Add the comtest_strings.c and serial.c files - Tx is workings, but both files are still a work in progress.

pull/4/head
Richard Barry 14 years ago
parent 2874006c7b
commit 7b24b4c30c

@ -101,7 +101,7 @@
</toolChain>
</folderInfo>
<sourceEntries>
<entry excluding="src/testperiph.c|ParTest.c|src/xuartlite_selftest_example.c|src/xtmrctr_selftest_example.c|src/xtmrctr_intr_example.c|src/xintc_tapp_example.c|src/xgpio_tapp_example.c|src/xgpio_intr_tapp_example.c|src/xemaclite_polled_example.c|src/xemaclite_intr_example.c|Demo_Source|RegisterTests.c|main-full.c" flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="sourcePath" name=""/>
<entry excluding="serial.c|src/testperiph.c|ParTest.c|src/xuartlite_selftest_example.c|src/xtmrctr_selftest_example.c|src/xtmrctr_intr_example.c|src/xintc_tapp_example.c|src/xgpio_tapp_example.c|src/xgpio_intr_tapp_example.c|src/xemaclite_polled_example.c|src/xemaclite_intr_example.c|Demo_Source|RegisterTests.c|main-full.c" flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="sourcePath" name=""/>
</sourceEntries>
</configuration>
</storageModule>

@ -47,6 +47,7 @@ IF EXIST FreeRTOS_Source Goto END
copy ..\..\..\Common\minimal\recmutex.c Demo_Source
copy ..\..\..\Common\minimal\sp_flop.c Demo_Source
copy ..\..\..\Common\minimal\flash.c Demo_Source
copy ..\..\..\Common\minimal\comtest_strings.c Demo_Source
REM Copy the common demo file headers.
copy ..\..\..\Common\include\dynamic.h Demo_Source\include
@ -61,5 +62,8 @@ IF EXIST FreeRTOS_Source Goto END
copy ..\..\..\Common\include\recmutex.h Demo_Source\include
copy ..\..\..\Common\include\flop.h Demo_Source\include
copy ..\..\..\Common\include\flash.h Demo_Source\include
copy ..\..\..\Common\include\comtest_strings.h Demo_Source\include
copy ..\..\..\Common\include\serial.h Demo_Source\include
copy ..\..\..\Common\include\comtest.h Demo_Source\include
: END

@ -0,0 +1,297 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/*
* This version of comtest. c is for use on systems that have limited stack
* space and no display facilities. The complete version can be found in
* the Demo/Common/Full directory.
*
* Creates two tasks that operate on an interrupt driven serial port. A
* loopback connector should be used so that everything that is transmitted is
* also received. The serial port does not use any flow control. On a
* standard 9way 'D' connector pins two and three should be connected together.
*
* The first task posts a sequence of characters to the Tx queue, toggling an
* LED on each successful post. At the end of the sequence it sleeps for a
* pseudo-random period before resending the same sequence.
*
* The UART Tx end interrupt is enabled whenever data is available in the Tx
* queue. The Tx end ISR removes a single character from the Tx queue and
* passes it to the UART for transmission.
*
* The second task blocks on the Rx queue waiting for a character to become
* available. When the UART Rx end interrupt receives a character it places
* it in the Rx queue, waking the second task. The second task checks that the
* characters removed from the Rx queue form the same sequence as those posted
* to the Tx queue, and toggles an LED for each correct character.
*
* The receiving task is spawned with a higher priority than the transmitting
* task. The receiver will therefore wake every time a character is
* transmitted so neither the Tx or Rx queue should ever hold more than a few
* characters.
