Add the common demo files to the MicroBlaze project - this directory will be removed prior to release.

pull/4/head
Richard Barry 14 years ago
parent 53d52c0cd3
commit be9b7e82c8

@ -0,0 +1,308 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/*
* Creates six tasks that operate on three queues as follows:
*
* The first two tasks send and receive an incrementing number to/from a queue.
* One task acts as a producer and the other as the consumer. The consumer is a
* higher priority than the producer and is set to block on queue reads. The queue
* only has space for one item - as soon as the producer posts a message on the
* queue the consumer will unblock, pre-empt the producer, and remove the item.
*
* The second two tasks work the other way around. Again the queue used only has
* enough space for one item. This time the consumer has a lower priority than the
* producer. The producer will try to post on the queue blocking when the queue is
* full. When the consumer wakes it will remove the item from the queue, causing
* the producer to unblock, pre-empt the consumer, and immediately re-fill the
* queue.
*
* The last two tasks use the same queue producer and consumer functions. This time the queue has
* enough space for lots of items and the tasks operate at the same priority. The
* producer will execute, placing items into the queue. The consumer will start
* executing when either the queue becomes full (causing the producer to block) or
* a context switch occurs (tasks of the same priority will time slice).
*
*/
/*
Changes from V4.1.1
+ The second set of tasks were created the wrong way around. This has been
corrected.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo program include files. */
#include "BlockQ.h"
#define blckqSTACK_SIZE configMINIMAL_STACK_SIZE
#define blckqNUM_TASK_SETS ( 3 )
/* Structure used to pass parameters to the blocking queue tasks. */
typedef struct BLOCKING_QUEUE_PARAMETERS
{
xQueueHandle xQueue; /*< The queue to be used by the task. */
portTickType xBlockTime; /*< The block time to use on queue reads/writes. */
volatile short *psCheckVariable; /*< Incremented on each successful cycle to check the task is still running. */
} xBlockingQueueParameters;
/* Task function that creates an incrementing number and posts it on a queue. */
static portTASK_FUNCTION_PROTO( vBlockingQueueProducer, pvParameters );
/* Task function that removes the incrementing number from a queue and checks that
it is the expected number. */
static portTASK_FUNCTION_PROTO( vBlockingQueueConsumer, pvParameters );
/* Variables which are incremented each time an item is removed from a queue, and
found to be the expected value.
These are used to check that the tasks are still running. */
static volatile short sBlockingConsumerCount[ blckqNUM_TASK_SETS ] = { ( unsigned short ) 0, ( unsigned short ) 0, ( unsigned short ) 0 };
/* Variable which are incremented each time an item is posted on a queue. These
are used to check that the tasks are still running. */
static volatile short sBlockingProducerCount[ blckqNUM_TASK_SETS ] = { ( unsigned short ) 0, ( unsigned short ) 0, ( unsigned short ) 0 };
/*-----------------------------------------------------------*/
void vStartBlockingQueueTasks( unsigned portBASE_TYPE uxPriority )
{
xBlockingQueueParameters *pxQueueParameters1, *pxQueueParameters2;
xBlockingQueueParameters *pxQueueParameters3, *pxQueueParameters4;
xBlockingQueueParameters *pxQueueParameters5, *pxQueueParameters6;
const unsigned portBASE_TYPE uxQueueSize1 = 1, uxQueueSize5 = 5;
const portTickType xBlockTime = ( portTickType ) 1000 / portTICK_RATE_MS;
const portTickType xDontBlock = ( portTickType ) 0;
/* Create the first two tasks as described at the top of the file. */
/* First create the structure used to pass parameters to the consumer tasks. */
pxQueueParameters1 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
/* Create the queue used by the first two tasks to pass the incrementing number.
Pass a pointer to the queue in the parameter structure. */
pxQueueParameters1->xQueue = xQueueCreate( uxQueueSize1, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
/* The consumer is created first so gets a block time as described above. */
pxQueueParameters1->xBlockTime = xBlockTime;
/* Pass in the variable that this task is going to increment so we can check it
is still running. */
pxQueueParameters1->psCheckVariable = &( sBlockingConsumerCount[ 0 ] );
/* Create the structure used to pass parameters to the producer task. */
pxQueueParameters2 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
/* Pass the queue to this task also, using the parameter structure. */
pxQueueParameters2->xQueue = pxQueueParameters1->xQueue;
/* The producer is not going to block - as soon as it posts the consumer will
wake and remove the item so the producer should always have room to post. */
pxQueueParameters2->xBlockTime = xDontBlock;
/* Pass in the variable that this task is going to increment so we can check
it is still running. */
pxQueueParameters2->psCheckVariable = &( sBlockingProducerCount[ 0 ] );
/* Note the producer has a lower priority than the consumer when the tasks are
spawned. */
xTaskCreate( vBlockingQueueConsumer, ( signed char * ) "QConsB1", blckqSTACK_SIZE, ( void * ) pxQueueParameters1, uxPriority, NULL );
xTaskCreate( vBlockingQueueProducer, ( signed char * ) "QProdB2", blckqSTACK_SIZE, ( void * ) pxQueueParameters2, tskIDLE_PRIORITY, NULL );
/* Create the second two tasks as described at the top of the file. This uses
the same mechanism but reverses the task priorities. */
pxQueueParameters3 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters3->xQueue = xQueueCreate( uxQueueSize1, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
pxQueueParameters3->xBlockTime = xDontBlock;
pxQueueParameters3->psCheckVariable = &( sBlockingProducerCount[ 1 ] );
pxQueueParameters4 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters4->xQueue = pxQueueParameters3->xQueue;
pxQueueParameters4->xBlockTime = xBlockTime;
pxQueueParameters4->psCheckVariable = &( sBlockingConsumerCount[ 1 ] );
xTaskCreate( vBlockingQueueConsumer, ( signed char * ) "QProdB3", blckqSTACK_SIZE, ( void * ) pxQueueParameters3, tskIDLE_PRIORITY, NULL );
xTaskCreate( vBlockingQueueProducer, ( signed char * ) "QConsB4", blckqSTACK_SIZE, ( void * ) pxQueueParameters4, uxPriority, NULL );
/* Create the last two tasks as described above. The mechanism is again just
the same. This time both parameter structures are given a block time. */
pxQueueParameters5 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters5->xQueue = xQueueCreate( uxQueueSize5, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
pxQueueParameters5->xBlockTime = xBlockTime;
pxQueueParameters5->psCheckVariable = &( sBlockingProducerCount[ 2 ] );
pxQueueParameters6 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters6->xQueue = pxQueueParameters5->xQueue;
pxQueueParameters6->xBlockTime = xBlockTime;
pxQueueParameters6->psCheckVariable = &( sBlockingConsumerCount[ 2 ] );
xTaskCreate( vBlockingQueueProducer, ( signed char * ) "QProdB5", blckqSTACK_SIZE, ( void * ) pxQueueParameters5, tskIDLE_PRIORITY, NULL );
xTaskCreate( vBlockingQueueConsumer, ( signed char * ) "QConsB6", blckqSTACK_SIZE, ( void * ) pxQueueParameters6, tskIDLE_PRIORITY, NULL );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vBlockingQueueProducer, pvParameters )
{
unsigned short usValue = 0;
xBlockingQueueParameters *pxQueueParameters;
short sErrorEverOccurred = pdFALSE;
pxQueueParameters = ( xBlockingQueueParameters * ) pvParameters;
for( ;; )
{
if( xQueueSend( pxQueueParameters->xQueue, ( void * ) &usValue, pxQueueParameters->xBlockTime ) != pdPASS )
{
sErrorEverOccurred = pdTRUE;
}
else
{
/* We have successfully posted a message, so increment the variable
used to check we are still running. */
if( sErrorEverOccurred == pdFALSE )
{
( *pxQueueParameters->psCheckVariable )++;
}
/* Increment the variable we are going to post next time round. The
consumer will expect the numbers to follow in numerical order. */
++usValue;
}
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vBlockingQueueConsumer, pvParameters )
{
unsigned short usData, usExpectedValue = 0;
xBlockingQueueParameters *pxQueueParameters;
short sErrorEverOccurred = pdFALSE;
pxQueueParameters = ( xBlockingQueueParameters * ) pvParameters;
for( ;; )
{
if( xQueueReceive( pxQueueParameters->xQueue, &usData, pxQueueParameters->xBlockTime ) == pdPASS )
{
if( usData != usExpectedValue )
{
/* Catch-up. */
usExpectedValue = usData;
sErrorEverOccurred = pdTRUE;
}
else
{
/* We have successfully received a message, so increment the
variable used to check we are still running. */
if( sErrorEverOccurred == pdFALSE )
{
( *pxQueueParameters->psCheckVariable )++;
}
/* Increment the value we expect to remove from the queue next time
round. */
++usExpectedValue;
}
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreBlockingQueuesStillRunning( void )
{
static short sLastBlockingConsumerCount[ blckqNUM_TASK_SETS ] = { ( unsigned short ) 0, ( unsigned short ) 0, ( unsigned short ) 0 };
static short sLastBlockingProducerCount[ blckqNUM_TASK_SETS ] = { ( unsigned short ) 0, ( unsigned short ) 0, ( unsigned short ) 0 };
portBASE_TYPE xReturn = pdPASS, xTasks;
/* Not too worried about mutual exclusion on these variables as they are 16
bits and we are only reading them. We also only care to see if they have
changed or not.
Loop through each check variable to and return pdFALSE if any are found not
to have changed since the last call. */
for( xTasks = 0; xTasks < blckqNUM_TASK_SETS; xTasks++ )
{
if( sBlockingConsumerCount[ xTasks ] == sLastBlockingConsumerCount[ xTasks ] )
{
xReturn = pdFALSE;
}
sLastBlockingConsumerCount[ xTasks ] = sBlockingConsumerCount[ xTasks ];
if( sBlockingProducerCount[ xTasks ] == sLastBlockingProducerCount[ xTasks ] )
{
xReturn = pdFALSE;
}
sLastBlockingProducerCount[ xTasks ] = sBlockingProducerCount[ xTasks ];
}
return xReturn;
}

