polling task (this task)
|
||||
will then inherit the higher priority. The Blocking task will
|
||||
block indefinitely when it attempts to obtain the mutex, the
|
||||
Controlling task will only block for a fixed period and an
|
||||
error will be latched if the polling task has not returned the
|
||||
mutex by the time this fixed period has expired. */
|
||||
vTaskResume( xBlockingTaskHandle );
|
||||
vTaskResume( xControllingTaskHandle );
|
||||
|
||||
/* The other two tasks should now have executed and no longer
|
||||
be suspended. */
|
||||
if( ( xBlockingIsSuspended == pdTRUE ) || ( xControllingIsSuspended == pdTRUE ) )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
|
||||
/* Release the mutex, disinheriting the higher priority again. */
|
||||
if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
{
|
||||
taskYIELD();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* This is called to check that all the created tasks are still running. */
|
||||
portBASE_TYPE xAreRecursiveMutexTasksStillRunning( void )
|
||||
{
|
||||
portBASE_TYPE xReturn;
|
||||
static unsigned portBASE_TYPE uxLastControllingCycles = 0, uxLastBlockingCycles = 0, uxLastPollingCycles = 0;
|
||||
|
||||
/* Is the controlling task still cycling? */
|
||||
if( uxLastControllingCycles == uxControllingCycles )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
else
|
||||
{
|
||||
uxLastControllingCycles = uxControllingCycles;
|
||||
}
|
||||
|
||||
/* Is the blocking task still cycling? */
|
||||
if( uxLastBlockingCycles == uxBlockingCycles )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
else
|
||||
{
|
||||
uxLastBlockingCycles = uxBlockingCycles;
|
||||
}
|
||||
|
||||
/* Is the polling task still cycling? */
|
||||
if( uxLastPollingCycles == uxPollingCycles )
|
||||
{
|
||||
xErrorOccurred = pdTRUE;
|
||||
}
|
||||
else
|
||||
{
|
||||
uxLastPollingCycles = uxPollingCycles;
|
||||
}
|
||||
|
||||
if( xErrorOccurred == pdTRUE )
|
||||
{
|
||||
xReturn = pdFAIL;
|
||||
}
|
||||
else
|
||||
{
|
||||
xReturn = pdTRUE;
|
||||
}
|
||||
|
||||
return xReturn;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,284 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Creates two sets of two tasks. The tasks within a set share a variable, access
|
||||
* to which is guarded by a semaphore.
|
||||
*
|
||||
* Each task starts by attempting to obtain the semaphore. On obtaining a
|
||||
* semaphore a task checks to ensure that the guarded variable has an expected
|
||||
* value. It then clears the variable to zero before counting it back up to the
|
||||
* expected value in increments of 1. After each increment the variable is checked
|
||||
* to ensure it contains the value to which it was just set. When the starting
|
||||
* value is again reached the task releases the semaphore giving the other task in
|
||||
* the set a chance to do exactly the same thing. The starting value is high
|
||||
* enough to ensure that a tick is likely to occur during the incrementing loop.
|
||||
*
|
||||
* An error is flagged if at any time during the process a shared variable is
|
||||
* found to have a value other than that expected. Such an occurrence would
|
||||
* suggest an error in the mutual exclusion mechanism by which access to the
|
||||
* variable is restricted.
|
||||
*
|
||||
* The first set of two tasks poll their semaphore. The second set use blocking
|
||||
* calls.
