Delete unused files.

pull/4/head
Richard Barry 16 years ago
parent 89ccc31af1
commit b8104d386f

@ -1,888 +0,0 @@
/*
* Copyright (c) 2001-2004 Swedish Institute of Computer Science.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
* OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* This file is part of the lwIP TCP/IP stack.
*
* Author: Adam Dunkels <adam@sics.se>
*
*/
/* Standard library includes. */
#include <stdio.h>
#include <string.h>
/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
xTaskHandle xEthIntTask;
/* lwIP includes. */
#include "lwip/def.h"
#include "lwip/mem.h"
#include "lwip/pbuf.h"
#include "lwip/sys.h"
#include "lwip/stats.h"
#include "lwip/snmp.h"
#include "netif/etharp.h"
/* Hardware includes. */
#include "fec.h"
/* Delay to wait for a DMA buffer to become available if one is not already
available. */
#define netifBUFFER_WAIT_ATTEMPTS 10
#define netifBUFFER_WAIT_DELAY (10 / portTICK_RATE_MS)
/* Delay between polling the PHY to see if a link has been established. */
#define netifLINK_DELAY ( 500 / portTICK_RATE_MS )
/* Delay between looking for incoming packets. In ideal world this would be
infinite. */
#define netifBLOCK_TIME_WAITING_FOR_INPUT netifLINK_DELAY
/* Name for the netif. */
#define IFNAME0 'e'
#define IFNAME1 'n'
/* Hardware specific. */
#define netifFIRST_FEC_VECTOR 23
/*-----------------------------------------------------------*/
/* The DMA descriptors. This is a char array to allow us to align it correctly. */
static unsigned portCHAR xFECTxDescriptors_unaligned[ ( configNUM_FEC_TX_BUFFERS * sizeof( FECBD ) ) + 16 ];
static unsigned portCHAR xFECRxDescriptors_unaligned[ ( configNUM_FEC_RX_BUFFERS * sizeof( FECBD ) ) + 16 ];
static FECBD *xFECTxDescriptors;
static FECBD *xFECRxDescriptors;
/* The DMA buffers. These are char arrays to allow them to be alligned correctly. */
static unsigned portCHAR ucFECTxBuffers[ ( configNUM_FEC_TX_BUFFERS * configFEC_BUFFER_SIZE ) + 16 ];
static unsigned portCHAR ucFECRxBuffers[ ( configNUM_FEC_RX_BUFFERS * configFEC_BUFFER_SIZE ) + 16 ];
static unsigned portBASE_TYPE uxNextRxBuffer = 0, uxNextTxBuffer = 0;
/* Semaphore used by the FEC interrupt handler to wake the handler task. */
static xSemaphoreHandle xFecSemaphore;
#pragma options align= packed
struct ethernetif
{
struct eth_addr *ethaddr;
/* Add whatever per-interface state that is needed here. */
};
/*-----------------------------------------------------------*/
/* Standard lwIP netif handlers. */
static void prvInitialiseFECBuffers( void );
static void low_level_init( struct netif *netif );
static err_t low_level_output(struct netif *netif, struct pbuf *p);
static struct pbuf *low_level_input(struct netif *netif);
static void ethernetif_input( void *pParams );
/* Functions adapted from Freescale provided code. */
static int fec_mii_write( int phy_addr, int reg_addr, int data );
static int fec_mii_read( int phy_addr, int reg_addr, uint16* data );
static uint8 fec_hash_address( const uint8* addr );
static void fec_set_address( const uint8 *pa );
static void fec_irq_enable( void );
/*-----------------------------------------------------------*/
/********************************************************************/
/*
* Write a value to a PHY's MII register.
*
* Parameters:
* ch FEC channel
* phy_addr Address of the PHY.
* reg_addr Address of the register in the PHY.
* data Data to be written to the PHY register.
*
* Return Values:
* 0 on failure
* 1 on success.
*
* Please refer to your PHY manual for registers and their meanings.
* mii_write() polls for the FEC's MII interrupt event and clears it.
* If after a suitable amount of time the event isn't triggered, a
* value of 0 is returned.