@ -0,0 +1,572 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/*
* Tests the extra queue functionality introduced in FreeRTOS.org V4.5.0 -
* including xQueueSendToFront(), xQueueSendToBack(), xQueuePeek() and
* mutex behaviour.
*
* See the comments above the prvSendFrontAndBackTest() and
* prvLowPriorityMutexTask() prototypes below for more information.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
/* Demo program include files. */
#include "GenQTest.h"
#define genqQUEUE_LENGTH ( 5 )
#define genqNO_BLOCK ( 0 )
#define genqMUTEX_LOW_PRIORITY ( tskIDLE_PRIORITY )
#define genqMUTEX_TEST_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define genqMUTEX_MEDIUM_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define genqMUTEX_HIGH_PRIORITY ( tskIDLE_PRIORITY + 3 )
/*-----------------------------------------------------------*/
/*
* Tests the behaviour of the xQueueSendToFront() and xQueueSendToBack()
* macros by using both to fill a queue, then reading from the queue to
* check the resultant queue order is as expected. Queue data is also
* peeked.
*/
static void prvSendFrontAndBackTest( void *pvParameters );
/*
* The following three tasks are used to demonstrate the mutex behaviour.
* Each task is given a different priority to demonstrate the priority
* inheritance mechanism.
*
* The low priority task obtains a mutex. After this a high priority task
* attempts to obtain the same mutex, causing its priority to be inherited
* by the low priority task. The task with the inherited high priority then
* resumes a medium priority task to ensure it is not blocked by the medium
* priority task while it holds the inherited high priority. Once the mutex
* is returned the task with the inherited priority returns to its original
* low priority, and is therefore immediately preempted by first the high
* priority task and then the medium prioroity task before it can continue.
*/
static void prvLowPriorityMutexTask( void *pvParameters );
static void prvMediumPriorityMutexTask( void *pvParameters );
static void prvHighPriorityMutexTask( void *pvParameters );
/*-----------------------------------------------------------*/
/* Flag that will be latched to pdTRUE should any unexpected behaviour be
detected in any of the tasks. */
static portBASE_TYPE xErrorDetected = pdFALSE;
/* Counters that are incremented on each cycle of a test. This is used to
detect a stalled task - a test that is no longer running. */
static volatile unsigned portLONG ulLoopCounter = 0;
static volatile unsigned portLONG ulLoopCounter2 = 0;
/* The variable that is guarded by the mutex in the mutex demo tasks. */
static volatile unsigned portLONG ulGuardedVariable = 0;
/* Handles used in the mutext test to suspend and resume the high and medium
priority mutex test tasks. */
static xTaskHandle xHighPriorityMutexTask, xMediumPriorityMutexTask;
/*-----------------------------------------------------------*/
void vStartGenericQueueTasks( unsigned portBASE_TYPE uxPriority )
{
xQueueHandle xQueue;
xSemaphoreHandle xMutex;
/* Create the queue that we are going to use for the
prvSendFrontAndBackTest demo. */
xQueue = xQueueCreate( genqQUEUE_LENGTH, sizeof( unsigned portLONG ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xQueue, ( signed portCHAR * ) "Gen_Queue_Test" );
/* Create the demo task and pass it the queue just created. We are
passing the queue handle by value so it does not matter that it is
declared on the stack here. */
xTaskCreate( prvSendFrontAndBackTest, ( signed portCHAR * )"GenQ", configMINIMAL_STACK_SIZE, ( void * ) xQueue, uxPriority, NULL );
/* Create the mutex used by the prvMutexTest task. */
xMutex = xSemaphoreCreateMutex();
/* vQueueAddToRegistry() adds the mutex to the registry, if one is
in use. The registry is provided as a means for kernel aware
debuggers to locate mutexes and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( ( xQueueHandle ) xMutex, ( signed portCHAR * ) "Gen_Queue_Mutex" );
/* Create the mutex demo tasks and pass it the mutex just created. We are
passing the mutex handle by value so it does not matter that it is declared
on the stack here. */
xTaskCreate( prvLowPriorityMutexTask, ( signed portCHAR * )"MuLow", configMINIMAL_STACK_SIZE, ( void * ) xMutex, genqMUTEX_LOW_PRIORITY, NULL );
xTaskCreate( prvMediumPriorityMutexTask, ( signed portCHAR * )"MuMed", configMINIMAL_STACK_SIZE, NULL, genqMUTEX_MEDIUM_PRIORITY, &xMediumPriorityMutexTask );
xTaskCreate( prvHighPriorityMutexTask, ( signed portCHAR * )"MuHigh", configMINIMAL_STACK_SIZE, ( void * ) xMutex, genqMUTEX_HIGH_PRIORITY, &xHighPriorityMutexTask );
}
/*-----------------------------------------------------------*/
static void prvSendFrontAndBackTest( void *pvParameters )
{
unsigned portLONG ulData, ulData2;
xQueueHandle xQueue;
#ifdef USE_STDIO
void vPrintDisplayMessage( const portCHAR * const * ppcMessageToSend );
const portCHAR * const pcTaskStartMsg = "Queue SendToFront/SendToBack/Peek test started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
xQueue = ( xQueueHandle ) pvParameters;
for( ;; )
{
/* The queue is empty, so sending an item to the back of the queue
should have the same efect as sending it to the front of the queue.
First send to the front and check everything is as expected. */
xQueueSendToFront( xQueue, ( void * ) &ulLoopCounter, genqNO_BLOCK );
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
xErrorDetected = pdTRUE;
}
if( xQueueReceive( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* The data we sent to the queue should equal the data we just received
from the queue. */
if( ulLoopCounter != ulData )
{
xErrorDetected = pdTRUE;
}
/* Then do the same, sending the data to the back, checking everything
is as expected. */
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
xQueueSendToBack( xQueue, ( void * ) &ulLoopCounter, genqNO_BLOCK );
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
xErrorDetected = pdTRUE;
}
if( xQueueReceive( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
/* The data we sent to the queue should equal the data we just received
from the queue. */
if( ulLoopCounter != ulData )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Place 2, 3, 4 into the queue, adding items to the back of the queue. */
for( ulData = 2; ulData < 5; ulData++ )
{
xQueueSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK );
}
/* Now the order in the queue should be 2, 3, 4, with 2 being the first
thing to be read out. Now add 1 then 0 to the front of the queue. */
if( uxQueueMessagesWaiting( xQueue ) != 3 )
{
xErrorDetected = pdTRUE;
}
ulData = 1;
xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK );
ulData = 0;
xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK );
/* Now the queue should be full, and when we read the data out we
should receive 0, 1, 2, 3, 4. */
if( uxQueueMessagesWaiting( xQueue ) != 5 )
{
xErrorDetected = pdTRUE;
}
if( xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
{
xErrorDetected = pdTRUE;
}
if( xQueueSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Check the data we read out is in the expected order. */
for( ulData = 0; ulData < genqQUEUE_LENGTH; ulData++ )
{
/* Try peeking the data first. */
if( xQueuePeek( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulData != ulData2 )
{
xErrorDetected = pdTRUE;
}
/* Now try receiving the data for real. The value should be the
same. Clobber the value first so we know we really received it. */
ulData2 = ~ulData2;
if( xQueueReceive( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulData != ulData2 )
{
xErrorDetected = pdTRUE;
}
}
/* The queue should now be empty again. */
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Our queue is empty once more, add 10, 11 to the back. */
ulData = 10;
if( xQueueSend( xQueue, &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
ulData = 11;
if( xQueueSend( xQueue, &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 2 )
{
xErrorDetected = pdTRUE;
}
/* Now we should have 10, 11 in the queue. Add 7, 8, 9 to the
front. */
for( ulData = 9; ulData >= 7; ulData-- )
{
if( xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
}
/* Now check that the queue is full, and that receiving data provides
the expected sequence of 7, 8, 9, 10, 11. */
if( uxQueueMessagesWaiting( xQueue ) != 5 )
{
xErrorDetected = pdTRUE;
}
if( xQueueSendToFront( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
{
xErrorDetected = pdTRUE;
}
if( xQueueSendToBack( xQueue, ( void * ) &ulData, genqNO_BLOCK ) != errQUEUE_FULL )
{
xErrorDetected = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* Check the data we read out is in the expected order. */
for( ulData = 7; ulData < ( 7 + genqQUEUE_LENGTH ); ulData++ )
{
if( xQueueReceive( xQueue, &ulData2, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulData != ulData2 )
{
xErrorDetected = pdTRUE;
}
}
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
ulLoopCounter++;
}
}
/*-----------------------------------------------------------*/
static void prvLowPriorityMutexTask( void *pvParameters )
{
xSemaphoreHandle xMutex = ( xSemaphoreHandle ) pvParameters;
#ifdef USE_STDIO
void vPrintDisplayMessage( const portCHAR * const * ppcMessageToSend );
const portCHAR * const pcTaskStartMsg = "Mutex with priority inheritance test started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
#endif
for( ;; )
{
/* Take the mutex. It should be available now. */
if( xSemaphoreTake( xMutex, genqNO_BLOCK ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* Set our guarded variable to a known start value. */
ulGuardedVariable = 0;
/* Our priority should be as per that assigned when the task was
created. */
if( uxTaskPriorityGet( NULL ) != genqMUTEX_LOW_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Now unsuspend the high priority task. This will attempt to take the
mutex, and block when it finds it cannot obtain it. */
vTaskResume( xHighPriorityMutexTask );
/* We should now have inherited the prioritoy of the high priority task,
as by now it will have attempted to get the mutex. */
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* We can attempt to set our priority to the test priority - between the
idle priority and the medium/high test priorities, but our actual
prioroity should remain at the high priority. */
vTaskPrioritySet( NULL, genqMUTEX_TEST_PRIORITY );
if( uxTaskPriorityGet( NULL ) != genqMUTEX_HIGH_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Now unsuspend the medium priority task. This should not run as our
inherited priority is above that of the medium priority task. */
vTaskResume( xMediumPriorityMutexTask );
/* If the did run then it will have incremented our guarded variable. */
if( ulGuardedVariable != 0 )
{
xErrorDetected = pdTRUE;
}
/* When we give back the semaphore our priority should be disinherited
back to the priority to which we attempted to set ourselves. This means
that when the high priority task next blocks, the medium priority task
should execute and increment the guarded variable. When we next run
both the high and medium priority tasks will have been suspended again. */
if( xSemaphoreGive( xMutex ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* Check that the guarded variable did indeed increment... */
if( ulGuardedVariable != 1 )
{
xErrorDetected = pdTRUE;
}
/* ... and that our priority has been disinherited to
genqMUTEX_TEST_PRIORITY. */
if( uxTaskPriorityGet( NULL ) != genqMUTEX_TEST_PRIORITY )
{
xErrorDetected = pdTRUE;
}
/* Set our priority back to our original priority ready for the next
loop around this test. */
vTaskPrioritySet( NULL, genqMUTEX_LOW_PRIORITY );
/* Just to show we are still running. */
ulLoopCounter2++;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
static void prvMediumPriorityMutexTask( void *pvParameters )
{
( void ) pvParameters;
for( ;; )
{
/* The medium priority task starts by suspending itself. The low
priority task will unsuspend this task when required. */
vTaskSuspend( NULL );
/* When this task unsuspends all it does is increment the guarded
variable, this is so the low priority task knows that it has
executed. */
ulGuardedVariable++;
}
}
/*-----------------------------------------------------------*/
static void prvHighPriorityMutexTask( void *pvParameters )
{
xSemaphoreHandle xMutex = ( xSemaphoreHandle ) pvParameters;
for( ;; )
{
/* The high priority task starts by suspending itself. The low
priority task will unsuspend this task when required. */
vTaskSuspend( NULL );
/* When this task unsuspends all it does is attempt to obtain
the mutex. It should find the mutex is not available so a
block time is specified. */
if( xSemaphoreTake( xMutex, portMAX_DELAY ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
/* When we eventually obtain the mutex we just give it back then
return to suspend ready for the next test. */
if( xSemaphoreGive( xMutex ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreGenericQueueTasksStillRunning( void )
{
static unsigned portLONG ulLastLoopCounter = 0, ulLastLoopCounter2 = 0;
/* If the demo task is still running then we expect the loopcounters to
have incremented since this function was last called. */
if( ulLastLoopCounter == ulLoopCounter )
{
xErrorDetected = pdTRUE;
}
if( ulLastLoopCounter2 == ulLoopCounter2 )
{
xErrorDetected = pdTRUE;
}
ulLastLoopCounter = ulLoopCounter;
ulLastLoopCounter2 = ulLoopCounter2;
/* Errors detected in the task itself will have latched xErrorDetected
to true. */
return !xErrorDetected;
}