*
*/
/* Scheduler include files. */
#include <stdlib.h>
#include <string.h>
#include "FreeRTOS.h"
#include "task.h"
/* Demo program include files. */
#include "serial.h"
#include "comtest_strings.h"
#include "partest.h"
#define comSTACK_SIZE configMINIMAL_STACK_SIZE
#define comTX_LED_OFFSET ( 0 )
#define comRX_LED_OFFSET ( 1 )
#define comTOTAL_PERMISSIBLE_ERRORS ( 2 )
/* The Tx task will transmit the sequence of characters at a pseudo random
interval. This is the maximum and minimum block time between sends. */
#define comTX_MAX_BLOCK_TIME ( ( portTickType ) 0x96 )
#define comTX_MIN_BLOCK_TIME ( ( portTickType ) 0x32 )
#define comOFFSET_TIME ( ( portTickType ) 3 )
/* We should find that each character can be queued for Tx immediately and we
don't have to block to send. */
#define comNO_BLOCK ( ( portTickType ) 0 )
/* The Rx task will block on the Rx queue for a long period. */
#define comRX_BLOCK_TIME ( ( portTickType ) 0xffff )
/* The string that is transmitted and received. */
#define comTRANSACTED_STRING "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
#define comBUFFER_LEN ( ( unsigned portBASE_TYPE ) ( comLAST_BYTE - comFIRST_BYTE ) + ( unsigned portBASE_TYPE ) 1 )
#define comINITIAL_RX_COUNT_VALUE ( 0 )
/* Handle to the com port used by both tasks. */
static xComPortHandle xPort = NULL;
/* The transmit task as described at the top of the file. */
static void vComTxTask( void *pvParameters );
/* The receive task as described at the top of the file. */
static portTASK_FUNCTION_PROTO( vComRxTask, pvParameters );
/* The LED that should be toggled by the Rx and Tx tasks. The Rx task will
toggle LED ( uxBaseLED + comRX_LED_OFFSET). The Tx task will toggle LED
( uxBaseLED + comTX_LED_OFFSET ). */
static unsigned portBASE_TYPE uxBaseLED = 0;
/* Check variable used to ensure no error have occurred. The Rx task will
increment this variable after every successfully received sequence. If at any
time the sequence is incorrect the the variable will stop being incremented. */
static volatile unsigned portBASE_TYPE uxRxLoops = comINITIAL_RX_COUNT_VALUE;
/*-----------------------------------------------------------*/
void vStartComTestStringsTasks( unsigned portBASE_TYPE uxPriority, unsigned long ulBaudRate, unsigned portBASE_TYPE uxLED )
{
/* Initialise the com port then spawn the Rx and Tx tasks. */
uxBaseLED = uxLED;
xSerialPortInitMinimal( ulBaudRate, strlen( comTRANSACTED_STRING ) );
/* The Tx task is spawned with a lower priority than the Rx task. */
xTaskCreate( vComTxTask, ( signed char * ) "COMTx", comSTACK_SIZE, NULL, uxPriority - 1, ( xTaskHandle * ) NULL );
xTaskCreate( vComRxTask, ( signed char * ) "COMRx", comSTACK_SIZE, NULL, uxPriority, ( xTaskHandle * ) NULL );
}
/*-----------------------------------------------------------*/
static void vComTxTask( void * pvParameters )
{
portTickType xTimeToWait;
size_t xStringLength;
/* Just to stop compiler warnings. */
( void ) pvParameters;
xStringLength = strlen( comTRANSACTED_STRING );
for( ;; )
{
/* Send the string. Setting the last parameter to pdTRUE ensures
that vSerialPutString() will not return until the entire string has
been sent to the UART. The UART interrupt is used to send more data
to the UART as the UART FIFO empties, until the entire string has been
sent. No CPU time is consumed by this task while it waits for the
string to be sent to the UART. */
vSerialPutString( xPort, ( const signed char * const ) comTRANSACTED_STRING, xStringLength );
/* Toggle an LED to give a visible indication that another transmission
has been performed. */
vParTestToggleLED( uxBaseLED + comTX_LED_OFFSET );
/* Wait a pseudo random time before sending the string again. */
xTimeToWait = xTaskGetTickCount() + comOFFSET_TIME;
/* Ensure the time to wait does not greater than comTX_MAX_BLOCK_TIME. */
xTimeToWait %= comTX_MAX_BLOCK_TIME;
/* Ensure the time to wait is not less than comTX_MIN_BLOCK_TIME. */
if( xTimeToWait < comTX_MIN_BLOCK_TIME )
{
xTimeToWait = comTX_MIN_BLOCK_TIME;
}
vTaskDelay( xTimeToWait );
}
}
/*-----------------------------------------------------------*/
static void vComRxTask( void *pvParameters )
{
#if 0
signed char cExpectedByte, cByteRxed;
portBASE_TYPE xResyncRequired = pdFALSE, xErrorOccurred = pdFALSE;
/* Just to stop compiler warnings. */
( void ) pvParameters;
for( ;; )
{
/* We expect to receive the characters from comFIRST_BYTE to
comLAST_BYTE in an incrementing order. Loop to receive each byte. */
for( cExpectedByte = comFIRST_BYTE; cExpectedByte <= comLAST_BYTE; cExpectedByte++ )
{
/* Block on the queue that contains received bytes until a byte is
available. */
if( xSerialGetChar( xPort, &cByteRxed, comRX_BLOCK_TIME ) )
{
/* Was this the byte we were expecting? If so, toggle the LED,
otherwise we are out on sync and should break out of the loop
until the expected character sequence is about to restart. */
if( cByteRxed == cExpectedByte )
{
vParTestToggleLED( uxBaseLED + comRX_LED_OFFSET );
}
else
{
xResyncRequired = pdTRUE;
break; /*lint !e960 Non-switch break allowed. */
}
}
}
/* Turn the LED off while we are not doing anything. */
vParTestSetLED( uxBaseLED + comRX_LED_OFFSET, pdFALSE );
/* Did we break out of the loop because the characters were received in
an unexpected order? If so wait here until the character sequence is
about to restart. */
if( xResyncRequired == pdTRUE )
{
while( cByteRxed != comLAST_BYTE )
{
/* Block until the next char is available. */
xSerialGetChar( xPort, &cByteRxed, comRX_BLOCK_TIME );
}
/* Note that an error occurred which caused us to have to resync.
We use this to stop incrementing the loop counter so
sAreComTestTasksStillRunning() will return false - indicating an
error. */
xErrorOccurred++;
/* We have now resynced with the Tx task and can continue. */
xResyncRequired = pdFALSE;
}
else
{
if( xErrorOccurred < comTOTAL_PERMISSIBLE_ERRORS )
{
/* Increment the count of successful loops. As error
occurring (i.e. an unexpected character being received) will
prevent this counter being incremented for the rest of the
execution. Don't worry about mutual exclusion on this
variable - it doesn't really matter as we just want it
to change. */
uxRxLoops++;
}
}
}
#else
for( ;; )
{
vTaskDelay( 10000 );
}
#endif
}
/*-----------------------------------------------------------*/
portBASE_TYPE xAreComTestTasksStillRunning( void )
{
portBASE_TYPE xReturn;
/* If the count of successful reception loops has not changed than at
some time an error occurred (i.e. a character was received out of sequence)
and we will return false. */
if( uxRxLoops == comINITIAL_RX_COUNT_VALUE )
{
xReturn = pdFALSE;
}
else
{
xReturn = pdTRUE;
}
/* Reset the count of successful Rx loops. When this function is called
again we expect this to have been incremented. */
uxRxLoops = comINITIAL_RX_COUNT_VALUE;
return xReturn;
}

@ -0,0 +1,63 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef COMTEST_H
#define COMTEST_H
void vAltStartComTestTasks( unsigned portBASE_TYPE uxPriority, unsigned long ulBaudRate, unsigned portBASE_TYPE uxLED );
void vStartComTestTasks( unsigned portBASE_TYPE uxPriority, eCOMPort ePort, eBaud eBaudRate );
portBASE_TYPE xAreComTestTasksStillRunning( void );
void vComTestUnsuspendTask( void );
#endif

@ -0,0 +1,61 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef COMTEST_H
#define COMTEST_H
void vStartComTestStringsTasks( unsigned portBASE_TYPE uxPriority, unsigned long ulBaudRate, unsigned portBASE_TYPE uxLED );
portBASE_TYPE xAreComTestTasksStillRunning( void );
#endif

@ -0,0 +1,124 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
#ifndef SERIAL_COMMS_H
#define SERIAL_COMMS_H
typedef void * xComPortHandle;
typedef enum
{
serCOM1,
serCOM2,
serCOM3,
serCOM4,
serCOM5,
serCOM6,
serCOM7,
serCOM8
} eCOMPort;
typedef enum
{
serNO_PARITY,
serODD_PARITY,
serEVEN_PARITY,
serMARK_PARITY,
serSPACE_PARITY
} eParity;
typedef enum
{
serSTOP_1,
serSTOP_2
} eStopBits;
typedef enum
{
serBITS_5,
serBITS_6,
serBITS_7,
serBITS_8
} eDataBits;
typedef enum
{
ser50,
ser75,
ser110,
ser134,
ser150,
ser200,
ser300,
ser600,
ser1200,
ser1800,
ser2400,
ser4800,
ser9600,
ser19200,
ser38400,
ser57600,
ser115200
} eBaud;
xComPortHandle xSerialPortInitMinimal( unsigned long ulWantedBaud, unsigned portBASE_TYPE uxQueueLength );
xComPortHandle xSerialPortInit( eCOMPort ePort, eBaud eWantedBaud, eParity eWantedParity, eDataBits eWantedDataBits, eStopBits eWantedStopBits, unsigned portBASE_TYPE uxBufferLength );
void vSerialPutString( xComPortHandle pxPort, const signed char * const pcString, unsigned short usStringLength );
signed portBASE_TYPE xSerialGetChar( xComPortHandle pxPort, signed char *pcRxedChar, portTickType xBlockTime );
signed portBASE_TYPE xSerialPutChar( xComPortHandle pxPort, signed char cOutChar, portTickType xBlockTime );
portBASE_TYPE xSerialWaitForSemaphore( xComPortHandle xPort );
void vSerialClose( xComPortHandle xPort );
#endif

@ -438,12 +438,12 @@ extern void vTickISR( void *pvUnused );
if( xStatus == XST_SUCCESS )
{
/* Install the tick interrupt handler as the timer ISR. */
xStatus = xPortInstallInterruptHandler( XPAR_MICROBLAZE_0_INTC_AXI_TIMER_0_INTERRUPT_INTR, vTickISR, NULL );
xStatus = xPortInstallInterruptHandler( XPAR_INTC_0_TMRCTR_0_VEC_ID, vTickISR, NULL );
}
if( xStatus == pdPASS )
{
vPortEnableInterrupt( XPAR_MICROBLAZE_0_INTC_AXI_TIMER_0_INTERRUPT_INTR );
vPortEnableInterrupt( XPAR_INTC_0_TMRCTR_0_VEC_ID );
/* Configure the timer interrupt handler. */
XTmrCtr_SetHandler( &xTimer0Instance, ( void * ) vTickISR, NULL );

@ -149,17 +149,18 @@
#include "recmutex.h"
#include "flop.h"
#include "dynamic.h"
#include "comtest_strings.h"
#define xPrintf( x )
/* Priorities at which the tasks are created. */
#define mainCHECK_TASK_PRIORITY ( configMAX_PRIORITIES - 1 )
#define mainQUEUE_POLL_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define mainSEM_TEST_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define mainBLOCK_Q_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define mainCREATOR_TASK_PRIORITY ( tskIDLE_PRIORITY + 3 )
#define mainFLASH_TASK_PRIORITY ( tskIDLE_PRIORITY + 1 )
#define mainuIP_TASK_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define mainCOM_TEST_PRIORITY ( tskIDLE_PRIORITY + 2 )
#define mainINTEGER_TASK_PRIORITY ( tskIDLE_PRIORITY )
#define mainGEN_QUEUE_TASK_PRIORITY ( tskIDLE_PRIORITY )
#define mainFLOP_TASK_PRIORITY ( tskIDLE_PRIORITY )
@ -184,6 +185,16 @@ this file. */
/* A block time of zero means "don't block". */
#define mainDONT_BLOCK ( ( portTickType ) 0 )
/* The LED used by the comtest tasks. See the comtest.c file for more
information. In this case an invalid LED number is provided as all four
available LEDs are already in use. */
#define mainCOM_TEST_LED ( 4 )
/* Baud rate used by the comtest tasks. This is actually fixed in the hardware
when the hardware was built, but the standard serial init function required a
baud rate parameter. */
#define mainCOM_TEST_BAUD_RATE ( XPAR_RS232_UART_1_BAUDRATE )
/*
* vApplicationMallocFailedHook() will only be called if
* configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook
@ -271,6 +282,7 @@ int main( void )
vStartLEDFlashTasks( mainFLASH_TASK_PRIORITY );
vStartQueuePeekTasks();
vStartRecursiveMutexTasks();
vStartComTestStringsTasks( mainCOM_TEST_PRIORITY, mainCOM_TEST_BAUD_RATE, mainCOM_TEST_LED );
/* Note - the set of standard demo tasks contains two versions of
vStartMathTasks.c. One is defined in flop.c, and uses double precision
@ -428,12 +440,12 @@ extern void vTickISR( void *pvUnused );
if( xStatus == XST_SUCCESS )
{
/* Install the tick interrupt handler as the timer ISR. */
xStatus = xPortInstallInterruptHandler( XPAR_MICROBLAZE_0_INTC_AXI_TIMER_0_INTERRUPT_INTR, vTickISR, NULL );
xStatus = xPortInstallInterruptHandler( XPAR_INTC_0_TMRCTR_0_VEC_ID, vTickISR, NULL );
}
if( xStatus == pdPASS )
{
vPortEnableInterrupt( XPAR_MICROBLAZE_0_INTC_AXI_TIMER_0_INTERRUPT_INTR );
vPortEnableInterrupt( XPAR_INTC_0_TMRCTR_0_VEC_ID );
/* Configure the timer interrupt handler. */
XTmrCtr_SetHandler( &xTimer0Instance, ( void * ) vTickISR, NULL );

@ -0,0 +1,241 @@
/*
FreeRTOS V7.0.1 - Copyright (C) 2011 Real Time Engineers Ltd.
***************************************************************************
* *
* FreeRTOS tutorial books are available in pdf and paperback. *
* Complete, revised, and edited pdf reference manuals are also *
* available. *
* *
* Purchasing FreeRTOS documentation will not only help you, by *
* ensuring you get running as quickly as possible and with an *
* in-depth knowledge of how to use FreeRTOS, it will also help *
* the FreeRTOS project to continue with its mission of providing *
* professional grade, cross platform, de facto standard solutions *
* for microcontrollers - completely free of charge! *
* *
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
* *
* Thank you for using FreeRTOS, and thank you for your support! *
* *
***************************************************************************
This file is part of the FreeRTOS distribution.
FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
>>>NOTE<<< The modification to the GPL is included to allow you to
distribute a combined work that includes FreeRTOS without being obliged to
provide the source code for proprietary components outside of the FreeRTOS
kernel. FreeRTOS is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.
1 tab == 4 spaces!
http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.
http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.
http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/
/*
BASIC INTERRUPT DRIVEN SERIAL PORT DRIVER FOR UART0.
***Note*** This example uses queues to send each character into an interrupt
service routine and out of an interrupt service routine individually. This
is done to demonstrate queues being used in an interrupt, and to deliberately
load the system to test the FreeRTOS port. It is *NOT* meant to be an
example of an efficient implementation. An efficient implementation should
use FIFOs or DMA if available, and only use FreeRTOS API functions when
enough has been received to warrant a task being unblocked to process the
data.
*/
/* Scheduler includes. */
#include "FreeRTOS.h"
#include "queue.h"
#include "semphr.h"
#include "task.h" /*_RB_ remove this when the file is working. */
#include "comtest_strings.h"
/* Library includes. */
#include "xuartlite.h"
#include "xuartlite_l.h"
/* Demo application includes. */
#include "serial.h"
/*-----------------------------------------------------------*/
/* Misc defines. */
#define serINVALID_QUEUE ( ( xQueueHandle ) 0 )
#define serNO_BLOCK ( ( portTickType ) 0 )
/*-----------------------------------------------------------*/
/* The queue used to hold received characters. */
static xQueueHandle xRxedChars;
static xQueueHandle xCharsForTx;
static XUartLite xUartLiteInstance;
static void prvRxHandler( void *pvUnused, unsigned portBASE_TYPE uxByteCount );
static void prvTxHandler( void *pvUnused, unsigned portBASE_TYPE uxByteCount );
/*-----------------------------------------------------------*/
/*
* See the serial2.h header file.
*/
xComPortHandle xSerialPortInitMinimal( unsigned long ulWantedBaud, unsigned portBASE_TYPE uxQueueLength )
{
portBASE_TYPE xStatus;
/* Create the queues used to hold Rx/Tx characters. */
xRxedChars = xQueueCreate( uxQueueLength, ( unsigned portBASE_TYPE ) sizeof( signed char ) );
xCharsForTx = xQueueCreate( uxQueueLength + 1, ( unsigned portBASE_TYPE ) sizeof( signed char ) );
/* If the queues were created correctly then setup the serial port
hardware. */
if( ( xRxedChars != serINVALID_QUEUE ) && ( xCharsForTx != serINVALID_QUEUE ) )
{
xStatus = XUartLite_Initialize( &xUartLiteInstance, XPAR_UARTLITE_1_DEVICE_ID );
if( xStatus == XST_SUCCESS )
{
XUartLite_ResetFifos( &xUartLiteInstance );
XUartLite_SetRecvHandler( &xUartLiteInstance, ( XUartLite_Handler ) prvRxHandler, NULL );
XUartLite_SetSendHandler( &xUartLiteInstance, ( XUartLite_Handler ) prvTxHandler, NULL );
xStatus = xPortInstallInterruptHandler( XPAR_INTC_0_UARTLITE_1_VEC_ID, ( XInterruptHandler ) XUartLite_InterruptHandler, &xUartLiteInstance );
XUartLite_EnableIntr( xUartLiteInstance.RegBaseAddress );
vPortEnableInterrupt( XPAR_INTC_0_UARTLITE_1_VEC_ID );
}
configASSERT( xStatus == pdPASS );
}
/* This demo file only supports a single port but something must be
returned to comply with the standard demo header file. */
return ( xComPortHandle ) 0;
}
/*-----------------------------------------------------------*/
portBASE_TYPE xSerialGetChar( xComPortHandle pxPort, signed char *pcRxedChar, portTickType xBlockTime )
{
extern u8 XUartLite_RecvByte(u32 BaseAddress);
// *pcRxedChar = XUartLite_RecvByte( xUartLiteInstance.RegBaseAddress );
vTaskDelay( 1000 );
return pdTRUE;
#if 0
/* The port handle is not required as this driver only supports one port. */
( void ) pxPort;
/* Get the next character from the buffer. Return false if no characters
are available, or arrive before xBlockTime expires. */
if( xQueueReceive( xRxedChars, pcRxedChar, xBlockTime ) )
{
return pdTRUE;
}
else
{
return pdFALSE;
}
#endif
}
/*-----------------------------------------------------------*/
void vSerialPutString( xComPortHandle pxPort, const signed char * const pcString, unsigned short usStringLength )
{
XUartLite_Send( &xUartLiteInstance, ( unsigned char * ) pcString, ( unsigned portBASE_TYPE ) usStringLength );
#if 0
unsigned portBASE_TYPE uxReturn = 0U;
char *pc = pc;
extern void XUartLite_SendByte(u32 BaseAddress, u8 Data);
/* Just to avoid compiler warnings. */
( void ) pxPort;
while( uxReturn != usStringLength )
{
XUartLite_SendByte( xUartLiteInstance.RegBaseAddress, *pc );
pc++;
uxReturn++;
// uxReturn += XUartLite_Send( &xUartLiteInstance, ( unsigned char * ) pcString, ( ( unsigned portBASE_TYPE ) usStringLength ) - uxReturn );
while( XUartLite_IsSending( &xUartLiteInstance ) != pdFALSE )
{
/*_RB_ This function is not yet written to make use of the RTOS. */
}
}
#endif
}
/*-----------------------------------------------------------*/
signed portBASE_TYPE xSerialPutChar( xComPortHandle pxPort, signed char cOutChar, portTickType xBlockTime )
{
#if 1
extern void XUartLite_SendByte(u32 BaseAddress, u8 Data);
// for( ;; )
// {
XUartLite_SendByte( xUartLiteInstance.RegBaseAddress, cOutChar );
// }
// vTaskDelay( 2 );
return 1;
#else
signed portBASE_TYPE xReturn;
if( xQueueSend( xCharsForTx, &cOutChar, xBlockTime ) == pdPASS )
{
xReturn = pdPASS;
/* Enable the UART Tx interrupt. */
XUartLite_EnableIntr( xUartLiteInstance.RegBaseAddress );
}
else
{
xReturn = pdFAIL;
}
return xReturn;
#endif
}
/*-----------------------------------------------------------*/
void vSerialClose( xComPortHandle xPort )
{
/* Not supported as not required by the demo application. */
}
/*-----------------------------------------------------------*/
static void prvRxHandler( void *pvUnused, unsigned portBASE_TYPE uxByteCount )
{
portNOP();
}
/*-----------------------------------------------------------*/
static void prvTxHandler( void *pvUnused, unsigned portBASE_TYPE uxByteCount )
{
portNOP();
}
Loading…
Cancel
Save