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Scheduler include files. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "semphr.h"
|
||||
|
||||
/* Demo app include files. */
|
||||
#include "semtest.h"
|
||||
|
||||
/* The value to which the shared variables are counted. */
|
||||
#define semtstBLOCKING_EXPECTED_VALUE ( ( unsigned long ) 0xfff )
|
||||
#define semtstNON_BLOCKING_EXPECTED_VALUE ( ( unsigned long ) 0xff )
|
||||
|
||||
#define semtstSTACK_SIZE configMINIMAL_STACK_SIZE
|
||||
|
||||
#define semtstNUM_TASKS ( 4 )
|
||||
|
||||
#define semtstDELAY_FACTOR ( ( portTickType ) 10 )
|
||||
|
||||
/* The task function as described at the top of the file. */
|
||||
static portTASK_FUNCTION_PROTO( prvSemaphoreTest, pvParameters );
|
||||
|
||||
/* Structure used to pass parameters to each task. */
|
||||
typedef struct SEMAPHORE_PARAMETERS
|
||||
{
|
||||
xSemaphoreHandle xSemaphore;
|
||||
volatile unsigned long *pulSharedVariable;
|
||||
portTickType xBlockTime;
|
||||
} xSemaphoreParameters;
|
||||
|
||||
/* Variables used to check that all the tasks are still running without errors. */
|
||||
static volatile short sCheckVariables[ semtstNUM_TASKS ] = { 0 };
|
||||
static volatile short sNextCheckVariable = 0;
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vStartSemaphoreTasks( unsigned portBASE_TYPE uxPriority )
|
||||
{
|
||||
xSemaphoreParameters *pxFirstSemaphoreParameters, *pxSecondSemaphoreParameters;
|
||||
const portTickType xBlockTime = ( portTickType ) 100;
|
||||
|
||||
/* Create the structure used to pass parameters to the first two tasks. */
|
||||
pxFirstSemaphoreParameters = ( xSemaphoreParameters * ) pvPortMalloc( sizeof( xSemaphoreParameters ) );
|
||||
|
||||
if( pxFirstSemaphoreParameters != NULL )
|
||||
{
|
||||
/* Create the semaphore used by the first two tasks. */
|
||||
vSemaphoreCreateBinary( pxFirstSemaphoreParameters->xSemaphore );
|
||||
|
||||
if( pxFirstSemaphoreParameters->xSemaphore != NULL )
|
||||
{
|
||||
/* Create the variable which is to be shared by the first two tasks. */
|
||||
pxFirstSemaphoreParameters->pulSharedVariable = ( unsigned long * ) pvPortMalloc( sizeof( unsigned long ) );
|
||||
|
||||
/* Initialise the share variable to the value the tasks expect. */
|
||||
*( pxFirstSemaphoreParameters->pulSharedVariable ) = semtstNON_BLOCKING_EXPECTED_VALUE;
|
||||
|
||||
/* The first two tasks do not block on semaphore calls. */
|
||||
pxFirstSemaphoreParameters->xBlockTime = ( portTickType ) 0;
|
||||
|
||||
/* Spawn the first two tasks. As they poll they operate at the idle priority. */
|
||||
xTaskCreate( prvSemaphoreTest, ( signed char * ) "PolSEM1", semtstSTACK_SIZE, ( void * ) pxFirstSemaphoreParameters, tskIDLE_PRIORITY, ( xTaskHandle * ) NULL );
|
||||
xTaskCreate( prvSemaphoreTest, ( signed char * ) "PolSEM2", semtstSTACK_SIZE, ( void * ) pxFirstSemaphoreParameters, tskIDLE_PRIORITY, ( xTaskHandle * ) NULL );
|
||||
}
|
||||
}
|
||||
|
||||
/* Do exactly the same to create the second set of tasks, only this time
|
||||
provide a block time for the semaphore calls. */
|
||||
pxSecondSemaphoreParameters = ( xSemaphoreParameters * ) pvPortMalloc( sizeof( xSemaphoreParameters ) );
|
||||
if( pxSecondSemaphoreParameters != NULL )
|
||||
{
|
||||
vSemaphoreCreateBinary( pxSecondSemaphoreParameters->xSemaphore );
|
||||
|
||||
if( pxSecondSemaphoreParameters->xSemaphore != NULL )
|
||||
{
|
||||
pxSecondSemaphoreParameters->pulSharedVariable = ( unsigned long * ) pvPortMalloc( sizeof( unsigned long ) );
|
||||
*( pxSecondSemaphoreParameters->pulSharedVariable ) = semtstBLOCKING_EXPECTED_VALUE;
|
||||
pxSecondSemaphoreParameters->xBlockTime = xBlockTime / portTICK_RATE_MS;
|
||||
|
||||
xTaskCreate( prvSemaphoreTest, ( signed char * ) "BlkSEM1", semtstSTACK_SIZE, ( void * ) pxSecondSemaphoreParameters, uxPriority, ( xTaskHandle * ) NULL );