@ -0,0 +1,246 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/*
* This version of PollQ. c is for use on systems that have limited stack
* space and no display facilities. The complete version can be found in
* the Demo/Common/Full directory.
*
* Creates two tasks that communicate over a single queue. One task acts as a
* producer, the other a consumer.
*
* The producer loops for three iteration, posting an incrementing number onto the
* queue each cycle. It then delays for a fixed period before doing exactly the
* same again.
*
* The consumer loops emptying the queue. Each item removed from the queue is
* checked to ensure it contains the expected value. When the queue is empty it
* blocks for a fixed period, then does the same again.
*
* All queue access is performed without blocking. The consumer completely empties
* the queue each time it runs so the producer should never find the queue full.
*
* An error is flagged if the consumer obtains an unexpected value or the producer
* find the queue is full.
*/
/*
Changes from V2.0.0
+ Delay periods are now specified using variables and constants of
portTickType rather than unsigned long.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo program include files. */
#include "PollQ.h"
#define pollqSTACK_SIZE configMINIMAL_STACK_SIZE
#define pollqQUEUE_SIZE ( 10 )
#define pollqPRODUCER_DELAY ( ( portTickType ) 200 / portTICK_RATE_MS )
#define pollqCONSUMER_DELAY ( pollqPRODUCER_DELAY - ( portTickType ) ( 20 / portTICK_RATE_MS ) )
#define pollqNO_DELAY ( ( portTickType ) 0 )
#define pollqVALUES_TO_PRODUCE ( ( signed portBASE_TYPE ) 3 )
#define pollqINITIAL_VALUE ( ( signed portBASE_TYPE ) 0 )
/* The task that posts the incrementing number onto the queue. */
static portTASK_FUNCTION_PROTO( vPolledQueueProducer, pvParameters );
/* The task that empties the queue. */
static portTASK_FUNCTION_PROTO( vPolledQueueConsumer, pvParameters );
/* Variables that are used to check that the tasks are still running with no
errors. */
static volatile signed portBASE_TYPE xPollingConsumerCount = pollqINITIAL_VALUE, xPollingProducerCount = pollqINITIAL_VALUE;
/*-----------------------------------------------------------*/
void vStartPolledQueueTasks( unsigned portBASE_TYPE uxPriority )
{
static xQueueHandle xPolledQueue;
/* Create the queue used by the producer and consumer. */
xPolledQueue = xQueueCreate( pollqQUEUE_SIZE, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xPolledQueue, ( signed char * ) "Poll_Test_Queue" );
/* Spawn the producer and consumer. */
xTaskCreate( vPolledQueueConsumer, ( signed char * ) "QConsNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, ( xTaskHandle * ) NULL );
xTaskCreate( vPolledQueueProducer, ( signed char * ) "QProdNB", pollqSTACK_SIZE, ( void * ) &xPolledQueue, uxPriority, ( xTaskHandle * ) NULL );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vPolledQueueProducer, pvParameters )
{
unsigned short usValue = ( unsigned short ) 0;
signed portBASE_TYPE xError = pdFALSE, xLoop;
for( ;; )
{
for( xLoop = 0; xLoop < pollqVALUES_TO_PRODUCE; xLoop++ )
{
/* Send an incrementing number on the queue without blocking. */
if( xQueueSend( *( ( xQueueHandle * ) pvParameters ), ( void * ) &usValue, pollqNO_DELAY ) != pdPASS )
{
/* We should never find the queue full so if we get here there
has been an error. */
xError = pdTRUE;
}
else
{
if( xError == pdFALSE )
{
/* If an error has ever been recorded we stop incrementing the
check variable. */
portENTER_CRITICAL();
xPollingProducerCount++;
portEXIT_CRITICAL();
}
/* Update the value we are going to post next time around. */
usValue++;
}
}
/* Wait before we start posting again to ensure the consumer runs and
empties the queue. */
vTaskDelay( pollqPRODUCER_DELAY );
}
} /*lint !e818 Function prototype must conform to API. */
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vPolledQueueConsumer, pvParameters )
{
unsigned short usData, usExpectedValue = ( unsigned short ) 0;
signed portBASE_TYPE xError = pdFALSE;
for( ;; )
{
/* Loop until the queue is empty. */
while( uxQueueMessagesWaiting( *( ( xQueueHandle * ) pvParameters ) ) )
{
if( xQueueReceive( *( ( xQueueHandle * ) pvParameters ), &usData, pollqNO_DELAY ) == pdPASS )
{
if( usData != usExpectedValue )
{
/* This is not what we expected to receive so an error has
occurred. */
xError = pdTRUE;
/* Catch-up to the value we received so our next expected
value should again be correct. */
usExpectedValue = usData;
}
else
{
if( xError == pdFALSE )
{
/* Only increment the check variable if no errors have
occurred. */
portENTER_CRITICAL();
xPollingConsumerCount++;
portEXIT_CRITICAL();
}
}
/* Next time round we would expect the number to be one higher. */
usExpectedValue++;
}
}
/* Now the queue is empty we block, allowing the producer to place more
items in the queue. */
vTaskDelay( pollqCONSUMER_DELAY );
}
} /*lint !e818 Function prototype must conform to API. */
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running with no errors. */
portBASE_TYPE xArePollingQueuesStillRunning( void )
{
portBASE_TYPE xReturn;
/* Check both the consumer and producer poll count to check they have both
been changed since out last trip round. We do not need a critical section
around the check variables as this is called from a higher priority than
the other tasks that access the same variables. */
if( ( xPollingConsumerCount == pollqINITIAL_VALUE ) ||
( xPollingProducerCount == pollqINITIAL_VALUE )
)
{
xReturn = pdFALSE;
}
else
{
xReturn = pdTRUE;
}
/* Set the check variables back down so we know if they have been
incremented the next time around. */
xPollingConsumerCount = pollqINITIAL_VALUE;
xPollingProducerCount = pollqINITIAL_VALUE;
return xReturn;
}

@ -0,0 +1,446 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/*
* Tests the behaviour when data is peeked from a queue when there are
* multiple tasks blocked on the queue.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
#include "semphr.h"
/* Demo program include files. */
#include "QPeek.h"
#define qpeekQUEUE_LENGTH ( 5 )
#define qpeekNO_BLOCK ( 0 )
#define qpeekSHORT_DELAY ( 10 )
#define qpeekLOW_PRIORITY ( tskIDLE_PRIORITY + 0 )
#define qpeekMEDIUM_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define qpeekHIGH_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define qpeekHIGHEST_PRIORITY ( tskIDLE_PRIORITY + 3 )
/*-----------------------------------------------------------*/
/*
* The following three tasks are used to demonstrate the peeking behaviour.
* Each task is given a different priority to demonstrate the order in which
* tasks are woken as data is peeked from a queue.
*/
static void prvLowPriorityPeekTask( void *pvParameters );
static void prvMediumPriorityPeekTask( void *pvParameters );
static void prvHighPriorityPeekTask( void *pvParameters );
static void prvHighestPriorityPeekTask( void *pvParameters );
/*-----------------------------------------------------------*/
/* Flag that will be latched to pdTRUE should any unexpected behaviour be
detected in any of the tasks. */
static volatile portBASE_TYPE xErrorDetected = pdFALSE;
/* Counter that is incremented on each cycle of a test. This is used to
detect a stalled task - a test that is no longer running. */
static volatile unsigned portLONG ulLoopCounter = 0;
/* Handles to the test tasks. */
xTaskHandle xMediumPriorityTask, xHighPriorityTask, xHighestPriorityTask;
/*-----------------------------------------------------------*/
void vStartQueuePeekTasks( void )
{
xQueueHandle xQueue;
/* Create the queue that we are going to use for the test/demo. */
xQueue = xQueueCreate( qpeekQUEUE_LENGTH, sizeof( unsigned portLONG ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xQueue, ( signed portCHAR * ) "QPeek_Test_Queue" );
/* Create the demo tasks and pass it the queue just created. We are
passing the queue handle by value so it does not matter that it is declared
on the stack here. */
xTaskCreate( prvLowPriorityPeekTask, ( signed portCHAR * )"PeekL", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekLOW_PRIORITY, NULL );
xTaskCreate( prvMediumPriorityPeekTask, ( signed portCHAR * )"PeekM", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekMEDIUM_PRIORITY, &xMediumPriorityTask );
xTaskCreate( prvHighPriorityPeekTask, ( signed portCHAR * )"PeekH1", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekHIGH_PRIORITY, &xHighPriorityTask );
xTaskCreate( prvHighestPriorityPeekTask, ( signed portCHAR * )"PeekH2", configMINIMAL_STACK_SIZE, ( void * ) xQueue, qpeekHIGHEST_PRIORITY, &xHighestPriorityTask );
}
/*-----------------------------------------------------------*/
static void prvHighestPriorityPeekTask( void *pvParameters )
{
xQueueHandle xQueue = ( xQueueHandle ) pvParameters;
unsigned portLONG ulValue;
#ifdef USE_STDIO
{
void vPrintDisplayMessage( const portCHAR * const * ppcMessageToSend );
const portCHAR * const pcTaskStartMsg = "Queue peek test started.\r\n";
/* Queue a message for printing to say the task has started. */
vPrintDisplayMessage( &pcTaskStartMsg );
}
#endif
for( ;; )
{
/* Try peeking from the queue. The queue should be empty so we will
block, allowing the high priority task to execute. */
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
{
/* We expected to have received something by the time we unblock. */
xErrorDetected = pdTRUE;
}
/* When we reach here the high and medium priority tasks should still
be blocked on the queue. We unblocked because the low priority task
wrote a value to the queue, which we should have peeked. Peeking the
data (rather than receiving it) will leave the data on the queue, so
the high priority task should then have also been unblocked, but not
yet executed. */
if( ulValue != 0x11223344 )
{
/* We did not receive the expected value. */
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
/* The message should have been left on the queue. */
xErrorDetected = pdTRUE;
}
/* Now we are going to actually receive the data, so when the high
priority task runs it will find the queue empty and return to the
blocked state. */
ulValue = 0;
if( xQueueReceive( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
{
/* We expected to receive the value. */
xErrorDetected = pdTRUE;
}
if( ulValue != 0x11223344 )
{
/* We did not receive the expected value - which should have been
the same value as was peeked. */
xErrorDetected = pdTRUE;
}
/* Now we will block again as the queue is once more empty. The low
priority task can then execute again. */
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
{
/* We expected to have received something by the time we unblock. */
xErrorDetected = pdTRUE;
}
/* When we get here the low priority task should have again written to the
queue. */
if( ulValue != 0x01234567 )
{
/* We did not receive the expected value. */
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
/* The message should have been left on the queue. */
xErrorDetected = pdTRUE;
}
/* We only peeked the data, so suspending ourselves now should enable
the high priority task to also peek the data. The high priority task
will have been unblocked when we peeked the data as we left the data
in the queue. */
vTaskSuspend( NULL );
/* This time we are going to do the same as the above test, but the
high priority task is going to receive the data, rather than peek it.
This means that the medium priority task should never peek the value. */
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulValue != 0xaabbaabb )
{
xErrorDetected = pdTRUE;
}
vTaskSuspend( NULL );
}
}
/*-----------------------------------------------------------*/
static void prvHighPriorityPeekTask( void *pvParameters )
{
xQueueHandle xQueue = ( xQueueHandle ) pvParameters;
unsigned portLONG ulValue;
for( ;; )
{
/* Try peeking from the queue. The queue should be empty so we will
block, allowing the medium priority task to execute. Both the high
and highest priority tasks will then be blocked on the queue. */
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
{
/* We expected to have received something by the time we unblock. */
xErrorDetected = pdTRUE;
}
/* When we get here the highest priority task should have peeked the data
(unblocking this task) then suspended (allowing this task to also peek
the data). */
if( ulValue != 0x01234567 )
{
/* We did not receive the expected value. */
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
/* The message should have been left on the queue. */
xErrorDetected = pdTRUE;
}
/* We only peeked the data, so suspending ourselves now should enable
the medium priority task to also peek the data. The medium priority task
will have been unblocked when we peeked the data as we left the data
in the queue. */
vTaskSuspend( NULL );
/* This time we are going actually receive the value, so the medium
priority task will never peek the data - we removed it from the queue. */
if( xQueueReceive( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
{
xErrorDetected = pdTRUE;
}
if( ulValue != 0xaabbaabb )
{
xErrorDetected = pdTRUE;
}
vTaskSuspend( NULL );
}
}
/*-----------------------------------------------------------*/
static void prvMediumPriorityPeekTask( void *pvParameters )
{
xQueueHandle xQueue = ( xQueueHandle ) pvParameters;
unsigned portLONG ulValue;
for( ;; )
{
/* Try peeking from the queue. The queue should be empty so we will
block, allowing the low priority task to execute. The highest, high
and medium priority tasks will then all be blocked on the queue. */
if( xQueuePeek( xQueue, &ulValue, portMAX_DELAY ) != pdPASS )
{
/* We expected to have received something by the time we unblock. */
xErrorDetected = pdTRUE;
}
/* When we get here the high priority task should have peeked the data
(unblocking this task) then suspended (allowing this task to also peek
the data). */
if( ulValue != 0x01234567 )
{
/* We did not receive the expected value. */
xErrorDetected = pdTRUE;
}
if( uxQueueMessagesWaiting( xQueue ) != 1 )
{
/* The message should have been left on the queue. */
xErrorDetected = pdTRUE;
}
/* Just so we know the test is still running. */
ulLoopCounter++;
/* Now we can suspend ourselves so the low priority task can execute
again. */
vTaskSuspend( NULL );
}
}
/*-----------------------------------------------------------*/
static void prvLowPriorityPeekTask( void *pvParameters )
{
xQueueHandle xQueue = ( xQueueHandle ) pvParameters;
unsigned portLONG ulValue;
for( ;; )
{
/* Write some data to the queue. This should unblock the highest
priority task that is waiting to peek data from the queue. */
ulValue = 0x11223344;
if( xQueueSendToBack( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
{
/* We were expecting the queue to be empty so we should not of
had a problem writing to the queue. */
xErrorDetected = pdTRUE;
}
/* By the time we get here the data should have been removed from
the queue. */
if( uxQueueMessagesWaiting( xQueue ) != 0 )
{
xErrorDetected = pdTRUE;
}
/* Write another value to the queue, again waking the highest priority
task that is blocked on the queue. */
ulValue = 0x01234567;
if( xQueueSendToBack( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
{
/* We were expecting the queue to be empty so we should not of
had a problem writing to the queue. */
xErrorDetected = pdTRUE;
}
/* All the other tasks should now have successfully peeked the data.
The data is still in the queue so we should be able to receive it. */
ulValue = 0;
if( xQueueReceive( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
{
/* We expected to receive the data. */
xErrorDetected = pdTRUE;
}
if( ulValue != 0x01234567 )
{
/* We did not receive the expected value. */
}
/* Lets just delay a while as this is an intensive test as we don't
want to starve other tests of processing time. */
vTaskDelay( qpeekSHORT_DELAY );
/* Unsuspend the other tasks so we can repeat the test - this time
however not all the other tasks will peek the data as the high
priority task is actually going to remove it from the queue. Send
to front is used just to be different. As the queue is empty it
makes no difference to the result. */
vTaskResume( xMediumPriorityTask );
vTaskResume( xHighPriorityTask );
vTaskResume( xHighestPriorityTask );
ulValue = 0xaabbaabb;
if( xQueueSendToFront( xQueue, &ulValue, qpeekNO_BLOCK ) != pdPASS )
{
/* We were expecting the queue to be empty so we should not of
had a problem writing to the queue. */
xErrorDetected = pdTRUE;
}
/* This time we should find that the queue is empty. The high priority
task actually removed the data rather than just peeking it. */
if( xQueuePeek( xQueue, &ulValue, qpeekNO_BLOCK ) != errQUEUE_EMPTY )
{
/* We expected to receive the data. */
xErrorDetected = pdTRUE;
}
/* Unsuspend the highest and high priority tasks so we can go back
and repeat the whole thing. The medium priority task should not be
suspended as it was not able to peek the data in this last case. */
vTaskResume( xHighPriorityTask );
vTaskResume( xHighestPriorityTask );
/* Lets just delay a while as this is an intensive test as we don't
want to starve other tests of processing time. */
vTaskDelay( qpeekSHORT_DELAY );
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreQueuePeekTasksStillRunning( void )
{
static unsigned portLONG ulLastLoopCounter = 0;
/* If the demo task is still running then we expect the loopcounter to
have incremented since this function was last called. */
if( ulLastLoopCounter == ulLoopCounter )
{
xErrorDetected = pdTRUE;
}
ulLastLoopCounter = ulLoopCounter;
/* Errors detected in the task itself will have latched xErrorDetected
to true. */
return !xErrorDetected;
}

@ -0,0 +1,493 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/*
* This file contains some test scenarios that ensure tasks do not exit queue
* send or receive functions prematurely. A description of the tests is
* included within the code.
*/
/* Kernel includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "queue.h"
/* Demo includes. */
#include "blocktim.h"
/* Task priorities. Allow these to be overridden. */
#ifndef bktPRIMARY_PRIORITY
#define bktPRIMARY_PRIORITY ( configMAX_PRIORITIES - 3 )
#endif
#ifndef bktSECONDARY_PRIORITY
#define bktSECONDARY_PRIORITY ( configMAX_PRIORITIES - 4 )
#endif
/* Task behaviour. */
#define bktQUEUE_LENGTH ( 5 )
#define bktSHORT_WAIT ( ( ( portTickType ) 20 ) / portTICK_RATE_MS )
#define bktPRIMARY_BLOCK_TIME ( 10 )
#define bktALLOWABLE_MARGIN ( 15 )
#define bktTIME_TO_BLOCK ( 175 )
#define bktDONT_BLOCK ( ( portTickType ) 0 )
#define bktRUN_INDICATOR ( ( unsigned portBASE_TYPE ) 0x55 )
/* The queue on which the tasks block. */
static xQueueHandle xTestQueue;
/* Handle to the secondary task is required by the primary task for calls
to vTaskSuspend/Resume(). */
static xTaskHandle xSecondary;
/* Used to ensure that tasks are still executing without error. */
static volatile portBASE_TYPE xPrimaryCycles = 0, xSecondaryCycles = 0;
static volatile portBASE_TYPE xErrorOccurred = pdFALSE;
/* Provides a simple mechanism for the primary task to know when the
secondary task has executed. */
static volatile unsigned portBASE_TYPE xRunIndicator;
/* The two test tasks. Their behaviour is commented within the files. */
static void vPrimaryBlockTimeTestTask( void *pvParameters );
static void vSecondaryBlockTimeTestTask( void *pvParameters );
/*-----------------------------------------------------------*/
void vCreateBlockTimeTasks( void )
{
/* Create the queue on which the two tasks block. */
xTestQueue = xQueueCreate( bktQUEUE_LENGTH, sizeof( portBASE_TYPE ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xTestQueue, ( signed char * ) "Block_Time_Queue" );
/* Create the two test tasks. */
xTaskCreate( vPrimaryBlockTimeTestTask, ( signed char * )"BTest1", configMINIMAL_STACK_SIZE, NULL, bktPRIMARY_PRIORITY, NULL );
xTaskCreate( vSecondaryBlockTimeTestTask, ( signed char * )"BTest2", configMINIMAL_STACK_SIZE, NULL, bktSECONDARY_PRIORITY, &xSecondary );
}
/*-----------------------------------------------------------*/
static void vPrimaryBlockTimeTestTask( void *pvParameters )
{
portBASE_TYPE xItem, xData;
portTickType xTimeWhenBlocking;
portTickType xTimeToBlock, xBlockedTime;
( void ) pvParameters;
for( ;; )
{
/*********************************************************************
Test 1
Simple block time wakeup test on queue receives. */
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
/* The queue is empty. Attempt to read from the queue using a block
time. When we wake, ensure the delta in time is as expected. */
xTimeToBlock = bktPRIMARY_BLOCK_TIME << xItem;
xTimeWhenBlocking = xTaskGetTickCount();
/* We should unblock after xTimeToBlock having not received
anything on the queue. */
if( xQueueReceive( xTestQueue, &xData, xTimeToBlock ) != errQUEUE_EMPTY )
{
xErrorOccurred = pdTRUE;
}
/* How long were we blocked for? */
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
if( xBlockedTime < xTimeToBlock )
{
/* Should not have blocked for less than we requested. */
xErrorOccurred = pdTRUE;
}
if( xBlockedTime > ( xTimeToBlock + bktALLOWABLE_MARGIN ) )
{
/* Should not have blocked for longer than we requested,
although we would not necessarily run as soon as we were
unblocked so a margin is allowed. */
xErrorOccurred = pdTRUE;
}
}
/*********************************************************************
Test 2
Simple block time wakeup test on queue sends.
First fill the queue. It should be empty so all sends should pass. */
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
if( xQueueSend( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
/* The queue is full. Attempt to write to the queue using a block
time. When we wake, ensure the delta in time is as expected. */
xTimeToBlock = bktPRIMARY_BLOCK_TIME << xItem;
xTimeWhenBlocking = xTaskGetTickCount();
/* We should unblock after xTimeToBlock having not received
anything on the queue. */
if( xQueueSend( xTestQueue, &xItem, xTimeToBlock ) != errQUEUE_FULL )
{
xErrorOccurred = pdTRUE;
}
/* How long were we blocked for? */
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
if( xBlockedTime < xTimeToBlock )
{
/* Should not have blocked for less than we requested. */
xErrorOccurred = pdTRUE;
}
if( xBlockedTime > ( xTimeToBlock + bktALLOWABLE_MARGIN ) )
{
/* Should not have blocked for longer than we requested,
although we would not necessarily run as soon as we were
unblocked so a margin is allowed. */
xErrorOccurred = pdTRUE;
}
}
/*********************************************************************
Test 3
Wake the other task, it will block attempting to post to the queue.
When we read from the queue the other task will wake, but before it
can run we will post to the queue again. When the other task runs it
will find the queue still full, even though it was woken. It should
recognise that its block time has not expired and return to block for
the remains of its block time.
Wake the other task so it blocks attempting to post to the already
full queue. */
xRunIndicator = 0;
vTaskResume( xSecondary );
/* We need to wait a little to ensure the other task executes. */
while( xRunIndicator != bktRUN_INDICATOR )
{
/* The other task has not yet executed. */
vTaskDelay( bktSHORT_WAIT );
}
/* Make sure the other task is blocked on the queue. */
vTaskDelay( bktSHORT_WAIT );
xRunIndicator = 0;
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
/* Now when we make space on the queue the other task should wake
but not execute as this task has higher priority. */
if( xQueueReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
/* Now fill the queue again before the other task gets a chance to
execute. If the other task had executed we would find the queue
full ourselves, and the other task have set xRunIndicator. */
if( xQueueSend( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
if( xRunIndicator == bktRUN_INDICATOR )
{
/* The other task should not have executed. */
xErrorOccurred = pdTRUE;
}
/* Raise the priority of the other task so it executes and blocks
on the queue again. */
vTaskPrioritySet( xSecondary, bktPRIMARY_PRIORITY + 2 );
/* The other task should now have re-blocked without exiting the
queue function. */
if( xRunIndicator == bktRUN_INDICATOR )
{
/* The other task should not have executed outside of the
queue function. */
xErrorOccurred = pdTRUE;
}
/* Set the priority back down. */
vTaskPrioritySet( xSecondary, bktSECONDARY_PRIORITY );
}
/* Let the other task timeout. When it unblockes it will check that it
unblocked at the correct time, then suspend itself. */
while( xRunIndicator != bktRUN_INDICATOR )
{
vTaskDelay( bktSHORT_WAIT );
}
vTaskDelay( bktSHORT_WAIT );
xRunIndicator = 0;
/*********************************************************************
Test 4
As per test 3 - but with the send and receive the other way around.
The other task blocks attempting to read from the queue.
Empty the queue. We should find that it is full. */
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
if( xQueueReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
}
/* Wake the other task so it blocks attempting to read from the
already empty queue. */
vTaskResume( xSecondary );
/* We need to wait a little to ensure the other task executes. */
while( xRunIndicator != bktRUN_INDICATOR )
{
vTaskDelay( bktSHORT_WAIT );
}
vTaskDelay( bktSHORT_WAIT );
xRunIndicator = 0;
for( xItem = 0; xItem < bktQUEUE_LENGTH; xItem++ )
{
/* Now when we place an item on the queue the other task should
wake but not execute as this task has higher priority. */
if( xQueueSend( xTestQueue, &xItem, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
/* Now empty the queue again before the other task gets a chance to
execute. If the other task had executed we would find the queue
empty ourselves, and the other task would be suspended. */
if( xQueueReceive( xTestQueue, &xData, bktDONT_BLOCK ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
if( xRunIndicator == bktRUN_INDICATOR )
{
/* The other task should not have executed. */
xErrorOccurred = pdTRUE;
}
/* Raise the priority of the other task so it executes and blocks
on the queue again. */
vTaskPrioritySet( xSecondary, bktPRIMARY_PRIORITY + 2 );
/* The other task should now have re-blocked without exiting the
queue function. */
if( xRunIndicator == bktRUN_INDICATOR )
{
/* The other task should not have executed outside of the
queue function. */
xErrorOccurred = pdTRUE;
}
vTaskPrioritySet( xSecondary, bktSECONDARY_PRIORITY );
}
/* Let the other task timeout. When it unblockes it will check that it
unblocked at the correct time, then suspend itself. */
while( xRunIndicator != bktRUN_INDICATOR )
{
vTaskDelay( bktSHORT_WAIT );
}
vTaskDelay( bktSHORT_WAIT );
xPrimaryCycles++;
}
}
/*-----------------------------------------------------------*/
static void vSecondaryBlockTimeTestTask( void *pvParameters )
{
portTickType xTimeWhenBlocking, xBlockedTime;
portBASE_TYPE xData;
( void ) pvParameters;
for( ;; )
{
/*********************************************************************
Test 1 and 2
This task does does not participate in these tests. */
vTaskSuspend( NULL );
/*********************************************************************
Test 3
The first thing we do is attempt to read from the queue. It should be
full so we block. Note the time before we block so we can check the
wake time is as per that expected. */
xTimeWhenBlocking = xTaskGetTickCount();
/* We should unblock after bktTIME_TO_BLOCK having not sent
anything to the queue. */
xData = 0;
xRunIndicator = bktRUN_INDICATOR;
if( xQueueSend( xTestQueue, &xData, bktTIME_TO_BLOCK ) != errQUEUE_FULL )
{
xErrorOccurred = pdTRUE;
}
/* How long were we inside the send function? */
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
/* We should not have blocked for less time than bktTIME_TO_BLOCK. */
if( xBlockedTime < bktTIME_TO_BLOCK )
{
xErrorOccurred = pdTRUE;
}
/* We should of not blocked for much longer than bktALLOWABLE_MARGIN
either. A margin is permitted as we would not necessarily run as
soon as we unblocked. */
if( xBlockedTime > ( bktTIME_TO_BLOCK + bktALLOWABLE_MARGIN ) )
{
xErrorOccurred = pdTRUE;
}
/* Suspend ready for test 3. */
xRunIndicator = bktRUN_INDICATOR;
vTaskSuspend( NULL );
/*********************************************************************
Test 4
As per test three, but with the send and receive reversed. */
xTimeWhenBlocking = xTaskGetTickCount();
/* We should unblock after bktTIME_TO_BLOCK having not received
anything on the queue. */
xRunIndicator = bktRUN_INDICATOR;
if( xQueueReceive( xTestQueue, &xData, bktTIME_TO_BLOCK ) != errQUEUE_EMPTY )
{
xErrorOccurred = pdTRUE;
}
xBlockedTime = xTaskGetTickCount() - xTimeWhenBlocking;
/* We should not have blocked for less time than bktTIME_TO_BLOCK. */
if( xBlockedTime < bktTIME_TO_BLOCK )
{
xErrorOccurred = pdTRUE;
}
/* We should of not blocked for much longer than bktALLOWABLE_MARGIN
either. A margin is permitted as we would not necessarily run as soon
as we unblocked. */
if( xBlockedTime > ( bktTIME_TO_BLOCK + bktALLOWABLE_MARGIN ) )
{
xErrorOccurred = pdTRUE;
}
xRunIndicator = bktRUN_INDICATOR;
xSecondaryCycles++;
}
}
/*-----------------------------------------------------------*/
portBASE_TYPE xAreBlockTimeTestTasksStillRunning( void )
{
static portBASE_TYPE xLastPrimaryCycleCount = 0, xLastSecondaryCycleCount = 0;
portBASE_TYPE xReturn = pdPASS;
/* Have both tasks performed at least one cycle since this function was
last called? */
if( xPrimaryCycles == xLastPrimaryCycleCount )
{
xReturn = pdFAIL;
}
if( xSecondaryCycles == xLastSecondaryCycleCount )
{
xReturn = pdFAIL;
}
if( xErrorOccurred == pdTRUE )
{
xReturn = pdFAIL;
}
xLastSecondaryCycleCount = xSecondaryCycles;
xLastPrimaryCycleCount = xPrimaryCycles;
return xReturn;
}

@ -0,0 +1,255 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/**
* Create a single persistent task which periodically dynamically creates another
* two tasks. The original task is called the creator task, the two tasks it
* creates are called suicidal tasks.
*
* One of the created suicidal tasks kill one other suicidal task before killing
* itself - leaving just the original task remaining.
*
* The creator task must be spawned after all of the other demo application tasks
* as it keeps a check on the number of tasks under the scheduler control. The
* number of tasks it expects to see running should never be greater than the
* number of tasks that were in existence when the creator task was spawned, plus
* one set of four suicidal tasks. If this number is exceeded an error is flagged.
*
* \page DeathC death.c
* \ingroup DemoFiles
* <HR>
*/
/*
Changes from V3.0.0
+ CreationCount sizes changed from unsigned portBASE_TYPE to
unsigned short to minimize the risk of overflowing.
+ Reset of usLastCreationCount added
Changes from V3.1.0
+ Changed the dummy calculation to use variables of type long, rather than
float. This allows the file to be used with ports that do not support
floating point.
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "death.h"
#define deathSTACK_SIZE ( configMINIMAL_STACK_SIZE + 60 )
/* The task originally created which is responsible for periodically dynamically
creating another four tasks. */
static portTASK_FUNCTION_PROTO( vCreateTasks, pvParameters );
/* The task function of the dynamically created tasks. */
static portTASK_FUNCTION_PROTO( vSuicidalTask, pvParameters );
/* A variable which is incremented every time the dynamic tasks are created. This
is used to check that the task is still running. */
static volatile unsigned short usCreationCount = 0;
/* Used to store the number of tasks that were originally running so the creator
task can tell if any of the suicidal tasks have failed to die.
*/
static volatile unsigned portBASE_TYPE uxTasksRunningAtStart = 0;
/* Tasks are deleted by the idle task. Under heavy load the idle task might
not get much processing time, so it would be legitimate for several tasks to
remain undeleted for a short period. */
static const unsigned portBASE_TYPE uxMaxNumberOfExtraTasksRunning = 2;
/* Used to store a handle to the task that should be killed by a suicidal task,
before it kills itself. */
xTaskHandle xCreatedTask;
/*-----------------------------------------------------------*/
void vCreateSuicidalTasks( unsigned portBASE_TYPE uxPriority )
{
unsigned portBASE_TYPE *puxPriority;
/* Create the Creator tasks - passing in as a parameter the priority at which
the suicidal tasks should be created. */
puxPriority = ( unsigned portBASE_TYPE * ) pvPortMalloc( sizeof( unsigned portBASE_TYPE ) );
*puxPriority = uxPriority;
xTaskCreate( vCreateTasks, ( signed char * ) "CREATOR", deathSTACK_SIZE, ( void * ) puxPriority, uxPriority, NULL );
/* Record the number of tasks that are running now so we know if any of the
suicidal tasks have failed to be killed. */
uxTasksRunningAtStart = ( unsigned portBASE_TYPE ) uxTaskGetNumberOfTasks();
/* FreeRTOS.org versions before V3.0 started the idle-task as the very
first task. The idle task was then already included in uxTasksRunningAtStart.
From FreeRTOS V3.0 on, the idle task is started when the scheduler is
started. Therefore the idle task is not yet accounted for. We correct
this by increasing uxTasksRunningAtStart by 1. */
uxTasksRunningAtStart++;
/* From FreeRTOS version 7.0.0 can optionally create a timer service task.
If this is done, then uxTasksRunningAtStart needs incrementing again as that
too is created when the scheduler is started. */
#if configUSE_TIMERS == 1
uxTasksRunningAtStart++;
#endif
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vSuicidalTask, pvParameters )
{
volatile long l1, l2;
xTaskHandle xTaskToKill;
const portTickType xDelay = ( portTickType ) 200 / portTICK_RATE_MS;
if( pvParameters != NULL )
{
/* This task is periodically created four times. Two created tasks are
passed a handle to the other task so it can kill it before killing itself.
The other task is passed in null. */
xTaskToKill = *( xTaskHandle* )pvParameters;
}
else
{
xTaskToKill = NULL;
}
for( ;; )
{
/* Do something random just to use some stack and registers. */
l1 = 2;
l2 = 89;
l2 *= l1;
vTaskDelay( xDelay );
if( xTaskToKill != NULL )
{
/* Make sure the other task has a go before we delete it. */
vTaskDelay( ( portTickType ) 0 );
/* Kill the other task that was created by vCreateTasks(). */
vTaskDelete( xTaskToKill );
/* Kill ourselves. */
vTaskDelete( NULL );
}
}
}/*lint !e818 !e550 Function prototype must be as per standard for task functions. */
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCreateTasks, pvParameters )
{
const portTickType xDelay = ( portTickType ) 1000 / portTICK_RATE_MS;
unsigned portBASE_TYPE uxPriority;
uxPriority = *( unsigned portBASE_TYPE * ) pvParameters;
vPortFree( pvParameters );
for( ;; )
{
/* Just loop round, delaying then creating the four suicidal tasks. */
vTaskDelay( xDelay );
xCreatedTask = NULL;
xTaskCreate( vSuicidalTask, ( signed char * ) "SUICID1", configMINIMAL_STACK_SIZE, NULL, uxPriority, &xCreatedTask );
xTaskCreate( vSuicidalTask, ( signed char * ) "SUICID2", configMINIMAL_STACK_SIZE, &xCreatedTask, uxPriority, NULL );
++usCreationCount;
}
}
/*-----------------------------------------------------------*/
/* This is called to check that the creator task is still running and that there
are not any more than four extra tasks. */
portBASE_TYPE xIsCreateTaskStillRunning( void )
{
static unsigned short usLastCreationCount = 0xfff;
portBASE_TYPE xReturn = pdTRUE;
static unsigned portBASE_TYPE uxTasksRunningNow;
if( usLastCreationCount == usCreationCount )
{
xReturn = pdFALSE;
}
else
{
usLastCreationCount = usCreationCount;
}
uxTasksRunningNow = ( unsigned portBASE_TYPE ) uxTaskGetNumberOfTasks();
if( uxTasksRunningNow < uxTasksRunningAtStart )
{
xReturn = pdFALSE;
}
else if( ( uxTasksRunningNow - uxTasksRunningAtStart ) > uxMaxNumberOfExtraTasksRunning )
{
xReturn = pdFALSE;
}
else
{
/* Everything is okay. */
}
return xReturn;
}

@ -0,0 +1,427 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/*
* The first test creates three tasks - two counter tasks (one continuous count
* and one limited count) and one controller. A "count" variable is shared
* between all three tasks. The two counter tasks should never be in a "ready"
* state at the same time. The controller task runs at the same priority as
* the continuous count task, and at a lower priority than the limited count
* task.
*
* One counter task loops indefinitely, incrementing the shared count variable
* on each iteration. To ensure it has exclusive access to the variable it
* raises it's priority above that of the controller task before each
* increment, lowering it again to it's original priority before starting the
* next iteration.
*
* The other counter task increments the shared count variable on each
* iteration of it's loop until the count has reached a limit of 0xff - at
* which point it suspends itself. It will not start a new loop until the
* controller task has made it "ready" again by calling vTaskResume ().
* This second counter task operates at a higher priority than controller
* task so does not need to worry about mutual exclusion of the counter
* variable.
*
* The controller task is in two sections. The first section controls and
* monitors the continuous count task. When this section is operational the
* limited count task is suspended. Likewise, the second section controls
* and monitors the limited count task. When this section is operational the
* continuous count task is suspended.
*
* In the first section the controller task first takes a copy of the shared
* count variable. To ensure mutual exclusion on the count variable it
* suspends the continuous count task, resuming it again when the copy has been
* taken. The controller task then sleeps for a fixed period - during which
* the continuous count task will execute and increment the shared variable.
* When the controller task wakes it checks that the continuous count task
* has executed by comparing the copy of the shared variable with its current
* value. This time, to ensure mutual exclusion, the scheduler itself is
* suspended with a call to vTaskSuspendAll (). This is for demonstration
* purposes only and is not a recommended technique due to its inefficiency.
*
* After a fixed number of iterations the controller task suspends the
* continuous count task, and moves on to its second section.
*
* At the start of the second section the shared variable is cleared to zero.
* The limited count task is then woken from it's suspension by a call to
* vTaskResume (). As this counter task operates at a higher priority than
* the controller task the controller task should not run again until the
* shared variable has been counted up to the limited value causing the counter
* task to suspend itself. The next line after vTaskResume () is therefore
* a check on the shared variable to ensure everything is as expected.
*
*
* The second test consists of a couple of very simple tasks that post onto a
* queue while the scheduler is suspended. This test was added to test parts
* of the scheduler not exercised by the first test.
*
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
/* Demo app include files. */
#include "dynamic.h"
/* Function that implements the "limited count" task as described above. */
static portTASK_FUNCTION_PROTO( vLimitedIncrementTask, pvParameters );
/* Function that implements the "continuous count" task as described above. */
static portTASK_FUNCTION_PROTO( vContinuousIncrementTask, pvParameters );
/* Function that implements the controller task as described above. */
static portTASK_FUNCTION_PROTO( vCounterControlTask, pvParameters );
static portTASK_FUNCTION_PROTO( vQueueReceiveWhenSuspendedTask, pvParameters );
static portTASK_FUNCTION_PROTO( vQueueSendWhenSuspendedTask, pvParameters );
/* Demo task specific constants. */
#define priSTACK_SIZE ( configMINIMAL_STACK_SIZE )
#define priSLEEP_TIME ( ( portTickType ) 128 / portTICK_RATE_MS )
#define priLOOPS ( 5 )
#define priMAX_COUNT ( ( unsigned long ) 0xff )
#define priNO_BLOCK ( ( portTickType ) 0 )
#define priSUSPENDED_QUEUE_LENGTH ( 1 )
/*-----------------------------------------------------------*/
/* Handles to the two counter tasks. These could be passed in as parameters
to the controller task to prevent them having to be file scope. */
static xTaskHandle xContinousIncrementHandle, xLimitedIncrementHandle;
/* The shared counter variable. This is passed in as a parameter to the two
counter variables for demonstration purposes. */
static unsigned long ulCounter;
/* Variables used to check that the tasks are still operating without error.
Each complete iteration of the controller task increments this variable
provided no errors have been found. The variable maintaining the same value
is therefore indication of an error. */
static volatile unsigned short usCheckVariable = ( unsigned short ) 0;
static volatile portBASE_TYPE xSuspendedQueueSendError = pdFALSE;
static volatile portBASE_TYPE xSuspendedQueueReceiveError = pdFALSE;
/* Queue used by the second test. */
xQueueHandle xSuspendedTestQueue;
/*-----------------------------------------------------------*/
/*
* Start the three tasks as described at the top of the file.
* Note that the limited count task is given a higher priority.
*/
void vStartDynamicPriorityTasks( void )
{
xSuspendedTestQueue = xQueueCreate( priSUSPENDED_QUEUE_LENGTH, sizeof( unsigned long ) );
/* vQueueAddToRegistry() adds the queue to the queue registry, if one is
in use. The queue registry is provided as a means for kernel aware
debuggers to locate queues and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( xSuspendedTestQueue, ( signed char * ) "Suspended_Test_Queue" );
xTaskCreate( vContinuousIncrementTask, ( signed char * ) "CNT_INC", priSTACK_SIZE, ( void * ) &ulCounter, tskIDLE_PRIORITY, &xContinousIncrementHandle );
xTaskCreate( vLimitedIncrementTask, ( signed char * ) "LIM_INC", priSTACK_SIZE, ( void * ) &ulCounter, tskIDLE_PRIORITY + 1, &xLimitedIncrementHandle );
xTaskCreate( vCounterControlTask, ( signed char * ) "C_CTRL", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
xTaskCreate( vQueueSendWhenSuspendedTask, ( signed char * ) "SUSP_TX", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
xTaskCreate( vQueueReceiveWhenSuspendedTask, ( signed char * ) "SUSP_RX", priSTACK_SIZE, NULL, tskIDLE_PRIORITY, NULL );
}
/*-----------------------------------------------------------*/
/*
* Just loops around incrementing the shared variable until the limit has been
* reached. Once the limit has been reached it suspends itself.
*/
static portTASK_FUNCTION( vLimitedIncrementTask, pvParameters )
{
unsigned long *pulCounter;
/* Take a pointer to the shared variable from the parameters passed into
the task. */
pulCounter = ( unsigned long * ) pvParameters;
/* This will run before the control task, so the first thing it does is
suspend - the control task will resume it when ready. */
vTaskSuspend( NULL );
for( ;; )
{
/* Just count up to a value then suspend. */
( *pulCounter )++;
if( *pulCounter >= priMAX_COUNT )
{
vTaskSuspend( NULL );
}
}
}
/*-----------------------------------------------------------*/
/*
* Just keep counting the shared variable up. The control task will suspend
* this task when it wants.
*/
static portTASK_FUNCTION( vContinuousIncrementTask, pvParameters )
{
unsigned long *pulCounter;
unsigned portBASE_TYPE uxOurPriority;
/* Take a pointer to the shared variable from the parameters passed into
the task. */
pulCounter = ( unsigned long * ) pvParameters;
/* Query our priority so we can raise it when exclusive access to the
shared variable is required. */
uxOurPriority = uxTaskPriorityGet( NULL );
for( ;; )
{
/* Raise our priority above the controller task to ensure a context
switch does not occur while we are accessing this variable. */
vTaskPrioritySet( NULL, uxOurPriority + 1 );
( *pulCounter )++;
vTaskPrioritySet( NULL, uxOurPriority );
}
}
/*-----------------------------------------------------------*/
/*
* Controller task as described above.
*/
static portTASK_FUNCTION( vCounterControlTask, pvParameters )
{
unsigned long ulLastCounter;
short sLoops;
short sError = pdFALSE;
/* Just to stop warning messages. */
( void ) pvParameters;
for( ;; )
{
/* Start with the counter at zero. */
ulCounter = ( unsigned long ) 0;
/* First section : */
/* Check the continuous count task is running. */
for( sLoops = 0; sLoops < priLOOPS; sLoops++ )
{
/* Suspend the continuous count task so we can take a mirror of the
shared variable without risk of corruption. */
vTaskSuspend( xContinousIncrementHandle );
ulLastCounter = ulCounter;
vTaskResume( xContinousIncrementHandle );
/* Now delay to ensure the other task has processor time. */
vTaskDelay( priSLEEP_TIME );
/* Check the shared variable again. This time to ensure mutual
exclusion the whole scheduler will be locked. This is just for
demo purposes! */
vTaskSuspendAll();
{
if( ulLastCounter == ulCounter )
{
/* The shared variable has not changed. There is a problem
with the continuous count task so flag an error. */
sError = pdTRUE;
}
}
xTaskResumeAll();
}
/* Second section: */
/* Suspend the continuous counter task so it stops accessing the shared variable. */
vTaskSuspend( xContinousIncrementHandle );
/* Reset the variable. */
ulCounter = ( unsigned long ) 0;
/* Resume the limited count task which has a higher priority than us.
We should therefore not return from this call until the limited count
task has suspended itself with a known value in the counter variable. */
vTaskResume( xLimitedIncrementHandle );
/* Does the counter variable have the expected value? */
if( ulCounter != priMAX_COUNT )
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If no errors have occurred then increment the check variable. */
portENTER_CRITICAL();
usCheckVariable++;
portEXIT_CRITICAL();
}
/* Resume the continuous count task and do it all again. */
vTaskResume( xContinousIncrementHandle );
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vQueueSendWhenSuspendedTask, pvParameters )
{
static unsigned long ulValueToSend = ( unsigned long ) 0;
/* Just to stop warning messages. */
( void ) pvParameters;
for( ;; )
{
vTaskSuspendAll();
{
/* We must not block while the scheduler is suspended! */
if( xQueueSend( xSuspendedTestQueue, ( void * ) &ulValueToSend, priNO_BLOCK ) != pdTRUE )
{
xSuspendedQueueSendError = pdTRUE;
}
}
xTaskResumeAll();
vTaskDelay( priSLEEP_TIME );
++ulValueToSend;
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vQueueReceiveWhenSuspendedTask, pvParameters )
{
static unsigned long ulExpectedValue = ( unsigned long ) 0, ulReceivedValue;
portBASE_TYPE xGotValue;
/* Just to stop warning messages. */
( void ) pvParameters;
for( ;; )
{
do
{
/* Suspending the scheduler here is fairly pointless and
undesirable for a normal application. It is done here purely
to test the scheduler. The inner xTaskResumeAll() should
never return pdTRUE as the scheduler is still locked by the
outer call. */
vTaskSuspendAll();
{
vTaskSuspendAll();
{
xGotValue = xQueueReceive( xSuspendedTestQueue, ( void * ) &ulReceivedValue, priNO_BLOCK );
}
if( xTaskResumeAll() )
{
xSuspendedQueueReceiveError = pdTRUE;
}
}
xTaskResumeAll();
#if configUSE_PREEMPTION == 0
{
taskYIELD();
}
#endif
} while( xGotValue == pdFALSE );
if( ulReceivedValue != ulExpectedValue )
{
xSuspendedQueueReceiveError = pdTRUE;
}
++ulExpectedValue;
}
}
/*-----------------------------------------------------------*/
/* Called to check that all the created tasks are still running without error. */
portBASE_TYPE xAreDynamicPriorityTasksStillRunning( void )
{
/* Keep a history of the check variables so we know if it has been incremented
since the last call. */
static unsigned short usLastTaskCheck = ( unsigned short ) 0;
portBASE_TYPE xReturn = pdTRUE;
/* Check the tasks are still running by ensuring the check variable
is still incrementing. */
if( usCheckVariable == usLastTaskCheck )
{
/* The check has not incremented so an error exists. */
xReturn = pdFALSE;
}
if( xSuspendedQueueSendError == pdTRUE )
{
xReturn = pdFALSE;
}
if( xSuspendedQueueReceiveError == pdTRUE )
{
xReturn = pdFALSE;
}
usLastTaskCheck = usCheckVariable;
return xReturn;
}

@ -0,0 +1,145 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/**
* This version of flash .c is for use on systems that have limited stack space
* and no display facilities. The complete version can be found in the
* Demo/Common/Full directory.
*
* Three tasks are created, each of which flash an LED at a different rate. The first
* LED flashes every 200ms, the second every 400ms, the third every 600ms.
*
* The LED flash tasks provide instant visual feedback. They show that the scheduler
* is still operational.
*
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "partest.h"
#include "flash.h"
#define ledSTACK_SIZE configMINIMAL_STACK_SIZE
#define ledNUMBER_OF_LEDS ( 3 )
#define ledFLASH_RATE_BASE ( ( portTickType ) 333 )
/* Variable used by the created tasks to calculate the LED number to use, and
the rate at which they should flash the LED. */
static volatile unsigned portBASE_TYPE uxFlashTaskNumber = 0;
/* The task that is created three times. */
static portTASK_FUNCTION_PROTO( vLEDFlashTask, pvParameters );
/*-----------------------------------------------------------*/
void vStartLEDFlashTasks( unsigned portBASE_TYPE uxPriority )
{
signed portBASE_TYPE xLEDTask;
/* Create the three tasks. */
for( xLEDTask = 0; xLEDTask < ledNUMBER_OF_LEDS; ++xLEDTask )
{
/* Spawn the task. */
xTaskCreate( vLEDFlashTask, ( signed char * ) "LEDx", ledSTACK_SIZE, NULL, uxPriority, ( xTaskHandle * ) NULL );
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vLEDFlashTask, pvParameters )
{
portTickType xFlashRate, xLastFlashTime;
unsigned portBASE_TYPE uxLED;
/* The parameters are not used. */
( void ) pvParameters;
/* Calculate the LED and flash rate. */
portENTER_CRITICAL();
{
/* See which of the eight LED's we should use. */
uxLED = uxFlashTaskNumber;
/* Update so the next task uses the next LED. */
uxFlashTaskNumber++;
}
portEXIT_CRITICAL();
xFlashRate = ledFLASH_RATE_BASE + ( ledFLASH_RATE_BASE * ( portTickType ) uxLED );
xFlashRate /= portTICK_RATE_MS;
/* We will turn the LED on and off again in the delay period, so each
delay is only half the total period. */
xFlashRate /= ( portTickType ) 2;
/* We need to initialise xLastFlashTime prior to the first call to
vTaskDelayUntil(). */
xLastFlashTime = xTaskGetTickCount();
for(;;)
{
/* Delay for half the flash period then turn the LED on. */
vTaskDelayUntil( &xLastFlashTime, xFlashRate );
vParTestToggleLED( uxLED );
/* Delay for half the flash period then turn the LED off. */
vTaskDelayUntil( &xLastFlashTime, xFlashRate );
vParTestToggleLED( uxLED );
}
} /*lint !e715 !e818 !e830 Function definition must be standard for task creation. */

@ -0,0 +1,62 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef BLOCK_Q_H
#define BLOCK_Q_H
void vStartBlockingQueueTasks( unsigned portBASE_TYPE uxPriority );
portBASE_TYPE xAreBlockingQueuesStillRunning( void );
#endif

@ -0,0 +1,63 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef GEN_Q_TEST_H
#define GEN_Q_TEST_H
void vStartGenericQueueTasks( unsigned portBASE_TYPE uxPriority );
portBASE_TYPE xAreGenericQueueTasksStillRunning( void );
#endif /* GEN_Q_TEST_H */

@ -0,0 +1,62 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef POLLED_Q_H
#define POLLED_Q_H
void vStartPolledQueueTasks( unsigned portBASE_TYPE uxPriority );
portBASE_TYPE xArePollingQueuesStillRunning( void );
#endif

@ -0,0 +1,63 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef Q_PEEK_TEST_H
#define Q_PEEK_TEST_H
void vStartQueuePeekTasks( void );
portBASE_TYPE xAreQueuePeekTasksStillRunning( void );
#endif /* Q_PEEK_TEST_H */

@ -0,0 +1,62 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef BLOCK_TIME_TEST_H
#define BLOCK_TIME_TEST_H
void vCreateBlockTimeTasks( void );
portBASE_TYPE xAreBlockTimeTestTasksStillRunning( void );
#endif

@ -0,0 +1,62 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef SUICIDE_TASK_H
#define SUICIDE_TASK_H
void vCreateSuicidalTasks( unsigned portBASE_TYPE uxPriority );
portBASE_TYPE xIsCreateTaskStillRunning( void );
#endif

@ -0,0 +1,62 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef DYNAMIC_MANIPULATION_H
#define DYNAMIC_MANIPULATION_H
void vStartDynamicPriorityTasks( void );
portBASE_TYPE xAreDynamicPriorityTasksStillRunning( void );
#endif

@ -0,0 +1,60 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef FLASH_LED_H
#define FLASH_LED_H
void vStartLEDFlashTasks( unsigned portBASE_TYPE uxPriority );
#endif

@ -0,0 +1,62 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef FLOP_TASKS_H
#define FLOP_TASKS_H
void vStartMathTasks( unsigned portBASE_TYPE uxPriority );
portBASE_TYPE xAreMathsTaskStillRunning( void );
#endif

@ -0,0 +1,64 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef PARTEST_H
#define PARTEST_H
#define partstDEFAULT_PORT_ADDRESS ( ( unsigned short ) 0x378 )
void vParTestInitialise( void );
void vParTestSetLED( unsigned portBASE_TYPE uxLED, signed portBASE_TYPE xValue );
void vParTestToggleLED( unsigned portBASE_TYPE uxLED );
#endif

@ -0,0 +1,61 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef RECURSIVE_MUTEX_TEST_H
#define RECURSIVE_MUTEX_TEST_H
void vStartRecursiveMutexTasks( void );
portBASE_TYPE xAreRecursiveMutexTasksStillRunning( void );
#endif

@ -0,0 +1,61 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef SEMAPHORE_TEST_H
#define SEMAPHORE_TEST_H
void vStartSemaphoreTasks( unsigned portBASE_TYPE uxPriority );
portBASE_TYPE xAreSemaphoreTasksStillRunning( void );
#endif

@ -0,0 +1,395 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/*
The tasks defined on this page demonstrate the use of recursive mutexes.
For recursive mutex functionality the created mutex should be created using
xSemaphoreCreateRecursiveMutex(), then be manipulated
using the xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() API
functions.
This demo creates three tasks all of which access the same recursive mutex:
prvRecursiveMutexControllingTask() has the highest priority so executes
first and grabs the mutex. It then performs some recursive accesses -
between each of which it sleeps for a short period to let the lower
priority tasks execute. When it has completed its demo functionality
it gives the mutex back before suspending itself.
prvRecursiveMutexBlockingTask() attempts to access the mutex by performing
a blocking 'take'. The blocking task has a lower priority than the
controlling task so by the time it executes the mutex has already been
taken by the controlling task, causing the blocking task to block. It
does not unblock until the controlling task has given the mutex back,
and it does not actually run until the controlling task has suspended
itself (due to the relative priorities). When it eventually does obtain
the mutex all it does is give the mutex back prior to also suspending
itself. At this point both the controlling task and the blocking task are
suspended.
prvRecursiveMutexPollingTask() runs at the idle priority. It spins round
a tight loop attempting to obtain the mutex with a non-blocking call. As
the lowest priority task it will not successfully obtain the mutex until
both the controlling and blocking tasks are suspended. Once it eventually
does obtain the mutex it first unsuspends both the controlling task and
blocking task prior to giving the mutex back - resulting in the polling
task temporarily inheriting the controlling tasks priority.
*/
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
/* Demo app include files. */
#include "recmutex.h"
/* Priorities assigned to the three tasks. */
#define recmuCONTROLLING_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define recmuBLOCKING_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define recmuPOLLING_TASK_PRIORITY ( tskIDLE_PRIORITY + 0 )
/* The recursive call depth. */
#define recmuMAX_COUNT ( 10 )
/* Misc. */
#define recmuSHORT_DELAY ( 20 / portTICK_RATE_MS )
#define recmuNO_DELAY ( ( portTickType ) 0 )
#define recmuTWO_TICK_DELAY ( ( portTickType ) 2 )
/* The three tasks as described at the top of this file. */
static void prvRecursiveMutexControllingTask( void *pvParameters );
static void prvRecursiveMutexBlockingTask( void *pvParameters );
static void prvRecursiveMutexPollingTask( void *pvParameters );
/* The mutex used by the demo. */
static xSemaphoreHandle xMutex;
/* Variables used to detect and latch errors. */
static volatile portBASE_TYPE xErrorOccurred = pdFALSE, xControllingIsSuspended = pdFALSE, xBlockingIsSuspended = pdFALSE;
static volatile unsigned portBASE_TYPE uxControllingCycles = 0, uxBlockingCycles = 0, uxPollingCycles = 0;
/* Handles of the two higher priority tasks, required so they can be resumed
(unsuspended). */
static xTaskHandle xControllingTaskHandle, xBlockingTaskHandle;
/*-----------------------------------------------------------*/
void vStartRecursiveMutexTasks( void )
{
/* Just creates the mutex and the three tasks. */
xMutex = xSemaphoreCreateRecursiveMutex();
/* vQueueAddToRegistry() adds the mutex to the registry, if one is
in use. The registry is provided as a means for kernel aware
debuggers to locate mutex and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( ( xQueueHandle ) xMutex, ( signed portCHAR * ) "Recursive_Mutex" );
if( xMutex != NULL )
{
xTaskCreate( prvRecursiveMutexControllingTask, ( signed portCHAR * ) "Rec1", configMINIMAL_STACK_SIZE, NULL, recmuCONTROLLING_TASK_PRIORITY, &xControllingTaskHandle );
xTaskCreate( prvRecursiveMutexBlockingTask, ( signed portCHAR * ) "Rec2", configMINIMAL_STACK_SIZE, NULL, recmuBLOCKING_TASK_PRIORITY, &xBlockingTaskHandle );
xTaskCreate( prvRecursiveMutexPollingTask, ( signed portCHAR * ) "Rec3", configMINIMAL_STACK_SIZE, NULL, recmuPOLLING_TASK_PRIORITY, NULL );
}
}
/*-----------------------------------------------------------*/
static void prvRecursiveMutexControllingTask( void *pvParameters )
{
unsigned portBASE_TYPE ux;
/* Just to remove compiler warning. */
( void ) pvParameters;
for( ;; )
{
/* Should not be able to 'give' the mutex, as we have not yet 'taken'
it. The first time through, the mutex will not have been used yet,
subsequent times through, at this point the mutex will be held by the
polling task. */
if( xSemaphoreGiveRecursive( xMutex ) == pdPASS )
{
xErrorOccurred = pdTRUE;
}
for( ux = 0; ux < recmuMAX_COUNT; ux++ )
{
/* We should now be able to take the mutex as many times as
we like.
The first time through the mutex will be immediately available, on
subsequent times through the mutex will be held by the polling task
at this point and this Take will cause the polling task to inherit
the priority of this task. In this case the block time must be
long enough to ensure the polling task will execute again before the
block time expires. If the block time does expire then the error
flag will be set here. */
if( xSemaphoreTakeRecursive( xMutex, recmuTWO_TICK_DELAY ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
/* Ensure the other task attempting to access the mutex (and the
other demo tasks) are able to execute to ensure they either block
(where a block time is specified) or return an error (where no
block time is specified) as the mutex is held by this task. */
vTaskDelay( recmuSHORT_DELAY );
}
/* For each time we took the mutex, give it back. */
for( ux = 0; ux < recmuMAX_COUNT; ux++ )
{
/* Ensure the other task attempting to access the mutex (and the
other demo tasks) are able to execute. */
vTaskDelay( recmuSHORT_DELAY );
/* We should now be able to give the mutex as many times as we
took it. When the mutex is available again the Blocking task
should be unblocked but not run because it has a lower priority
than this task. The polling task should also not run at this point
as it too has a lower priority than this task. */
if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
}
/* Having given it back the same number of times as it was taken, we
should no longer be the mutex owner, so the next give sh ould fail. */
if( xSemaphoreGiveRecursive( xMutex ) == pdPASS )
{
xErrorOccurred = pdTRUE;
}
/* Keep count of the number of cycles this task has performed so a
stall can be detected. */
uxControllingCycles++;
/* Suspend ourselves to the blocking task can execute. */
xControllingIsSuspended = pdTRUE;
vTaskSuspend( NULL );
xControllingIsSuspended = pdFALSE;
}
}
/*-----------------------------------------------------------*/
static void prvRecursiveMutexBlockingTask( void *pvParameters )
{
/* Just to remove compiler warning. */
( void ) pvParameters;
for( ;; )
{
/* This task will run while the controlling task is blocked, and the
controlling task will block only once it has the mutex - therefore
this call should block until the controlling task has given up the
mutex, and not actually execute past this call until the controlling
task is suspended. */
if( xSemaphoreTakeRecursive( xMutex, portMAX_DELAY ) == pdPASS )
{
if( xControllingIsSuspended != pdTRUE )
{
/* Did not expect to execute until the controlling task was
suspended. */
xErrorOccurred = pdTRUE;
}
else
{
/* Give the mutex back before suspending ourselves to allow
the polling task to obtain the mutex. */
if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
xBlockingIsSuspended = pdTRUE;
vTaskSuspend( NULL );
xBlockingIsSuspended = pdFALSE;
}
}
else
{
/* We should not leave the xSemaphoreTakeRecursive() function
until the mutex was obtained. */
xErrorOccurred = pdTRUE;
}
/* The controlling and blocking tasks should be in lock step. */
if( uxControllingCycles != ( uxBlockingCycles + 1 ) )
{
xErrorOccurred = pdTRUE;
}
/* Keep count of the number of cycles this task has performed so a
stall can be detected. */
uxBlockingCycles++;
}
}
/*-----------------------------------------------------------*/
static void prvRecursiveMutexPollingTask( void *pvParameters )
{
/* Just to remove compiler warning. */
( void ) pvParameters;
for( ;; )
{
/* Keep attempting to obtain the mutex. We should only obtain it when
the blocking task has suspended itself, which in turn should only
happen when the controlling task is also suspended. */
if( xSemaphoreTakeRecursive( xMutex, recmuNO_DELAY ) == pdPASS )
{
/* Is the blocking task suspended? */
if( ( xBlockingIsSuspended != pdTRUE ) || ( xControllingIsSuspended != pdTRUE ) )
{
xErrorOccurred = pdTRUE;
}
else
{
/* Keep count of the number of cycles this task has performed
so a stall can be detected. */
uxPollingCycles++;
/* We can resume the other tasks here even though they have a
higher priority than the polling task. When they execute they
will attempt to obtain the mutex but fail because the polling
task is still the mutex holder. The polling task (this task)
will then inherit the higher priority. The Blocking task will
block indefinitely when it attempts to obtain the mutex, the
Controlling task will only block for a fixed period and an
error will be latched if the polling task has not returned the
mutex by the time this fixed period has expired. */
vTaskResume( xBlockingTaskHandle );
vTaskResume( xControllingTaskHandle );
/* The other two tasks should now have executed and no longer
be suspended. */
if( ( xBlockingIsSuspended == pdTRUE ) || ( xControllingIsSuspended == pdTRUE ) )
{
xErrorOccurred = pdTRUE;
}
/* Release the mutex, disinheriting the higher priority again. */
if( xSemaphoreGiveRecursive( xMutex ) != pdPASS )
{
xErrorOccurred = pdTRUE;
}
}
}
#if configUSE_PREEMPTION == 0
{
taskYIELD();
}
#endif
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreRecursiveMutexTasksStillRunning( void )
{
portBASE_TYPE xReturn;
static unsigned portBASE_TYPE uxLastControllingCycles = 0, uxLastBlockingCycles = 0, uxLastPollingCycles = 0;
/* Is the controlling task still cycling? */
if( uxLastControllingCycles == uxControllingCycles )
{
xErrorOccurred = pdTRUE;
}
else
{
uxLastControllingCycles = uxControllingCycles;
}
/* Is the blocking task still cycling? */
if( uxLastBlockingCycles == uxBlockingCycles )
{
xErrorOccurred = pdTRUE;
}
else
{
uxLastBlockingCycles = uxBlockingCycles;
}
/* Is the polling task still cycling? */
if( uxLastPollingCycles == uxPollingCycles )
{
xErrorOccurred = pdTRUE;
}
else
{
uxLastPollingCycles = uxPollingCycles;
}
if( xErrorOccurred == pdTRUE )
{
xReturn = pdFAIL;
}
else
{
xReturn = pdTRUE;
}
return xReturn;
}

@ -0,0 +1,284 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/*
* Creates two sets of two tasks. The tasks within a set share a variable, access
* to which is guarded by a semaphore.
*
* Each task starts by attempting to obtain the semaphore. On obtaining a
* semaphore a task checks to ensure that the guarded variable has an expected
* value. It then clears the variable to zero before counting it back up to the
* expected value in increments of 1. After each increment the variable is checked
* to ensure it contains the value to which it was just set. When the starting
* value is again reached the task releases the semaphore giving the other task in
* the set a chance to do exactly the same thing. The starting value is high
* enough to ensure that a tick is likely to occur during the incrementing loop.
*
* An error is flagged if at any time during the process a shared variable is
* found to have a value other than that expected. Such an occurrence would
* suggest an error in the mutual exclusion mechanism by which access to the
* variable is restricted.
*
* The first set of two tasks poll their semaphore. The second set use blocking
* calls.
*
*/
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
/* Demo app include files. */
#include "semtest.h"
/* The value to which the shared variables are counted. */
#define semtstBLOCKING_EXPECTED_VALUE ( ( unsigned long ) 0xfff )
#define semtstNON_BLOCKING_EXPECTED_VALUE ( ( unsigned long ) 0xff )
#define semtstSTACK_SIZE configMINIMAL_STACK_SIZE
#define semtstNUM_TASKS ( 4 )
#define semtstDELAY_FACTOR ( ( portTickType ) 10 )
/* The task function as described at the top of the file. */
static portTASK_FUNCTION_PROTO( prvSemaphoreTest, pvParameters );
/* Structure used to pass parameters to each task. */
typedef struct SEMAPHORE_PARAMETERS
{
xSemaphoreHandle xSemaphore;
volatile unsigned long *pulSharedVariable;
portTickType xBlockTime;
} xSemaphoreParameters;
/* Variables used to check that all the tasks are still running without errors. */
static volatile short sCheckVariables[ semtstNUM_TASKS ] = { 0 };
static volatile short sNextCheckVariable = 0;
/*-----------------------------------------------------------*/
void vStartSemaphoreTasks( unsigned portBASE_TYPE uxPriority )
{
xSemaphoreParameters *pxFirstSemaphoreParameters, *pxSecondSemaphoreParameters;
const portTickType xBlockTime = ( portTickType ) 100;
/* Create the structure used to pass parameters to the first two tasks. */
pxFirstSemaphoreParameters = ( xSemaphoreParameters * ) pvPortMalloc( sizeof( xSemaphoreParameters ) );
if( pxFirstSemaphoreParameters != NULL )
{
/* Create the semaphore used by the first two tasks. */
vSemaphoreCreateBinary( pxFirstSemaphoreParameters->xSemaphore );
if( pxFirstSemaphoreParameters->xSemaphore != NULL )
{
/* Create the variable which is to be shared by the first two tasks. */
pxFirstSemaphoreParameters->pulSharedVariable = ( unsigned long * ) pvPortMalloc( sizeof( unsigned long ) );
/* Initialise the share variable to the value the tasks expect. */
*( pxFirstSemaphoreParameters->pulSharedVariable ) = semtstNON_BLOCKING_EXPECTED_VALUE;
/* The first two tasks do not block on semaphore calls. */
pxFirstSemaphoreParameters->xBlockTime = ( portTickType ) 0;
/* Spawn the first two tasks. As they poll they operate at the idle priority. */
xTaskCreate( prvSemaphoreTest, ( signed char * ) "PolSEM1", semtstSTACK_SIZE, ( void * ) pxFirstSemaphoreParameters, tskIDLE_PRIORITY, ( xTaskHandle * ) NULL );
xTaskCreate( prvSemaphoreTest, ( signed char * ) "PolSEM2", semtstSTACK_SIZE, ( void * ) pxFirstSemaphoreParameters, tskIDLE_PRIORITY, ( xTaskHandle * ) NULL );
}
}
/* Do exactly the same to create the second set of tasks, only this time
provide a block time for the semaphore calls. */
pxSecondSemaphoreParameters = ( xSemaphoreParameters * ) pvPortMalloc( sizeof( xSemaphoreParameters ) );
if( pxSecondSemaphoreParameters != NULL )
{
vSemaphoreCreateBinary( pxSecondSemaphoreParameters->xSemaphore );
if( pxSecondSemaphoreParameters->xSemaphore != NULL )
{
pxSecondSemaphoreParameters->pulSharedVariable = ( unsigned long * ) pvPortMalloc( sizeof( unsigned long ) );
*( pxSecondSemaphoreParameters->pulSharedVariable ) = semtstBLOCKING_EXPECTED_VALUE;
pxSecondSemaphoreParameters->xBlockTime = xBlockTime / portTICK_RATE_MS;
xTaskCreate( prvSemaphoreTest, ( signed char * ) "BlkSEM1", semtstSTACK_SIZE, ( void * ) pxSecondSemaphoreParameters, uxPriority, ( xTaskHandle * ) NULL );
xTaskCreate( prvSemaphoreTest, ( signed char * ) "BlkSEM2", semtstSTACK_SIZE, ( void * ) pxSecondSemaphoreParameters, uxPriority, ( xTaskHandle * ) NULL );
}
}
/* vQueueAddToRegistry() adds the semaphore to the registry, if one is
in use. The registry is provided as a means for kernel aware
debuggers to locate semaphores and has no purpose if a kernel aware debugger
is not being used. The call to vQueueAddToRegistry() will be removed
by the pre-processor if configQUEUE_REGISTRY_SIZE is not defined or is
defined to be less than 1. */
vQueueAddToRegistry( ( xQueueHandle ) pxFirstSemaphoreParameters->xSemaphore, ( signed char * ) "Counting_Sem_1" );
vQueueAddToRegistry( ( xQueueHandle ) pxSecondSemaphoreParameters->xSemaphore, ( signed char * ) "Counting_Sem_2" );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( prvSemaphoreTest, pvParameters )
{
xSemaphoreParameters *pxParameters;
volatile unsigned long *pulSharedVariable, ulExpectedValue;
unsigned long ulCounter;
short sError = pdFALSE, sCheckVariableToUse;
/* See which check variable to use. sNextCheckVariable is not semaphore
protected! */
portENTER_CRITICAL();
sCheckVariableToUse = sNextCheckVariable;
sNextCheckVariable++;
portEXIT_CRITICAL();
/* A structure is passed in as the parameter. This contains the shared
variable being guarded. */
pxParameters = ( xSemaphoreParameters * ) pvParameters;
pulSharedVariable = pxParameters->pulSharedVariable;
/* If we are blocking we use a much higher count to ensure loads of context
switches occur during the count. */
if( pxParameters->xBlockTime > ( portTickType ) 0 )
{
ulExpectedValue = semtstBLOCKING_EXPECTED_VALUE;
}
else
{
ulExpectedValue = semtstNON_BLOCKING_EXPECTED_VALUE;
}
for( ;; )
{
/* Try to obtain the semaphore. */
if( xSemaphoreTake( pxParameters->xSemaphore, pxParameters->xBlockTime ) == pdPASS )
{
/* We have the semaphore and so expect any other tasks using the
shared variable to have left it in the state we expect to find
it. */
if( *pulSharedVariable != ulExpectedValue )
{
sError = pdTRUE;
}
/* Clear the variable, then count it back up to the expected value
before releasing the semaphore. Would expect a context switch or
two during this time. */
for( ulCounter = ( unsigned long ) 0; ulCounter <= ulExpectedValue; ulCounter++ )
{
*pulSharedVariable = ulCounter;
if( *pulSharedVariable != ulCounter )
{
sError = pdTRUE;
}
}
/* Release the semaphore, and if no errors have occurred increment the check
variable. */
if( xSemaphoreGive( pxParameters->xSemaphore ) == pdFALSE )
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
if( sCheckVariableToUse < semtstNUM_TASKS )
{
( sCheckVariables[ sCheckVariableToUse ] )++;
}
}
/* If we have a block time then we are running at a priority higher
than the idle priority. This task takes a long time to complete
a cycle (deliberately so to test the guarding) so will be starving
out lower priority tasks. Block for some time to allow give lower
priority tasks some processor time. */
vTaskDelay( pxParameters->xBlockTime * semtstDELAY_FACTOR );
}
else
{
if( pxParameters->xBlockTime == ( portTickType ) 0 )
{
/* We have not got the semaphore yet, so no point using the
processor. We are not blocking when attempting to obtain the
semaphore. */
taskYIELD();
}
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreSemaphoreTasksStillRunning( void )
{
static short sLastCheckVariables[ semtstNUM_TASKS ] = { 0 };
portBASE_TYPE xTask, xReturn = pdTRUE;
for( xTask = 0; xTask < semtstNUM_TASKS; xTask++ )
{
if( sLastCheckVariables[ xTask ] == sCheckVariables[ xTask ] )
{
xReturn = pdFALSE;
}
sLastCheckVariables[ xTask ] = sCheckVariables[ xTask ];
}
return xReturn;
}

@ -0,0 +1,353 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/*
* Creates eight tasks, each of which loops continuously performing a floating
* point calculation - using single precision variables.
*
* All the tasks run at the idle priority and never block or yield. This causes
* all eight tasks to time slice with the idle task. Running at the idle priority
* means that these tasks will get pre-empted any time another task is ready to run
* or a time slice occurs. More often than not the pre-emption will occur mid
* calculation, creating a good test of the schedulers context switch mechanism - a
* calculation producing an unexpected result could be a symptom of a corruption in
* the context of a task.
*/
#include <stdlib.h>
#include <math.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "flop.h"
#define mathSTACK_SIZE configMINIMAL_STACK_SIZE
#define mathNUMBER_OF_TASKS ( 8 )
/* Four tasks, each of which performs a different floating point calculation.
Each of the four is created twice. */
static portTASK_FUNCTION_PROTO( vCompetingMathTask1, pvParameters );
static portTASK_FUNCTION_PROTO( vCompetingMathTask2, pvParameters );
static portTASK_FUNCTION_PROTO( vCompetingMathTask3, pvParameters );
static portTASK_FUNCTION_PROTO( vCompetingMathTask4, pvParameters );
/* These variables are used to check that all the tasks are still running. If a
task gets a calculation wrong it will
stop incrementing its check variable. */
static volatile unsigned short usTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
/*-----------------------------------------------------------*/
void vStartMathTasks( unsigned portBASE_TYPE uxPriority )
{
xTaskCreate( vCompetingMathTask1, ( signed char * ) "Math1", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask2, ( signed char * ) "Math2", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask3, ( signed char * ) "Math3", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask4, ( signed char * ) "Math4", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask1, ( signed char * ) "Math5", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 4 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask2, ( signed char * ) "Math6", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 5 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask3, ( signed char * ) "Math7", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 6 ] ), uxPriority, NULL );
xTaskCreate( vCompetingMathTask4, ( signed char * ) "Math8", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 7 ] ), uxPriority, NULL );
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask1, pvParameters )
{
volatile float f1, f2, f3, f4;
volatile unsigned short *pusTaskCheckVariable;
volatile float fAnswer;
short sError = pdFALSE;
f1 = 123.4567F;
f2 = 2345.6789F;
f3 = -918.222F;
fAnswer = ( f1 + f2 ) * f3;
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for(;;)
{
f1 = 123.4567F;
f2 = 2345.6789F;
f3 = -918.222F;
f4 = ( f1 + f2 ) * f3;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* If the calculation does not match the expected constant, stop the
increment of the check variable. */
if( fabs( f4 - fAnswer ) > 0.001F )
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask2, pvParameters )
{
volatile float f1, f2, f3, f4;
volatile unsigned short *pusTaskCheckVariable;
volatile float fAnswer;
short sError = pdFALSE;
f1 = -389.38F;
f2 = 32498.2F;
f3 = -2.0001F;
fAnswer = ( f1 / f2 ) * f3;
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
/* Keep performing a calculation and checking the result against a constant. */
for( ;; )
{
f1 = -389.38F;
f2 = 32498.2F;
f3 = -2.0001F;
f4 = ( f1 / f2 ) * f3;
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
/* If the calculation does not match the expected constant, stop the
increment of the check variable. */
if( fabs( f4 - fAnswer ) > 0.001F )
{
sError = pdTRUE;
}
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know
this task is still running okay. */
( *pusTaskCheckVariable )++;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask3, pvParameters )
{
volatile float *pfArray, fTotal1, fTotal2, fDifference, fPosition;
volatile unsigned short *pusTaskCheckVariable;
const size_t xArraySize = 10;
size_t xPosition;
short sError = pdFALSE;
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
pfArray = ( float * ) pvPortMalloc( xArraySize * sizeof( float ) );
/* Keep filling an array, keeping a running total of the values placed in the
array. Then run through the array adding up all the values. If the two totals
do not match, stop the check variable from incrementing. */
for( ;; )
{
fTotal1 = 0.0F;
fTotal2 = 0.0F;
fPosition = 0.0F;
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
pfArray[ xPosition ] = fPosition + 5.5F;
fTotal1 += fPosition + 5.5F;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
fTotal2 += pfArray[ xPosition ];
}
fDifference = fTotal1 - fTotal2;
if( fabs( fDifference ) > 0.001F )
{
sError = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
static portTASK_FUNCTION( vCompetingMathTask4, pvParameters )
{
volatile float *pfArray, fTotal1, fTotal2, fDifference, fPosition;
volatile unsigned short *pusTaskCheckVariable;
const size_t xArraySize = 10;
size_t xPosition;
short sError = pdFALSE;
/* The variable this task increments to show it is still running is passed in
as the parameter. */
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
pfArray = ( float * ) pvPortMalloc( xArraySize * sizeof( float ) );
/* Keep filling an array, keeping a running total of the values placed in the
array. Then run through the array adding up all the values. If the two totals
do not match, stop the check variable from incrementing. */
for( ;; )
{
fTotal1 = 0.0F;
fTotal2 = 0.0F;
fPosition = 0.0F;
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
pfArray[ xPosition ] = fPosition * 12.123F;
fTotal1 += fPosition * 12.123F;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
for( xPosition = 0; xPosition < xArraySize; xPosition++ )
{
fTotal2 += pfArray[ xPosition ];
}
fDifference = fTotal1 - fTotal2;
if( fabs( fDifference ) > 0.001F )
{
sError = pdTRUE;
}
#if configUSE_PREEMPTION == 0
taskYIELD();
#endif
if( sError == pdFALSE )
{
/* If the calculation has always been correct, increment the check
variable so we know this task is still running okay. */
( *pusTaskCheckVariable )++;
}
}
}
/*-----------------------------------------------------------*/
/* This is called to check that all the created tasks are still running. */
portBASE_TYPE xAreMathsTaskStillRunning( void )
{
/* Keep a history of the check variables so we know if they have been incremented
since the last call. */
static unsigned short usLastTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
portBASE_TYPE xReturn = pdTRUE, xTask;
/* Check the maths tasks are still running by ensuring their check variables
are still incrementing. */
for( xTask = 0; xTask < mathNUMBER_OF_TASKS; xTask++ )
{
if( usTaskCheck[ xTask ] == usLastTaskCheck[ xTask ] )
{
/* The check has not incremented so an error exists. */
xReturn = pdFALSE;
}
usLastTaskCheck[ xTask ] = usTaskCheck[ xTask ];
}
return xReturn;
}
Loading…
Cancel
Save