*/
static int fec_mii_write( int phy_addr, int reg_addr, int data )
{
int timeout;
uint32 eimr;
/* Clear the MII interrupt bit */
MCF_FEC_EIR = MCF_FEC_EIR_MII;
/* Mask the MII interrupt */
eimr = MCF_FEC_EIMR;
MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;
/* Write to the MII Management Frame Register to kick-off the MII write */
MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_WRITE | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10 | MCF_FEC_MMFR_DATA( data );
/* Poll for the MII interrupt (interrupt should be masked) */
for (timeout = 0; timeout < MII_TIMEOUT; timeout++)
{
if (MCF_FEC_EIR & MCF_FEC_EIR_MII)
{
break;
}
}
if( timeout == MII_TIMEOUT )
{
return 0;
}
/* Clear the MII interrupt bit */
MCF_FEC_EIR = MCF_FEC_EIR_MII;
/* Restore the EIMR */
MCF_FEC_EIMR = eimr;
return 1;
}
/********************************************************************/
/*
* Read a value from a PHY's MII register.
*
* Parameters:
* ch FEC channel
* phy_addr Address of the PHY.
* reg_addr Address of the register in the PHY.
* data Pointer to storage for the Data to be read
* from the PHY register (passed by reference)
*
* Return Values:
* 0 on failure
* 1 on success.
*
* Please refer to your PHY manual for registers and their meanings.
* mii_read() polls for the FEC's MII interrupt event and clears it.
* If after a suitable amount of time the event isn't triggered, a
* value of 0 is returned.
*/
static int fec_mii_read( int phy_addr, int reg_addr, uint16* data )
{
int timeout;
uint32 eimr;
/* Clear the MII interrupt bit */
MCF_FEC_EIR = MCF_FEC_EIR_MII;
/* Mask the MII interrupt */
eimr = MCF_FEC_EIMR;
MCF_FEC_EIMR &= ~MCF_FEC_EIMR_MII;
/* Write to the MII Management Frame Register to kick-off the MII read */
MCF_FEC_MMFR = MCF_FEC_MMFR_ST_01 | MCF_FEC_MMFR_OP_READ | MCF_FEC_MMFR_PA(phy_addr) | MCF_FEC_MMFR_RA(reg_addr) | MCF_FEC_MMFR_TA_10;
/* Poll for the MII interrupt (interrupt should be masked) */
for (timeout = 0; timeout < MII_TIMEOUT; timeout++)
{
if (MCF_FEC_EIR & MCF_FEC_EIR_MII)
{
break;
}
}
if(timeout == MII_TIMEOUT)
{
return 0;
}
/* Clear the MII interrupt bit */
MCF_FEC_EIR = MCF_FEC_EIR_MII;
/* Restore the EIMR */
MCF_FEC_EIMR = eimr;
*data = (uint16)(MCF_FEC_MMFR & 0x0000FFFF);
return 1;
}
/********************************************************************/
/*
* Generate the hash table settings for the given address
*
* Parameters:
* addr 48-bit (6 byte) Address to generate the hash for
*
* Return Value:
* The 6 most significant bits of the 32-bit CRC result
*/
static uint8 fec_hash_address( const uint8* addr )
{
uint32 crc;
uint8 byte;
int i, j;
crc = 0xFFFFFFFF;
for(i=0; i<6; ++i)
{
byte = addr[i];
for(j=0; j<8; ++j)
{
if((byte & 0x01)^(crc & 0x01))
{
crc >>= 1;
crc = crc ^ 0xEDB88320;
}
else
{
crc >>= 1;
}
byte >>= 1;
}
}
return (uint8)(crc >> 26);
}
/********************************************************************/
/*
* Set the Physical (Hardware) Address and the Individual Address
* Hash in the selected FEC
*
* Parameters:
* ch FEC channel
* pa Physical (Hardware) Address for the selected FEC
*/
static void fec_set_address( const uint8 *pa )
{
uint8 crc;
/*
* Set the Physical Address
*/
MCF_FEC_PALR = (uint32)((pa[0]<<24) | (pa[1]<<16) | (pa[2]<<8) | pa[3]);
MCF_FEC_PAUR = (uint32)((pa[4]<<24) | (pa[5]<<16));
/*
* Calculate and set the hash for given Physical Address