|
||||
xTaskCreate( prvSemaphoreTest, ( signed char * ) "BlkSEM2", semtstSTACK_SIZE, ( void * ) pxSecondSemaphoreParameters, uxPriority, ( xTaskHandle * ) NULL );
|
||||
}
|
||||
}
|
||||
|
||||
/* vQueueAddToRegistry() adds the semaphore to the registry, if one is
|
||||
in use. The registry is provided as a means for kernel aware
|
||||
debuggers to locate semaphores and has no purpose if a kernel aware debugger
|
||||
is not being used. The call to vQueueAddToRegistry() will be removed
|
||||
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
|
||||
defined to be less than 1. */
|
||||
vQueueAddToRegistry( ( xQueueHandle ) pxFirstSemaphoreParameters->xSemaphore, ( signed char * ) "Counting_Sem_1" );
|
||||
vQueueAddToRegistry( ( xQueueHandle ) pxSecondSemaphoreParameters->xSemaphore, ( signed char * ) "Counting_Sem_2" );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( prvSemaphoreTest, pvParameters )
|
||||
{
|
||||
xSemaphoreParameters *pxParameters;
|
||||
volatile unsigned long *pulSharedVariable, ulExpectedValue;
|
||||
unsigned long ulCounter;
|
||||
short sError = pdFALSE, sCheckVariableToUse;
|
||||
|
||||
/* See which check variable to use. sNextCheckVariable is not semaphore
|
||||
protected! */
|
||||
portENTER_CRITICAL();
|
||||
sCheckVariableToUse = sNextCheckVariable;
|
||||
sNextCheckVariable++;
|
||||
portEXIT_CRITICAL();
|
||||
|
||||
/* A structure is passed in as the parameter. This contains the shared
|
||||
variable being guarded. */
|
||||
pxParameters = ( xSemaphoreParameters * ) pvParameters;
|
||||
pulSharedVariable = pxParameters->pulSharedVariable;
|
||||
|
||||
/* If we are blocking we use a much higher count to ensure loads of context
|
||||
switches occur during the count. */
|
||||
if( pxParameters->xBlockTime > ( portTickType ) 0 )
|
||||
{
|
||||
ulExpectedValue = semtstBLOCKING_EXPECTED_VALUE;
|
||||
}
|
||||
else
|
||||
{
|
||||
ulExpectedValue = semtstNON_BLOCKING_EXPECTED_VALUE;
|
||||
}
|
||||
|
||||
for( ;; )
|
||||
{
|
||||
/* Try to obtain the semaphore. */
|
||||
if( xSemaphoreTake( pxParameters->xSemaphore, pxParameters->xBlockTime ) == pdPASS )
|
||||
{
|
||||
/* We have the semaphore and so expect any other tasks using the
|
||||
shared variable to have left it in the state we expect to find
|
||||
it. */
|
||||
if( *pulSharedVariable != ulExpectedValue )
|
||||
{
|
||||
sError = pdTRUE;
|
||||
}
|
||||
|
||||
/* Clear the variable, then count it back up to the expected value
|
||||
before releasing the semaphore. Would expect a context switch or
|
||||
two during this time. */
|
||||
for( ulCounter = ( unsigned long ) 0; ulCounter <= ulExpectedValue; ulCounter++ )
|
||||
{
|
||||
*pulSharedVariable = ulCounter;
|
||||
if( *pulSharedVariable != ulCounter )
|
||||
{
|
||||
sError = pdTRUE;
|
||||
}
|
||||
}
|
||||
|
||||
/* Release the semaphore, and if no errors have occurred increment the check
|
||||
variable. */
|
||||
if( xSemaphoreGive( pxParameters->xSemaphore ) == pdFALSE )
|
||||
{
|
||||
sError = pdTRUE;
|
||||
}
|
||||
|
||||
if( sError == pdFALSE )
|
||||
{
|
||||
if( sCheckVariableToUse < semtstNUM_TASKS )
|
||||
{
|
||||
( sCheckVariables[ sCheckVariableToUse ] )++;
|
||||
}
|
||||
}
|
||||
|
||||
/* If we have a block time then we are running at a priority higher
|
||||
than the idle priority. This task takes a long time to complete
|
||||
a cycle (deliberately so to test the guarding) so will be starving
|
||||
out lower priority tasks. Block for some time to allow give lower
|
||||
priority tasks some processor time. */
|
||||
vTaskDelay( pxParameters->xBlockTime * semtstDELAY_FACTOR );
|
||||
}
|
||||
else
|
||||
{
|
||||
if( pxParameters->xBlockTime == ( portTickType ) 0 )
|
||||
{
|
||||
/* We have not got the semaphore yet, so no point using the
|
||||
processor. We are not blocking when attempting to obtain the
|
||||
semaphore. */
|
||||
taskYIELD();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* This is called to check that all the created tasks are still running. */
|
||||
portBASE_TYPE xAreSemaphoreTasksStillRunning( void )
|
||||
{
|
||||
static short sLastCheckVariables[ semtstNUM_TASKS ] = { 0 };
|
||||
portBASE_TYPE xTask, xReturn = pdTRUE;
|
||||
|
||||
for( xTask = 0; xTask < semtstNUM_TASKS; xTask++ )
|
||||
{
|
||||
if( sLastCheckVariables[ xTask ] == sCheckVariables[ xTask ] )
|
||||
{
|
||||
xReturn = pdFALSE;
|
||||
}
|
||||
|
||||
sLastCheckVariables[ xTask ] = sCheckVariables[ xTask ];
|
||||
}
|
||||
|
||||
return xReturn;
|
||||
}
|
||||
|
||||
|
@ -0,0 +1,353 @@
|
||||
/*
|
||||
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
|
||||
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS tutorial books are available in pdf and paperback. *
|
||||
* Complete, revised, and edited pdf reference manuals are also *
|
||||
* available. *
|
||||
* *
|
||||
* Purchasing FreeRTOS documentation will not only help you, by *
|
||||
* ensuring you get running as quickly as possible and with an *
|
||||
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
||||
* the FreeRTOS project to continue with its mission of providing *
|
||||
* professional grade, cross platform, de facto standard solutions *
|
||||
* for microcontrollers - completely free of charge! *
|
||||
* *
|
||||
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
||||
* *
|
||||
* Thank you for using FreeRTOS, and thank you for your support! *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
||||
>>>NOTE<<< The modification to the GPL is included to allow you to
|
||||
distribute a combined work that includes FreeRTOS without being obliged to
|
||||
provide the source code for proprietary components outside of the FreeRTOS
|
||||
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details. You should have received a copy of the GNU General Public
|
||||
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
||||
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
||||
by writing to Richard Barry, contact details for whom are available on the
|
||||
FreeRTOS WEB site.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
|
||||
http://www.FreeRTOS.org - Documentation, latest information, license and
|
||||
contact details.
|
||||
|
||||
http://www.SafeRTOS.com - A version that is certified for use in safety
|
||||
critical systems.
|
||||
|
||||
http://www.OpenRTOS.com - Commercial support, development, porting,
|
||||
licensing and training services.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Creates eight tasks, each of which loops continuously performing a floating
|
||||
* point calculation - using single precision variables.
|
||||
*
|
||||
* All the tasks run at the idle priority and never block or yield. This causes
|
||||
* all eight tasks to time slice with the idle task. Running at the idle priority
|
||||
* means that these tasks will get pre-empted any time another task is ready to run
|
||||
* or a time slice occurs. More often than not the pre-emption will occur mid
|
||||
* calculation, creating a good test of the schedulers context switch mechanism - a
|
||||
* calculation producing an unexpected result could be a symptom of a corruption in
|
||||
* the context of a task.
|
||||
*/
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <math.h>
|
||||
|
||||
/* Scheduler include files. */
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
|
||||
/* Demo program include files. */
|
||||
#include "flop.h"
|
||||
|
||||
#define mathSTACK_SIZE configMINIMAL_STACK_SIZE
|
||||
#define mathNUMBER_OF_TASKS ( 8 )
|
||||
|
||||
/* Four tasks, each of which performs a different floating point calculation.