* in the Individual Address Hash registers
*/
crc = fec_hash_address(pa);
if(crc >= 32)
{
MCF_FEC_IAUR |= (uint32)(1 << (crc - 32));
}
else
{
MCF_FEC_IALR |= (uint32)(1 << crc);
}
}
/********************************************************************/
/*
* Enable interrupts on the selected FEC
*
*/
static void fec_irq_enable( void )
{
int fec_vbase;
#if INTC_LVL_FEC > configMAX_SYSCALL_INTERRUPT_PRIORITY
#error INTC_LVL_FEC must be less than or equal to configMAX_SYSCALL_INTERRUPT_PRIORITY
#endif
fec_vbase = 64 + netifFIRST_FEC_VECTOR;
/* Enable FEC interrupts to the ColdFire core
* Setup each ICR with a unique interrupt level combination */
fec_vbase -= 64;
/* FEC Rx Frame */
MCF_INTC0_ICR(fec_vbase+4) = MCF_INTC_ICR_IL(INTC_LVL_FEC);
/* FEC Rx Buffer */
MCF_INTC0_ICR(fec_vbase+5) = MCF_INTC_ICR_IL(INTC_LVL_FEC);
/* FEC FIFO Underrun */
MCF_INTC0_ICR(fec_vbase+2) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* FEC Collision Retry Limit */
MCF_INTC0_ICR(fec_vbase+3) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* FEC Late Collision */
MCF_INTC0_ICR(fec_vbase+7) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* FEC Heartbeat Error */
MCF_INTC0_ICR(fec_vbase+8) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* FEC Bus Error */
MCF_INTC0_ICR(fec_vbase+10) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* FEC Babbling Transmit */
MCF_INTC0_ICR(fec_vbase+11) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* FEC Babbling Receive */
MCF_INTC0_ICR(fec_vbase+12) = MCF_INTC_ICR_IL(INTC_LVL_FEC+1);
/* Enable the FEC interrupts in the mask register */
MCF_INTC0_IMRH &= ~( MCF_INTC_IMRH_INT_MASK33 | MCF_INTC_IMRH_INT_MASK34 | MCF_INTC_IMRH_INT_MASK35 );
MCF_INTC0_IMRL &= ~( MCF_INTC_IMRL_INT_MASK25 | MCF_INTC_IMRL_INT_MASK26 | MCF_INTC_IMRL_INT_MASK27 | MCF_INTC_IMRL_INT_MASK28 | MCF_INTC_IMRL_INT_MASK29 | MCF_INTC_IMRL_INT_MASK30 | MCF_INTC_IMRL_INT_MASK31 | MCF_INTC_IMRL_MASKALL );
/* Clear any pending FEC interrupt events */
MCF_FEC_EIR = MCF_FEC_EIR_CLEAR_ALL;
/* Unmask all FEC interrupts */
MCF_FEC_EIMR = MCF_FEC_EIMR_UNMASK_ALL;
}
/**
* In this function, the hardware should be initialized.
* Called from ethernetif_init().
*
* @param netif the already initialized lwip network interface structure
* for this ethernetif
*/
static void low_level_init( struct netif *netif )
{
unsigned portSHORT usData;
const unsigned portCHAR ucMACAddress[6] =
{
configMAC_0, configMAC_1,configMAC_2,configMAC_3,configMAC_4,configMAC_5
};
prvInitialiseFECBuffers();
vSemaphoreCreateBinary( xFecSemaphore );
for( usData = 0; usData < 6; usData++ )
{
netif->hwaddr[ usData ] = ucMACAddress[ usData ];
}
/* Set the Reset bit and clear the Enable bit */
MCF_FEC_ECR = MCF_FEC_ECR_RESET;
/* Wait at least 8 clock cycles */
for( usData = 0; usData < 10; usData++ )
{
asm( "NOP" );
}
/* Set MII speed to 2.5MHz. */
MCF_FEC_MSCR = MCF_FEC_MSCR_MII_SPEED( ( ( configCPU_CLOCK_HZ / 1000000 ) / 5 ) + 1 );
/*
* Make sure the external interface signals are enabled
*/
MCF_GPIO_PNQPAR = MCF_GPIO_PNQPAR_IRQ3_FEC_MDIO | MCF_GPIO_PNQPAR_IRQ5_FEC_MDC;
MCF_GPIO_PTIPAR = MCF_GPIO_PTIPAR_FEC_COL_FEC_COL
| MCF_GPIO_PTIPAR_FEC_CRS_FEC_CRS
| MCF_GPIO_PTIPAR_FEC_RXCLK_FEC_RXCLK
| MCF_GPIO_PTIPAR_FEC_RXD0_FEC_RXD0
| MCF_GPIO_PTIPAR_FEC_RXD1_FEC_RXD1
| MCF_GPIO_PTIPAR_FEC_RXD2_FEC_RXD2