|
||||
Each of the four is created twice. */
|
||||
static portTASK_FUNCTION_PROTO( vCompetingMathTask1, pvParameters );
|
||||
static portTASK_FUNCTION_PROTO( vCompetingMathTask2, pvParameters );
|
||||
static portTASK_FUNCTION_PROTO( vCompetingMathTask3, pvParameters );
|
||||
static portTASK_FUNCTION_PROTO( vCompetingMathTask4, pvParameters );
|
||||
|
||||
/* These variables are used to check that all the tasks are still running. If a
|
||||
task gets a calculation wrong it will
|
||||
stop incrementing its check variable. */
|
||||
static volatile unsigned short usTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vStartMathTasks( unsigned portBASE_TYPE uxPriority )
|
||||
{
|
||||
xTaskCreate( vCompetingMathTask1, ( signed char * ) "Math1", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
|
||||
xTaskCreate( vCompetingMathTask2, ( signed char * ) "Math2", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
|
||||
xTaskCreate( vCompetingMathTask3, ( signed char * ) "Math3", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
|
||||
xTaskCreate( vCompetingMathTask4, ( signed char * ) "Math4", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
|
||||
xTaskCreate( vCompetingMathTask1, ( signed char * ) "Math5", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 4 ] ), uxPriority, NULL );
|
||||
xTaskCreate( vCompetingMathTask2, ( signed char * ) "Math6", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 5 ] ), uxPriority, NULL );
|
||||
xTaskCreate( vCompetingMathTask3, ( signed char * ) "Math7", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 6 ] ), uxPriority, NULL );
|
||||
xTaskCreate( vCompetingMathTask4, ( signed char * ) "Math8", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 7 ] ), uxPriority, NULL );
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vCompetingMathTask1, pvParameters )
|
||||
{
|
||||
volatile float f1, f2, f3, f4;
|
||||
volatile unsigned short *pusTaskCheckVariable;
|
||||
volatile float fAnswer;
|
||||
short sError = pdFALSE;
|
||||
|
||||
f1 = 123.4567F;
|
||||
f2 = 2345.6789F;
|
||||
f3 = -918.222F;
|
||||
|
||||
fAnswer = ( f1 + f2 ) * f3;
|
||||
|
||||
/* The variable this task increments to show it is still running is passed in
|
||||
as the parameter. */
|
||||
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
|
||||
|
||||
/* Keep performing a calculation and checking the result against a constant. */
|
||||
for(;;)
|
||||
{
|
||||
f1 = 123.4567F;
|
||||
f2 = 2345.6789F;
|
||||
f3 = -918.222F;
|
||||
|
||||
f4 = ( f1 + f2 ) * f3;
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
|
||||
/* If the calculation does not match the expected constant, stop the
|
||||
increment of the check variable. */
|
||||
if( fabs( f4 - fAnswer ) > 0.001F )
|
||||
{
|
||||
sError = pdTRUE;
|
||||
}
|
||||
|
||||
if( sError == pdFALSE )
|
||||
{
|
||||
/* If the calculation has always been correct, increment the check
|
||||
variable so we know this task is still running okay. */
|
||||
( *pusTaskCheckVariable )++;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vCompetingMathTask2, pvParameters )
|
||||
{
|
||||
volatile float f1, f2, f3, f4;
|
||||
volatile unsigned short *pusTaskCheckVariable;
|
||||
volatile float fAnswer;
|
||||
short sError = pdFALSE;
|
||||
|
||||
f1 = -389.38F;
|
||||
f2 = 32498.2F;
|
||||
f3 = -2.0001F;
|
||||
|
||||
fAnswer = ( f1 / f2 ) * f3;
|
||||
|
||||
|
||||
/* The variable this task increments to show it is still running is passed in
|
||||
as the parameter. */
|
||||
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
|
||||
|
||||
/* Keep performing a calculation and checking the result against a constant. */
|
||||
for( ;; )
|
||||
{
|
||||
f1 = -389.38F;
|
||||
f2 = 32498.2F;
|
||||
f3 = -2.0001F;
|
||||
|
||||
f4 = ( f1 / f2 ) * f3;
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
|
||||
/* If the calculation does not match the expected constant, stop the
|
||||
increment of the check variable. */
|
||||
if( fabs( f4 - fAnswer ) > 0.001F )
|
||||
{
|
||||
sError = pdTRUE;
|
||||
}
|
||||
|
||||
if( sError == pdFALSE )
|
||||
{
|
||||
/* If the calculation has always been correct, increment the check
|
||||
variable so we know
|
||||
this task is still running okay. */
|
||||
( *pusTaskCheckVariable )++;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vCompetingMathTask3, pvParameters )