| MCF_GPIO_PTIPAR_FEC_RXD3_FEC_RXD3
| MCF_GPIO_PTIPAR_FEC_RXDV_FEC_RXDV;
MCF_GPIO_PTJPAR = MCF_GPIO_PTJPAR_FEC_RXER_FEC_RXER
| MCF_GPIO_PTJPAR_FEC_TXCLK_FEC_TXCLK
| MCF_GPIO_PTJPAR_FEC_TXD0_FEC_TXD0
| MCF_GPIO_PTJPAR_FEC_TXD1_FEC_TXD1
| MCF_GPIO_PTJPAR_FEC_TXD2_FEC_TXD2
| MCF_GPIO_PTJPAR_FEC_TXD3_FEC_TXD3
| MCF_GPIO_PTJPAR_FEC_TXEN_FEC_TXEN
| MCF_GPIO_PTJPAR_FEC_TXER_FEC_TXER;
/* Can we talk to the PHY? */
do
{
vTaskDelay( netifLINK_DELAY );
usData = 0;
fec_mii_read( configPHY_ADDRESS, PHY_PHYIDR1, &usData );
} while( ( usData == 0xffff ) || ( usData == 0 ) );
/* Start auto negotiate. */
fec_mii_write( configPHY_ADDRESS, PHY_BMCR, ( PHY_BMCR_AN_RESTART | PHY_BMCR_AN_ENABLE ) );
/* Wait for auto negotiate to complete. */
do
{
vTaskDelay( netifLINK_DELAY );
fec_mii_read( configPHY_ADDRESS, PHY_BMSR, &usData );
} while( !( usData & PHY_BMSR_AN_COMPLETE ) );
/* When we get here we have a link - find out what has been negotiated. */
fec_mii_read( configPHY_ADDRESS, PHY_ANLPAR, &usData );
if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_100BTX ) )
{
/* Speed is 100. */
}
else
{
/* Speed is 10. */
}
if( ( usData & PHY_ANLPAR_100BTX_FDX ) || ( usData & PHY_ANLPAR_10BTX_FDX ) )
{
/* Full duplex. */
MCF_FEC_RCR &= (uint32)~MCF_FEC_RCR_DRT;
MCF_FEC_TCR |= MCF_FEC_TCR_FDEN;
}
else
{
MCF_FEC_RCR |= MCF_FEC_RCR_DRT;
MCF_FEC_TCR &= (uint32)~MCF_FEC_TCR_FDEN;
}
/* Clear the Individual and Group Address Hash registers */
MCF_FEC_IALR = 0;
MCF_FEC_IAUR = 0;
MCF_FEC_GALR = 0;
MCF_FEC_GAUR = 0;
/* Set the Physical Address for the selected FEC */
fec_set_address( ucMACAddress );
/* Set Rx Buffer Size */
MCF_FEC_EMRBR = (uint16)configFEC_BUFFER_SIZE;
/* Point to the start of the circular Rx buffer descriptor queue */
MCF_FEC_ERDSR = ( volatile unsigned portLONG ) &( xFECRxDescriptors[ 0 ] );
/* Point to the start of the circular Tx buffer descriptor queue */
MCF_FEC_ETSDR = ( volatile unsigned portLONG ) &( xFECTxDescriptors[ 0 ] );
/* Mask all FEC interrupts */
MCF_FEC_EIMR = MCF_FEC_EIMR_MASK_ALL;
/* Clear all FEC interrupt events */
MCF_FEC_EIR = MCF_FEC_EIR_CLEAR_ALL;
/* Initialize the Receive Control Register */
MCF_FEC_RCR = MCF_FEC_RCR_MAX_FL(ETH_MAX_FRM) | MCF_FEC_RCR_FCE;
MCF_FEC_RCR |= MCF_FEC_RCR_MII_MODE;
#if( configUSE_PROMISCUOUS_MODE == 1 )
{
MCF_FEC_RCR |= MCF_FEC_RCR_PROM;
}
#endif
/* Create the task that handles the EMAC. */
xTaskCreate( ethernetif_input, ( signed portCHAR * ) "ETH_INT", configETHERNET_INPUT_TASK_STACK_SIZE, (void *)netif, configETHERNET_INPUT_TASK_PRIORITY, &xEthIntTask );
fec_irq_enable();
MCF_FEC_ECR = MCF_FEC_ECR_ETHER_EN;
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
}
/**
* This function should do the actual transmission of the packet. The packet is
* contained in the pbuf that is passed to the function. This pbuf
* might be chained.
*
* @param netif the lwip network interface structure for this ethernetif
* @param p the MAC packet to send (e.g. IP packet including MAC addresses and type)
* @return ERR_OK if the packet could be sent
* an err_t value if the packet couldn't be sent
*
* @note Returning ERR_MEM here if a DMA queue of your MAC is full can lead to
* strange results. You might consider waiting for space in the DMA queue
* to become availale since the stack doesn't retry to send a packet
* dropped because of memory failure (except for the TCP timers).
*/
static err_t low_level_output(struct netif *netif, struct pbuf *p)
{
struct pbuf *q;
u32_t l = 0;
unsigned portCHAR *pcTxData = NULL;
portBASE_TYPE i;
( void ) netif;
#if ETH_PAD_SIZE
pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif
/* Get a DMA buffer into which we can write the data to send. */
for( i = 0; i < netifBUFFER_WAIT_ATTEMPTS; i++ )
{
if( xFECTxDescriptors[ uxNextTxBuffer ].status & TX_BD_R )
{
/* Wait for the buffer to become available. */
vTaskDelay( netifBUFFER_WAIT_DELAY );
}
else
{
pcTxData = xFECTxDescriptors[ uxNextTxBuffer ].data;
break;
}
}
if( pcTxData == NULL )
{
/* For break point only. */
portNOP();
return ERR_BUF;
}
else
{
for( q = p; q != NULL; q = q->next )
{
/* Send the data from the pbuf to the interface, one pbuf at a
time. The size of the data in each pbuf is kept in the ->len
variable. */
memcpy( &pcTxData[l], (u8_t*)q->payload, q->len );
l += q->len;
}
}
/* Setup the buffer descriptor for transmission */
xFECTxDescriptors[ uxNextTxBuffer ].length = l;//nbuf->length + ETH_HDR_LEN;
xFECTxDescriptors[ uxNextTxBuffer ].status |= (TX_BD_R | TX_BD_L);
/* Continue the Tx DMA task (in case it was waiting for a new TxBD) */
MCF_FEC_TDAR = MCF_FEC_TDAR_X_DES_ACTIVE;
uxNextTxBuffer++;
if( uxNextTxBuffer >= configNUM_FEC_TX_BUFFERS )
{
uxNextTxBuffer = 0;
}
#if ETH_PAD_SIZE
pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif
LINK_STATS_INC(link.xmit);
return ERR_OK;
}
/**
* Should allocate a pbuf and transfer the bytes of the incoming
* packet from the interface into the pbuf.
*
* @param netif the lwip network interface structure for this ethernetif
* @return a pbuf filled with the received packet (including MAC header)
* NULL on memory error
*/
static struct pbuf *low_level_input(struct netif *netif)
{
struct pbuf *p, *q;
u16_t len, l;
( void ) netif;
l = 0;
p = NULL;
/* Obtain the size of the packet and put it into the "len" variable. */
len = xFECRxDescriptors[ uxNextRxBuffer ].length;
if( ( len != 0 ) && ( ( xFECRxDescriptors[ uxNextRxBuffer ].status & RX_BD_E ) == 0 ) )
{
#if ETH_PAD_SIZE
len += ETH_PAD_SIZE; /* allow room for Ethernet padding */
#endif
/* We allocate a pbuf chain of pbufs from the pool. */
p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL);
if (p != NULL)
{
#if ETH_PAD_SIZE
pbuf_header(p, -ETH_PAD_SIZE); /* drop the padding word */
#endif
/* We iterate over the pbuf chain until we have read the entire
* packet into the pbuf. */
for(q = p; q != NULL; q = q->next)
{
/* Read enough bytes to fill this pbuf in the chain. The
* available data in the pbuf is given by the q->len
* variable. */
memcpy((u8_t*)q->payload, &(xFECRxDescriptors[ uxNextRxBuffer ].data[l]), q->len);
l = l + q->len;
}
#if ETH_PAD_SIZE
pbuf_header(p, ETH_PAD_SIZE); /* reclaim the padding word */
#endif
LINK_STATS_INC(link.recv);
}
else
{
LINK_STATS_INC(link.memerr);
LINK_STATS_INC(link.drop);
} /* End else */
/* Free the descriptor. */
xFECRxDescriptors[ uxNextRxBuffer ].status |= RX_BD_E;
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
uxNextRxBuffer++;
if( uxNextRxBuffer >= configNUM_FEC_RX_BUFFERS )
{
uxNextRxBuffer = 0;
}
} /* End if */
return p;
}
/**
* This function should be called when a packet is ready to be read
* from the interface. It uses the function low_level_input() that
* should handle the actual reception of bytes from the network
* interface.Then the type of the received packet is determined and
* the appropriate input function is called.
*
* @param netif the lwip network interface structure for this ethernetif
*/
static void ethernetif_input( void *pParams )
{
struct netif *netif;
struct ethernetif *ethernetif;
struct eth_hdr *ethhdr;
struct pbuf *p;
netif = (struct netif*) pParams;
ethernetif = netif->state;
for( ;; )
{
do
{
/* move received packet into a new pbuf */
p = low_level_input( netif );
if( p == NULL )
{
/* No packet could be read. Wait a for an interrupt to tell us
there is more data available. */
xSemaphoreTake( xFecSemaphore, netifBLOCK_TIME_WAITING_FOR_INPUT );
}
} while( p == NULL );
/* points to packet payload, which starts with an Ethernet header */
ethhdr = p->payload;
switch (htons(ethhdr->type)) {
/* IP or ARP packet? */
case ETHTYPE_IP:
pbuf_header( p, (s16_t)-sizeof(struct eth_hdr) );
/* full packet send to tcpip_thread to process */
if (netif->input(p, netif) != ERR_OK)
{
LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_input: IP input error\n"));
pbuf_free(p);
p = NULL;
}
break;
case ETHTYPE_ARP:
#if ETHARP_TRUST_IP_MAC
etharp_ip_input(netif, p);
#endif
etharp_arp_input(netif, ethernetif->ethaddr, p);
break;
default:
pbuf_free(p);
p = NULL;
break;
}
}
}
/**
* Should be called at the beginning of the program to set up the
* network interface. It calls the function low_level_init() to do the
* actual setup of the hardware.
*
* This function should be passed as a parameter to netif_add().
*
* @param netif the lwip network interface structure for this ethernetif
* @return ERR_OK if the loopif is initialized
* ERR_MEM if private data couldn't be allocated
* any other err_t on error
*/
err_t ethernetif_init(struct netif *netif)
{
struct ethernetif *ethernetif;
LWIP_ASSERT("netif != NULL", (netif != NULL));
ethernetif = mem_malloc(sizeof(struct ethernetif));
if (ethernetif == NULL)
{
LWIP_DEBUGF(NETIF_DEBUG, ("ethernetif_init: out of memory\n"));
return ERR_MEM;
}
#if LWIP_NETIF_HOSTNAME
/* Initialize interface hostname */
netif->hostname = "lwip";
#endif /* LWIP_NETIF_HOSTNAME */
/*
* Initialize the snmp variables and counters inside the struct netif.
* The last argument should be replaced with your link speed, in units
* of bits per second.
*/
NETIF_INIT_SNMP(netif, snmp_ifType_ethernet_csmacd, 100);
netif->state = ethernetif;
netif->name[0] = IFNAME0;
netif->name[1] = IFNAME1;
/* We directly use etharp_output() here to save a function call.
* You can instead declare your own function an call etharp_output()
* from it if you have to do some checks before sending (e.g. if link
* is available...)
*/
netif->output = etharp_output;
netif->linkoutput = low_level_output;
ethernetif->ethaddr = (struct eth_addr *)&(netif->hwaddr[0]);
low_level_init(netif);
return ERR_OK;
}
/*-----------------------------------------------------------*/
static void prvInitialiseFECBuffers( void )
{
unsigned portBASE_TYPE ux;
unsigned portCHAR *pcBufPointer;
pcBufPointer = &( xFECTxDescriptors_unaligned[ 0 ] );
while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
{
pcBufPointer++;
}
xFECTxDescriptors = ( FECBD * ) pcBufPointer;
pcBufPointer = &( xFECRxDescriptors_unaligned[ 0 ] );
while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
{
pcBufPointer++;
}
xFECRxDescriptors = ( FECBD * ) pcBufPointer;
/* Setup the buffers and descriptors. */
pcBufPointer = &( ucFECTxBuffers[ 0 ] );
while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
{
pcBufPointer++;
}
for( ux = 0; ux < configNUM_FEC_TX_BUFFERS; ux++ )
{
xFECTxDescriptors[ ux ].status = TX_BD_TC;
xFECTxDescriptors[ ux ].data = pcBufPointer;
pcBufPointer += configFEC_BUFFER_SIZE;
xFECTxDescriptors[ ux ].length = 0;
}
pcBufPointer = &( ucFECRxBuffers[ 0 ] );
while( ( ( unsigned portLONG ) pcBufPointer & 0x0fUL ) != 0 )
{
pcBufPointer++;
}
for( ux = 0; ux < configNUM_FEC_RX_BUFFERS; ux++ )
{
xFECRxDescriptors[ ux ].status = RX_BD_E;
xFECRxDescriptors[ ux ].length = configFEC_BUFFER_SIZE;
xFECRxDescriptors[ ux ].data = pcBufPointer;
pcBufPointer += configFEC_BUFFER_SIZE;
}
/* Set the wrap bit in the last descriptors to form a ring. */
xFECTxDescriptors[ configNUM_FEC_TX_BUFFERS - 1 ].status |= TX_BD_W;
xFECRxDescriptors[ configNUM_FEC_RX_BUFFERS - 1 ].status |= RX_BD_W;
uxNextRxBuffer = 0;
uxNextTxBuffer = 0;
}
/*-----------------------------------------------------------*/
__declspec(interrupt:0) void vFECISRHandler( void )
{
unsigned portLONG ulEvent;
portBASE_TYPE xHighPriorityTaskWoken = pdFALSE;
ulEvent = MCF_FEC_EIR & MCF_FEC_EIMR;
MCF_FEC_EIR = ulEvent;
if( ( ulEvent & MCF_FEC_EIR_RXB ) || ( ulEvent & MCF_FEC_EIR_RXF ) )
{
/* A packet has been received. Wake the handler task. */
xSemaphoreGiveFromISR( xFecSemaphore, &xHighPriorityTaskWoken );
}
if (ulEvent & ( MCF_FEC_EIR_UN | MCF_FEC_EIR_RL | MCF_FEC_EIR_LC | MCF_FEC_EIR_EBERR | MCF_FEC_EIR_BABT | MCF_FEC_EIR_BABR | MCF_FEC_EIR_HBERR ) )
{
/* Sledge hammer error handling. */
prvInitialiseFECBuffers();
MCF_FEC_RDAR = MCF_FEC_RDAR_R_DES_ACTIVE;
}
portEND_SWITCHING_ISR( xHighPriorityTaskWoken );
}

@ -1,230 +0,0 @@
/*
FreeRTOS.org V5.1.0 - Copyright (C) 2003-2008 Richard Barry.
This file is part of the FreeRTOS.org distribution.
FreeRTOS.org is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
FreeRTOS.org is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with FreeRTOS.org; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
A special exception to the GPL can be applied should you wish to distribute
a combined work that includes FreeRTOS.org, without being obliged to provide
the source code for any proprietary components. See the licensing section
of http://www.FreeRTOS.org for full details of how and when the exception
can be applied.
***************************************************************************
***************************************************************************
* *
* SAVE TIME AND MONEY! We can port FreeRTOS.org to your own hardware, *
* and even write all or part of your application on your behalf. *
* See http://www.OpenRTOS.com for details of the services we provide to *
* expedite your project. *
* *
***************************************************************************
***************************************************************************
Please ensure to read the configuration and relevant port sections of the
online documentation.
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/* BASIC INTERRUPT DRIVEN SERIAL PORT DRIVER.
NOTE: This driver is primarily to test the scheduler functionality. It does
not effectively use the buffers or DMA and is therefore not intended to be
an example of an efficient driver. */
/* Standard include file. */
#include <stdlib.h>
/* Scheduler include files. */
#include "FreeRTOS.h"
#include "queue.h"
#include "task.h"
/* Demo app include files. */
#include "serial.h"
/* Hardware definitions. */
#define serNO_PARITY ( ( unsigned portCHAR ) 0x02 << 3 )
#define ser8DATA_BITS ( ( unsigned portCHAR ) 0x03 )
#define ser1STOP_BIT ( ( unsigned portCHAR ) 0x07 )
#define serSYSTEM_CLOCK ( ( unsigned portCHAR ) 0xdd )
#define serTX_OUTPUT ( ( unsigned portCHAR ) 0x04 )
#define serRX_INPUT ( ( unsigned portCHAR ) 0x08 )
#define serTX_ENABLE ( ( unsigned portCHAR ) 0x04 )
#define serRX_ENABLE ( ( unsigned portCHAR ) 0x01 )
#define serTX_INT ( ( unsigned portCHAR ) 0x01 )
#define serRX_INT ( ( unsigned portCHAR ) 0x02 )
/* The queues used to communicate between tasks and ISR's. */
static xQueueHandle xRxedChars;
static xQueueHandle xCharsForTx;
/* Flag used to indicate the tx status. */
static portBASE_TYPE xTxHasEnded = pdTRUE;
/*-----------------------------------------------------------*/
/* The UART interrupt handler. */
void __attribute__( ( interrupt ) ) __cs3_isr_interrupt_78( void );
/*-----------------------------------------------------------*/
xComPortHandle xSerialPortInitMinimal( unsigned portLONG ulWantedBaud, unsigned portBASE_TYPE uxQueueLength )
{
const unsigned portLONG ulBaudRateDivisor = ( configCPU_CLOCK_HZ / ( 32UL * ulWantedBaud ) );
/* Create the queues used by the com test task. */
xRxedChars = xQueueCreate( uxQueueLength, ( unsigned portBASE_TYPE ) sizeof( signed portCHAR ) );
xCharsForTx = xQueueCreate( uxQueueLength, ( unsigned portBASE_TYPE ) sizeof( signed portCHAR ) );
xTxHasEnded = pdTRUE;
/* Set the pins to UART mode. */
//_RB_ MCF_PAD_PUASAR |= ( serTX_OUTPUT | serRX_INPUT );
/* Reset the peripheral. */
MCF_UART1_UCR = MCF_UART_UCR_RESET_RX;
MCF_UART1_UCR = MCF_UART_UCR_RESET_TX;
MCF_UART1_UCR = MCF_UART_UCR_RESET_ERROR;
MCF_UART1_UCR = MCF_UART_UCR_RESET_BKCHGINT;
MCF_UART1_UCR = MCF_UART_UCR_RESET_MR | MCF_UART_UCR_RX_DISABLED | MCF_UART_UCR_TX_DISABLED;
/* Configure the UART. */
MCF_UART1_UMR1 = serNO_PARITY | ser8DATA_BITS;
MCF_UART1_UMR2 = ser1STOP_BIT;
MCF_UART1_UCSR = serSYSTEM_CLOCK;
MCF_UART1_UBG1 = ( unsigned portCHAR ) ( ( ulBaudRateDivisor >> 8UL ) & 0xffUL );
MCF_UART1_UBG2 = ( unsigned portCHAR ) ( ulBaudRateDivisor & 0xffUL );
/* Turn it on. */
MCF_UART1_UCR = serTX_ENABLE | serRX_ENABLE;
/* Configure the interrupt controller. Run the UARTs above the kernel
interrupt priority for demo purposes. */
MCF_INTC0_ICR14 = ( ( configMAX_SYSCALL_INTERRUPT_PRIORITY - 2 ) << 3 );
MCF_INTC0_IMRL &= ~( MCF_INTC_IMRL_INT_MASK14 | 0x01 );
/* The Tx interrupt is not enabled until there is data to send. */
MCF_UART1_UIMR = serRX_INT;
/* Only a single port is implemented so we don't need to return anything. */
return NULL;
}
/*-----------------------------------------------------------*/
signed portBASE_TYPE xSerialGetChar( xComPortHandle pxPort, signed portCHAR *pcRxedChar, portTickType xBlockTime )
{
/* Only one port is supported. */
( void ) pxPort;
/* Get the next character from the buffer. Return false if no characters
are available or arrive before xBlockTime expires. */
if( xQueueReceive( xRxedChars, pcRxedChar, xBlockTime ) )
{
return pdTRUE;
}
else
{
return pdFALSE;
}
}
/*-----------------------------------------------------------*/
signed portBASE_TYPE xSerialPutChar( xComPortHandle pxPort, signed portCHAR cOutChar, portTickType xBlockTime )
{
/* Only one port is supported. */
( void ) pxPort;
/* Return false if after the block time there is no room on the Tx queue. */
if( xQueueSend( xCharsForTx, &cOutChar, xBlockTime ) != pdPASS )
{
return pdFAIL;
}
/* A critical section should not be required as xTxHasEnded will not be
written to by the ISR if it is already 0 (is this correct?). */
if( xTxHasEnded != pdFALSE )
{
xTxHasEnded = pdFALSE;
MCF_UART1_UIMR = serRX_INT | serTX_INT;
}
return pdPASS;
}
/*-----------------------------------------------------------*/
void vSerialClose( xComPortHandle xPort )
{
( void ) xPort;
}
/*-----------------------------------------------------------*/
void __cs3_isr_interrupt_78( void )
{
unsigned portCHAR ucChar;
portBASE_TYPE xHigherPriorityTaskWoken = pdFALSE, xDoneSomething = pdTRUE;
while( xDoneSomething != pdFALSE )
{
xDoneSomething = pdFALSE;
/* Does the tx buffer contain space? */
if( ( MCF_UART1_USR & MCF_UART_USR_TXRDY ) != 0x00 )
{
/* Are there any characters queued to be sent? */
if( xQueueReceiveFromISR( xCharsForTx, &ucChar, &xHigherPriorityTaskWoken ) == pdTRUE )
{
/* Send the next char. */
MCF_UART1_UTB = ucChar;
xDoneSomething = pdTRUE;
}
else
{
/* Turn off the Tx interrupt until such time as another character
is being transmitted. */
MCF_UART1_UIMR = serRX_INT;
xTxHasEnded = pdTRUE;
}
}
if( MCF_UART1_USR & MCF_UART_USR_RXRDY )
{
ucChar = MCF_UART1_URB;
xQueueSendFromISR( xRxedChars, &ucChar, &xHigherPriorityTaskWoken );
xDoneSomething = pdTRUE;
}
}
portEND_SWITCHING_ISR( xHigherPriorityTaskWoken );
}
Loading…
Cancel
Save