|
||||
{
|
||||
volatile float *pfArray, fTotal1, fTotal2, fDifference, fPosition;
|
||||
volatile unsigned short *pusTaskCheckVariable;
|
||||
const size_t xArraySize = 10;
|
||||
size_t xPosition;
|
||||
short sError = pdFALSE;
|
||||
|
||||
/* The variable this task increments to show it is still running is passed in
|
||||
as the parameter. */
|
||||
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
|
||||
|
||||
pfArray = ( float * ) pvPortMalloc( xArraySize * sizeof( float ) );
|
||||
|
||||
/* Keep filling an array, keeping a running total of the values placed in the
|
||||
array. Then run through the array adding up all the values. If the two totals
|
||||
do not match, stop the check variable from incrementing. */
|
||||
for( ;; )
|
||||
{
|
||||
fTotal1 = 0.0F;
|
||||
fTotal2 = 0.0F;
|
||||
fPosition = 0.0F;
|
||||
|
||||
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
|
||||
{
|
||||
pfArray[ xPosition ] = fPosition + 5.5F;
|
||||
fTotal1 += fPosition + 5.5F;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
|
||||
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
|
||||
{
|
||||
fTotal2 += pfArray[ xPosition ];
|
||||
}
|
||||
|
||||
fDifference = fTotal1 - fTotal2;
|
||||
if( fabs( fDifference ) > 0.001F )
|
||||
{
|
||||
sError = pdTRUE;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
|
||||
if( sError == pdFALSE )
|
||||
{
|
||||
/* If the calculation has always been correct, increment the check
|
||||
variable so we know this task is still running okay. */
|
||||
( *pusTaskCheckVariable )++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static portTASK_FUNCTION( vCompetingMathTask4, pvParameters )
|
||||
{
|
||||
volatile float *pfArray, fTotal1, fTotal2, fDifference, fPosition;
|
||||
volatile unsigned short *pusTaskCheckVariable;
|
||||
const size_t xArraySize = 10;
|
||||
size_t xPosition;
|
||||
short sError = pdFALSE;
|
||||
|
||||
/* The variable this task increments to show it is still running is passed in
|
||||
as the parameter. */
|
||||
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
|
||||
|
||||
pfArray = ( float * ) pvPortMalloc( xArraySize * sizeof( float ) );
|
||||
|
||||
/* Keep filling an array, keeping a running total of the values placed in the
|
||||
array. Then run through the array adding up all the values. If the two totals
|
||||
do not match, stop the check variable from incrementing. */
|
||||
for( ;; )
|
||||
{
|
||||
fTotal1 = 0.0F;
|
||||
fTotal2 = 0.0F;
|
||||
fPosition = 0.0F;
|
||||
|
||||
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
|
||||
{
|
||||
pfArray[ xPosition ] = fPosition * 12.123F;
|
||||
fTotal1 += fPosition * 12.123F;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
|
||||
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
|
||||
{
|
||||
fTotal2 += pfArray[ xPosition ];
|
||||
}
|
||||
|
||||
fDifference = fTotal1 - fTotal2;
|
||||
if( fabs( fDifference ) > 0.001F )
|
||||
{
|
||||
sError = pdTRUE;
|
||||
}
|
||||
|
||||
#if configUSE_PREEMPTION == 0
|
||||
taskYIELD();
|
||||
#endif
|
||||
|
||||
if( sError == pdFALSE )
|
||||
{
|
||||
/* If the calculation has always been correct, increment the check
|
||||
variable so we know this task is still running okay. */
|
||||
( *pusTaskCheckVariable )++;
|
||||
}
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* This is called to check that all the created tasks are still running. */
|
||||
portBASE_TYPE xAreMathsTaskStillRunning( void )
|
||||
{
|
||||
/* Keep a history of the check variables so we know if they have been incremented
|
||||
since the last call. */
|
||||
static unsigned short usLastTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
|
||||
portBASE_TYPE xReturn = pdTRUE, xTask;
|
||||
|
||||
/* Check the maths tasks are still running by ensuring their check variables
|
||||
are still incrementing. */
|
||||
for( xTask = 0; xTask < mathNUMBER_OF_TASKS; xTask++ )
|
||||
{
|
||||
if( usTaskCheck[ xTask ] == usLastTaskCheck[ xTask ] )
|
||||
{
|
||||
/* The check has not incremented so an error exists. */
|
||||
xReturn = pdFALSE;
|
||||
}
|
||||
|
||||
usLastTaskCheck[ xTask ] = usTaskCheck[ xTask ];
|
||||
}
|
||||
|
||||
return xReturn;
|
||||
}
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue