mirror of https://github.com/menyifang/DCT-Net
update
parent
c08e84e872
commit
32c9f31e7b
@ -0,0 +1,8 @@
|
||||
# Default ignored files
|
||||
/shelf/
|
||||
/workspace.xml
|
||||
# Datasource local storage ignored files
|
||||
/dataSources/
|
||||
/dataSources.local.xml
|
||||
# Editor-based HTTP Client requests
|
||||
/httpRequests/
|
@ -0,0 +1,11 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$" />
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
<component name="TestRunnerService">
|
||||
<option name="PROJECT_TEST_RUNNER" value="pytest" />
|
||||
</component>
|
||||
</module>
|
@ -0,0 +1,15 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="PublishConfigData" autoUpload="Always" serverName="11.160.138.24">
|
||||
<serverData>
|
||||
<paths name="11.160.138.24">
|
||||
<serverdata>
|
||||
<mappings>
|
||||
<mapping deploy="/" local="$PROJECT_DIR$" web="/" />
|
||||
</mappings>
|
||||
</serverdata>
|
||||
</paths>
|
||||
</serverData>
|
||||
<option name="myAutoUpload" value="ALWAYS" />
|
||||
</component>
|
||||
</project>
|
@ -0,0 +1,110 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<profile version="1.0">
|
||||
<option name="myName" value="Project Default" />
|
||||
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
||||
<option name="ignoredPackages">
|
||||
<value>
|
||||
<list size="97">
|
||||
<item index="0" class="java.lang.String" itemvalue="GPUtil" />
|
||||
<item index="1" class="java.lang.String" itemvalue="torch" />
|
||||
<item index="2" class="java.lang.String" itemvalue="torchvision" />
|
||||
<item index="3" class="java.lang.String" itemvalue="pandas" />
|
||||
<item index="4" class="java.lang.String" itemvalue="scikit-image" />
|
||||
<item index="5" class="java.lang.String" itemvalue="scipy" />
|
||||
<item index="6" class="java.lang.String" itemvalue="opencv-python" />
|
||||
<item index="7" class="java.lang.String" itemvalue="numpy" />
|
||||
<item index="8" class="java.lang.String" itemvalue="Pillow" />
|
||||
<item index="9" class="java.lang.String" itemvalue="protobuf" />
|
||||
<item index="10" class="java.lang.String" itemvalue="decorator" />
|
||||
<item index="11" class="java.lang.String" itemvalue="networkx" />
|
||||
<item index="12" class="java.lang.String" itemvalue="scikit-learn" />
|
||||
<item index="13" class="java.lang.String" itemvalue="python-dateutil" />
|
||||
<item index="14" class="java.lang.String" itemvalue="imageio-ffmpeg" />
|
||||
<item index="15" class="java.lang.String" itemvalue="cloudpickle" />
|
||||
<item index="16" class="java.lang.String" itemvalue="requests" />
|
||||
<item index="17" class="java.lang.String" itemvalue="PyWavelets" />
|
||||
<item index="18" class="java.lang.String" itemvalue="certifi" />
|
||||
<item index="19" class="java.lang.String" itemvalue="urllib3" />
|
||||
<item index="20" class="java.lang.String" itemvalue="pyparsing" />
|
||||
<item index="21" class="java.lang.String" itemvalue="six" />
|
||||
<item index="22" class="java.lang.String" itemvalue="ffmpeg-python" />
|
||||
<item index="23" class="java.lang.String" itemvalue="kiwisolver" />
|
||||
<item index="24" class="java.lang.String" itemvalue="tqdm" />
|
||||
<item index="25" class="java.lang.String" itemvalue="imageio" />
|
||||
<item index="26" class="java.lang.String" itemvalue="toolz" />
|
||||
<item index="27" class="java.lang.String" itemvalue="future" />
|
||||
<item index="28" class="java.lang.String" itemvalue="matplotlib" />
|
||||
<item index="29" class="java.lang.String" itemvalue="tensorboardX" />
|
||||
<item index="30" class="java.lang.String" itemvalue="dask" />
|
||||
<item index="31" class="java.lang.String" itemvalue="pytz" />
|
||||
<item index="32" class="java.lang.String" itemvalue="idna" />
|
||||
<item index="33" class="java.lang.String" itemvalue="PyYAML" />
|
||||
<item index="34" class="java.lang.String" itemvalue="cffi" />
|
||||
<item index="35" class="java.lang.String" itemvalue="pycparser" />
|
||||
<item index="36" class="java.lang.String" itemvalue="pygit" />
|
||||
<item index="37" class="java.lang.String" itemvalue="Werkzeug" />
|
||||
<item index="38" class="java.lang.String" itemvalue="blessings" />
|
||||
<item index="39" class="java.lang.String" itemvalue="wget" />
|
||||
<item index="40" class="java.lang.String" itemvalue="dominate" />
|
||||
<item index="41" class="java.lang.String" itemvalue="psutil" />
|
||||
<item index="42" class="java.lang.String" itemvalue="torchprofile" />
|
||||
<item index="43" class="java.lang.String" itemvalue="tensorboard" />
|
||||
<item index="44" class="java.lang.String" itemvalue="grpcio" />
|
||||
<item index="45" class="java.lang.String" itemvalue="olefile" />
|
||||
<item index="46" class="java.lang.String" itemvalue="Markdown" />
|
||||
<item index="47" class="java.lang.String" itemvalue="pycocotools" />
|
||||
<item index="48" class="java.lang.String" itemvalue="nvidia-ml-py3" />
|
||||
<item index="49" class="java.lang.String" itemvalue="jedi" />
|
||||
<item index="50" class="java.lang.String" itemvalue="MNNCV" />
|
||||
<item index="51" class="java.lang.String" itemvalue="boto3" />
|
||||
<item index="52" class="java.lang.String" itemvalue="watchdog" />
|
||||
<item index="53" class="java.lang.String" itemvalue="botocore" />
|
||||
<item index="54" class="java.lang.String" itemvalue="validators" />
|
||||
<item index="55" class="java.lang.String" itemvalue="streamlit" />
|
||||
<item index="56" class="java.lang.String" itemvalue="toml" />
|
||||
<item index="57" class="java.lang.String" itemvalue="MNN" />
|
||||
<item index="58" class="java.lang.String" itemvalue="pyrsistent" />
|
||||
<item index="59" class="java.lang.String" itemvalue="pytorch-fid" />
|
||||
<item index="60" class="java.lang.String" itemvalue="visdom" />
|
||||
<item index="61" class="java.lang.String" itemvalue="lpips" />
|
||||
<item index="62" class="java.lang.String" itemvalue="joblib" />
|
||||
<item index="63" class="java.lang.String" itemvalue="oss2" />
|
||||
<item index="64" class="java.lang.String" itemvalue="imgaug" />
|
||||
<item index="65" class="java.lang.String" itemvalue="opencv_python" />
|
||||
<item index="66" class="java.lang.String" itemvalue="absl-py" />
|
||||
<item index="67" class="java.lang.String" itemvalue="wandb" />
|
||||
<item index="68" class="java.lang.String" itemvalue="opencv-python-headless" />
|
||||
<item index="69" class="java.lang.String" itemvalue="ninja" />
|
||||
<item index="70" class="java.lang.String" itemvalue="chardet" />
|
||||
<item index="71" class="java.lang.String" itemvalue="cycler" />
|
||||
<item index="72" class="java.lang.String" itemvalue="kornia" />
|
||||
<item index="73" class="java.lang.String" itemvalue="pytorch-lightning" />
|
||||
<item index="74" class="java.lang.String" itemvalue="trimesh" />
|
||||
<item index="75" class="java.lang.String" itemvalue="omegaconf" />
|
||||
<item index="76" class="java.lang.String" itemvalue="opencv-contrib-python" />
|
||||
<item index="77" class="java.lang.String" itemvalue="pyglet" />
|
||||
<item index="78" class="java.lang.String" itemvalue="PyMCubes" />
|
||||
<item index="79" class="java.lang.String" itemvalue="chumpy" />
|
||||
<item index="80" class="java.lang.String" itemvalue="plyfile" />
|
||||
<item index="81" class="java.lang.String" itemvalue="yacs" />
|
||||
<item index="82" class="java.lang.String" itemvalue="torchmetrics" />
|
||||
<item index="83" class="java.lang.String" itemvalue="dataclasses" />
|
||||
<item index="84" class="java.lang.String" itemvalue="test-tube" />
|
||||
<item index="85" class="java.lang.String" itemvalue="rtree" />
|
||||
<item index="86" class="java.lang.String" itemvalue="lark-parser" />
|
||||
<item index="87" class="java.lang.String" itemvalue="PyEXR" />
|
||||
<item index="88" class="java.lang.String" itemvalue="commentjson" />
|
||||
<item index="89" class="java.lang.String" itemvalue="pybind11" />
|
||||
<item index="90" class="java.lang.String" itemvalue="open3d" />
|
||||
<item index="91" class="java.lang.String" itemvalue="opendr" />
|
||||
<item index="92" class="java.lang.String" itemvalue="h5py" />
|
||||
<item index="93" class="java.lang.String" itemvalue="tokenizers" />
|
||||
<item index="94" class="java.lang.String" itemvalue="transformers" />
|
||||
<item index="95" class="java.lang.String" itemvalue="yapf" />
|
||||
<item index="96" class="java.lang.String" itemvalue="addict" />
|
||||
</list>
|
||||
</value>
|
||||
</option>
|
||||
</inspection_tool>
|
||||
</profile>
|
||||
</component>
|
@ -0,0 +1,6 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<settings>
|
||||
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||
<version value="1.0" />
|
||||
</settings>
|
||||
</component>
|
@ -0,0 +1,7 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="JavaScriptSettings">
|
||||
<option name="languageLevel" value="ES6" />
|
||||
</component>
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.6 (mnn_python)" project-jdk-type="Python SDK" />
|
||||
</project>
|
@ -0,0 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectModuleManager">
|
||||
<modules>
|
||||
<module fileurl="file://$PROJECT_DIR$/.idea/DCT-Net.iml" filepath="$PROJECT_DIR$/.idea/DCT-Net.iml" />
|
||||
</modules>
|
||||
</component>
|
||||
</project>
|
@ -0,0 +1,6 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="VcsDirectoryMappings">
|
||||
<mapping directory="$PROJECT_DIR$" vcs="Git" />
|
||||
</component>
|
||||
</project>
|
@ -0,0 +1,14 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="WebServers">
|
||||
<option name="servers">
|
||||
<webServer id="97e6de3f-73ca-4b14-a177-10b25899d222" name="11.160.138.24" url="http://11.160.138.24">
|
||||
<fileTransfer rootFolder="/data/qingyao/gitProjects/DCT-Net" accessType="SFTP" host="11.160.138.24" port="22" sshConfigId="80d63b94-77a9-490e-a638-71580f352c36" sshConfig="myf272609@11.160.138.24:22 password">
|
||||
<advancedOptions>
|
||||
<advancedOptions dataProtectionLevel="Private" passiveMode="true" shareSSLContext="true" />
|
||||
</advancedOptions>
|
||||
</fileTransfer>
|
||||
</webServer>
|
||||
</option>
|
||||
</component>
|
||||
</project>
|
Binary file not shown.
Before Width: | Height: | Size: 13 MiB |
@ -0,0 +1,4 @@
|
||||
from modelscope.hub.snapshot_download import snapshot_download
|
||||
model_dir = snapshot_download('damo/cv_unet_person-image-cartoon_compound-models', cache_dir='.')
|
||||
|
||||
|
@ -0,0 +1,23 @@
|
||||
|
||||
import cv2
|
||||
from source.cartoonize import Cartoonizer
|
||||
import os
|
||||
|
||||
def process():
|
||||
|
||||
algo = Cartoonizer(dataroot='damo/cv_unet_person-image-cartoon_compound-models')
|
||||
img = cv2.imread('input.png')[...,::-1]
|
||||
|
||||
result = algo.cartoonize(img)
|
||||
|
||||
cv2.imwrite('res.png', result)
|
||||
print('finished!')
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
process()
|
||||
|
||||
|
||||
|
@ -0,0 +1,12 @@
|
||||
import cv2
|
||||
from modelscope.pipelines import pipeline
|
||||
from modelscope.utils.constant import Tasks
|
||||
|
||||
img_cartoon = pipeline(Tasks.image_portrait_stylization, 'damo/cv_unet_person-image-cartoon_compound-models')
|
||||
img_cartoon = pipeline('image-portrait-stylization')
|
||||
result = img_cartoon('input.png')
|
||||
|
||||
cv2.imwrite('result.png', result['output_img'])
|
||||
|
||||
|
||||
|
Binary file not shown.
@ -0,0 +1,120 @@
|
||||
import os
|
||||
import cv2
|
||||
import tensorflow as tf
|
||||
import numpy as np
|
||||
from source.facelib.facer import FaceAna
|
||||
import source.utils as utils
|
||||
from source.mtcnn_pytorch.src.align_trans import warp_and_crop_face, get_reference_facial_points
|
||||
|
||||
if tf.__version__ >= '2.0':
|
||||
tf = tf.compat.v1
|
||||
tf.disable_eager_execution()
|
||||
|
||||
|
||||
class Cartoonizer():
|
||||
def __init__(self, dataroot):
|
||||
|
||||
self.facer = FaceAna(dataroot)
|
||||
self.sess_head = self.load_sess(
|
||||
os.path.join(dataroot, 'cartoon_anime_h.pb'), 'model_head')
|
||||
self.sess_bg = self.load_sess(
|
||||
os.path.join(dataroot, 'cartoon_anime_bg.pb'), 'model_bg')
|
||||
|
||||
self.box_width = 288
|
||||
global_mask = cv2.imread(os.path.join(dataroot, 'alpha.jpg'))
|
||||
global_mask = cv2.resize(
|
||||
global_mask, (self.box_width, self.box_width),
|
||||
interpolation=cv2.INTER_AREA)
|
||||
self.global_mask = cv2.cvtColor(
|
||||
global_mask, cv2.COLOR_BGR2GRAY).astype(np.float32) / 255.0
|
||||
|
||||
def load_sess(self, model_path, name):
|
||||
config = tf.ConfigProto(allow_soft_placement=True)
|
||||
config.gpu_options.allow_growth = True
|
||||
sess = tf.Session(config=config)
|
||||
print(f'loading model from {model_path}')
|
||||
with tf.gfile.FastGFile(model_path, 'rb') as f:
|
||||
graph_def = tf.GraphDef()
|
||||
graph_def.ParseFromString(f.read())
|
||||
sess.graph.as_default()
|
||||
tf.import_graph_def(graph_def, name=name)
|
||||
sess.run(tf.global_variables_initializer())
|
||||
print(f'load model {model_path} done.')
|
||||
return sess
|
||||
|
||||
|
||||
def detect_face(self, img):
|
||||
src_h, src_w, _ = img.shape
|
||||
src_x = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
boxes, landmarks, _ = self.facer.run(src_x)
|
||||
if boxes.shape[0] == 0:
|
||||
return None
|
||||
else:
|
||||
return landmarks
|
||||
|
||||
|
||||
def cartoonize(self, img):
|
||||
# img: RGB input
|
||||
ori_h, ori_w, _ = img.shape
|
||||
img = utils.resize_size(img, size=720)
|
||||
|
||||
img_brg = img[:, :, ::-1]
|
||||
|
||||
# background process
|
||||
pad_bg, pad_h, pad_w = utils.padTo16x(img_brg)
|
||||
|
||||
bg_res = self.sess_bg.run(
|
||||
self.sess_bg.graph.get_tensor_by_name(
|
||||
'model_bg/output_image:0'),
|
||||
feed_dict={'model_bg/input_image:0': pad_bg})
|
||||
res = bg_res[:pad_h, :pad_w, :]
|
||||
|
||||
landmarks = self.detect_face(img_brg)
|
||||
if landmarks is None:
|
||||
print('No face detected!')
|
||||
return res
|
||||
|
||||
print('%d faces detected!'%len(landmarks))
|
||||
for landmark in landmarks:
|
||||
# get facial 5 points
|
||||
f5p = utils.get_f5p(landmark, img_brg)
|
||||
|
||||
# face alignment
|
||||
head_img, trans_inv = warp_and_crop_face(
|
||||
img,
|
||||
f5p,
|
||||
ratio=0.75,
|
||||
reference_pts=get_reference_facial_points(default_square=True),
|
||||
crop_size=(self.box_width, self.box_width),
|
||||
return_trans_inv=True)
|
||||
|
||||
# head process
|
||||
head_res = self.sess_head.run(
|
||||
self.sess_head.graph.get_tensor_by_name(
|
||||
'model_head/output_image:0'),
|
||||
feed_dict={
|
||||
'model_head/input_image:0': head_img[:, :, ::-1]
|
||||
})
|
||||
|
||||
# merge head and background
|
||||
head_trans_inv = cv2.warpAffine(
|
||||
head_res,
|
||||
trans_inv, (np.size(img, 1), np.size(img, 0)),
|
||||
borderValue=(0, 0, 0))
|
||||
|
||||
mask = self.global_mask
|
||||
mask_trans_inv = cv2.warpAffine(
|
||||
mask,
|
||||
trans_inv, (np.size(img, 1), np.size(img, 0)),
|
||||
borderValue=(0, 0, 0))
|
||||
mask_trans_inv = np.expand_dims(mask_trans_inv, 2)
|
||||
|
||||
res = mask_trans_inv * head_trans_inv + (1 - mask_trans_inv) * res
|
||||
|
||||
res = cv2.resize(res, (ori_w, ori_h), interpolation=cv2.INTER_AREA)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,4 @@
|
||||
|
||||
Copyright (c) Peppa_Pig_Face_Engine
|
||||
|
||||
https://github.com/610265158/Peppa_Pig_Face_Engine
|
@ -0,0 +1,97 @@
|
||||
import numpy as np
|
||||
|
||||
from modelscope.models.cv.cartoon.facelib.config import config as cfg
|
||||
|
||||
|
||||
class GroupTrack():
|
||||
|
||||
def __init__(self):
|
||||
self.old_frame = None
|
||||
self.previous_landmarks_set = None
|
||||
self.with_landmark = True
|
||||
self.thres = cfg.TRACE.pixel_thres
|
||||
self.alpha = cfg.TRACE.smooth_landmark
|
||||
self.iou_thres = cfg.TRACE.iou_thres
|
||||
|
||||
def calculate(self, img, current_landmarks_set):
|
||||
if self.previous_landmarks_set is None:
|
||||
self.previous_landmarks_set = current_landmarks_set
|
||||
result = current_landmarks_set
|
||||
else:
|
||||
previous_lm_num = self.previous_landmarks_set.shape[0]
|
||||
if previous_lm_num == 0:
|
||||
self.previous_landmarks_set = current_landmarks_set
|
||||
result = current_landmarks_set
|
||||
return result
|
||||
else:
|
||||
result = []
|
||||
for i in range(current_landmarks_set.shape[0]):
|
||||
not_in_flag = True
|
||||
for j in range(previous_lm_num):
|
||||
if self.iou(current_landmarks_set[i],
|
||||
self.previous_landmarks_set[j]
|
||||
) > self.iou_thres:
|
||||
result.append(
|
||||
self.smooth(current_landmarks_set[i],
|
||||
self.previous_landmarks_set[j]))
|
||||
not_in_flag = False
|
||||
break
|
||||
if not_in_flag:
|
||||
result.append(current_landmarks_set[i])
|
||||
|
||||
result = np.array(result)
|
||||
self.previous_landmarks_set = result
|
||||
|
||||
return result
|
||||
|
||||
def iou(self, p_set0, p_set1):
|
||||
rec1 = [
|
||||
np.min(p_set0[:, 0]),
|
||||
np.min(p_set0[:, 1]),
|
||||
np.max(p_set0[:, 0]),
|
||||
np.max(p_set0[:, 1])
|
||||
]
|
||||
rec2 = [
|
||||
np.min(p_set1[:, 0]),
|
||||
np.min(p_set1[:, 1]),
|
||||
np.max(p_set1[:, 0]),
|
||||
np.max(p_set1[:, 1])
|
||||
]
|
||||
|
||||
# computing area of each rectangles
|
||||
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
|
||||
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
|
||||
|
||||
# computing the sum_area
|
||||
sum_area = S_rec1 + S_rec2
|
||||
|
||||
# find the each edge of intersect rectangle
|
||||
x1 = max(rec1[0], rec2[0])
|
||||
y1 = max(rec1[1], rec2[1])
|
||||
x2 = min(rec1[2], rec2[2])
|
||||
y2 = min(rec1[3], rec2[3])
|
||||
|
||||
# judge if there is an intersect
|
||||
intersect = max(0, x2 - x1) * max(0, y2 - y1)
|
||||
|
||||
iou = intersect / (sum_area - intersect)
|
||||
return iou
|
||||
|
||||
def smooth(self, now_landmarks, previous_landmarks):
|
||||
result = []
|
||||
for i in range(now_landmarks.shape[0]):
|
||||
x = now_landmarks[i][0] - previous_landmarks[i][0]
|
||||
y = now_landmarks[i][1] - previous_landmarks[i][1]
|
||||
dis = np.sqrt(np.square(x) + np.square(y))
|
||||
if dis < self.thres:
|
||||
result.append(previous_landmarks[i])
|
||||
else:
|
||||
result.append(
|
||||
self.do_moving_average(now_landmarks[i],
|
||||
previous_landmarks[i]))
|
||||
|
||||
return np.array(result)
|
||||
|
||||
def do_moving_average(self, p_now, p_previous):
|
||||
p = self.alpha * p_now + (1 - self.alpha) * p_previous
|
||||
return p
|
@ -0,0 +1,23 @@
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
from easydict import EasyDict as edict
|
||||
|
||||
config = edict()
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
||||
|
||||
config.DETECT = edict()
|
||||
config.DETECT.topk = 10
|
||||
config.DETECT.thres = 0.8
|
||||
config.DETECT.input_shape = (512, 512, 3)
|
||||
config.KEYPOINTS = edict()
|
||||
config.KEYPOINTS.p_num = 68
|
||||
config.KEYPOINTS.base_extend_range = [0.2, 0.3]
|
||||
config.KEYPOINTS.input_shape = (160, 160, 3)
|
||||
config.TRACE = edict()
|
||||
config.TRACE.pixel_thres = 1
|
||||
config.TRACE.smooth_box = 0.3
|
||||
config.TRACE.smooth_landmark = 0.95
|
||||
config.TRACE.iou_thres = 0.5
|
||||
config.DATA = edict()
|
||||
config.DATA.pixel_means = np.array([123., 116., 103.]) # RGB
|
@ -0,0 +1,116 @@
|
||||
import time
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from .config import config as cfg
|
||||
|
||||
if tf.__version__ >= '2.0':
|
||||
tf = tf.compat.v1
|
||||
|
||||
|
||||
class FaceDetector:
|
||||
|
||||
def __init__(self, dir):
|
||||
|
||||
self.model_path = dir + '/detector.pb'
|
||||
self.thres = cfg.DETECT.thres
|
||||
self.input_shape = cfg.DETECT.input_shape
|
||||
|
||||
self._graph = tf.Graph()
|
||||
|
||||
with self._graph.as_default():
|
||||
self._graph, self._sess = self.init_model(self.model_path)
|
||||
|
||||
self.input_image = tf.get_default_graph().get_tensor_by_name(
|
||||
'tower_0/images:0')
|
||||
self.training = tf.get_default_graph().get_tensor_by_name(
|
||||
'training_flag:0')
|
||||
self.output_ops = [
|
||||
tf.get_default_graph().get_tensor_by_name('tower_0/boxes:0'),
|
||||
tf.get_default_graph().get_tensor_by_name('tower_0/scores:0'),
|
||||
tf.get_default_graph().get_tensor_by_name(
|
||||
'tower_0/num_detections:0'),
|
||||
]
|
||||
|
||||
def __call__(self, image):
|
||||
|
||||
image, scale_x, scale_y = self.preprocess(
|
||||
image,
|
||||
target_width=self.input_shape[1],
|
||||
target_height=self.input_shape[0])
|
||||
|
||||
image = np.expand_dims(image, 0)
|
||||
|
||||
boxes, scores, num_boxes = self._sess.run(
|
||||
self.output_ops,
|
||||
feed_dict={
|
||||
self.input_image: image,
|
||||
self.training: False
|
||||
})
|
||||
|
||||
num_boxes = num_boxes[0]
|
||||
boxes = boxes[0][:num_boxes]
|
||||
|
||||
scores = scores[0][:num_boxes]
|
||||
|
||||
to_keep = scores > self.thres
|
||||
boxes = boxes[to_keep]
|
||||
scores = scores[to_keep]
|
||||
|
||||
y1 = self.input_shape[0] / scale_y
|
||||
x1 = self.input_shape[1] / scale_x
|
||||
y2 = self.input_shape[0] / scale_y
|
||||
x2 = self.input_shape[1] / scale_x
|
||||
scaler = np.array([y1, x1, y2, x2], dtype='float32')
|
||||
boxes = boxes * scaler
|
||||
|
||||
scores = np.expand_dims(scores, 0).reshape([-1, 1])
|
||||
|
||||
for i in range(boxes.shape[0]):
|
||||
boxes[i] = np.array(
|
||||
[boxes[i][1], boxes[i][0], boxes[i][3], boxes[i][2]])
|
||||
return np.concatenate([boxes, scores], axis=1)
|
||||
|
||||
def preprocess(self, image, target_height, target_width, label=None):
|
||||
|
||||
h, w, c = image.shape
|
||||
|
||||
bimage = np.zeros(
|
||||
shape=[target_height, target_width, c],
|
||||
dtype=image.dtype) + np.array(
|
||||
cfg.DATA.pixel_means, dtype=image.dtype)
|
||||
long_side = max(h, w)
|
||||
|
||||
scale_x = scale_y = target_height / long_side
|
||||
|
||||
image = cv2.resize(image, None, fx=scale_x, fy=scale_y)
|
||||
|
||||
h_, w_, _ = image.shape
|
||||
bimage[:h_, :w_, :] = image
|
||||
|
||||
return bimage, scale_x, scale_y
|
||||
|
||||
def init_model(self, *args):
|
||||
pb_path = args[0]
|
||||
|
||||
def init_pb(model_path):
|
||||
config = tf.ConfigProto()
|
||||
config.gpu_options.per_process_gpu_memory_fraction = 0.2
|
||||
compute_graph = tf.Graph()
|
||||
compute_graph.as_default()
|
||||
sess = tf.Session(config=config)
|
||||
with tf.gfile.GFile(model_path, 'rb') as fid:
|
||||
graph_def = tf.GraphDef()
|
||||
graph_def.ParseFromString(fid.read())
|
||||
tf.import_graph_def(graph_def, name='')
|
||||
|
||||
return (compute_graph, sess)
|
||||
|
||||
model = init_pb(pb_path)
|
||||
|
||||
graph = model[0]
|
||||
sess = model[1]
|
||||
|
||||
return graph, sess
|
@ -0,0 +1,154 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from .config import config as cfg
|
||||
|
||||
if tf.__version__ >= '2.0':
|
||||
tf = tf.compat.v1
|
||||
|
||||
|
||||
class FaceLandmark:
|
||||
|
||||
def __init__(self, dir):
|
||||
self.model_path = dir + '/keypoints.pb'
|
||||
self.min_face = 60
|
||||
self.keypoint_num = cfg.KEYPOINTS.p_num * 2
|
||||
|
||||
self._graph = tf.Graph()
|
||||
|
||||
with self._graph.as_default():
|
||||
|
||||
self._graph, self._sess = self.init_model(self.model_path)
|
||||
self.img_input = tf.get_default_graph().get_tensor_by_name(
|
||||
'tower_0/images:0')
|
||||
self.embeddings = tf.get_default_graph().get_tensor_by_name(
|
||||
'tower_0/prediction:0')
|
||||
self.training = tf.get_default_graph().get_tensor_by_name(
|
||||
'training_flag:0')
|
||||
|
||||
self.landmark = self.embeddings[:, :self.keypoint_num]
|
||||
self.headpose = self.embeddings[:, -7:-4] * 90.
|
||||
self.state = tf.nn.sigmoid(self.embeddings[:, -4:])
|
||||
|
||||
def __call__(self, img, bboxes):
|
||||
landmark_result = []
|
||||
state_result = []
|
||||
for i, bbox in enumerate(bboxes):
|
||||
landmark, state = self._one_shot_run(img, bbox, i)
|
||||
if landmark is not None:
|
||||
landmark_result.append(landmark)
|
||||
state_result.append(state)
|
||||
return np.array(landmark_result), np.array(state_result)
|
||||
|
||||
def simple_run(self, cropped_img):
|
||||
with self._graph.as_default():
|
||||
|
||||
cropped_img = np.expand_dims(cropped_img, axis=0)
|
||||
landmark, p, states = self._sess.run(
|
||||
[self.landmark, self.headpose, self.state],
|
||||
feed_dict={
|
||||
self.img_input: cropped_img,
|
||||
self.training: False
|
||||
})
|
||||
|
||||
return landmark, states
|
||||
|
||||
def _one_shot_run(self, image, bbox, i):
|
||||
|
||||
bbox_width = bbox[2] - bbox[0]
|
||||
bbox_height = bbox[3] - bbox[1]
|
||||
if (bbox_width <= self.min_face and bbox_height <= self.min_face):
|
||||
return None, None
|
||||
add = int(max(bbox_width, bbox_height))
|
||||
bimg = cv2.copyMakeBorder(
|
||||
image,
|
||||
add,
|
||||
add,
|
||||
add,
|
||||
add,
|
||||
borderType=cv2.BORDER_CONSTANT,
|
||||
value=cfg.DATA.pixel_means)
|
||||
bbox += add
|
||||
|
||||
one_edge = (1 + 2 * cfg.KEYPOINTS.base_extend_range[0]) * bbox_width
|
||||
center = [(bbox[0] + bbox[2]) // 2, (bbox[1] + bbox[3]) // 2]
|
||||
|
||||
bbox[0] = center[0] - one_edge // 2
|
||||
bbox[1] = center[1] - one_edge // 2
|
||||
bbox[2] = center[0] + one_edge // 2
|
||||
bbox[3] = center[1] + one_edge // 2
|
||||
|
||||
bbox = bbox.astype(np.int)
|
||||
crop_image = bimg[bbox[1]:bbox[3], bbox[0]:bbox[2], :]
|
||||
h, w, _ = crop_image.shape
|
||||
crop_image = cv2.resize(
|
||||
crop_image,
|
||||
(cfg.KEYPOINTS.input_shape[1], cfg.KEYPOINTS.input_shape[0]))
|
||||
crop_image = crop_image.astype(np.float32)
|
||||
|
||||
keypoints, state = self.simple_run(crop_image)
|
||||
|
||||
res = keypoints[0][:self.keypoint_num].reshape((-1, 2))
|
||||
res[:, 0] = res[:, 0] * w / cfg.KEYPOINTS.input_shape[1]
|
||||
res[:, 1] = res[:, 1] * h / cfg.KEYPOINTS.input_shape[0]
|
||||
|
||||
landmark = []
|
||||
for _index in range(res.shape[0]):
|
||||
x_y = res[_index]
|
||||
landmark.append([
|
||||
int(x_y[0] * cfg.KEYPOINTS.input_shape[0] + bbox[0] - add),
|
||||
int(x_y[1] * cfg.KEYPOINTS.input_shape[1] + bbox[1] - add)
|
||||
])
|
||||
|
||||
landmark = np.array(landmark, np.float32)
|
||||
|
||||
return landmark, state
|
||||
|
||||
def init_model(self, *args):
|
||||
|
||||
if len(args) == 1:
|
||||
use_pb = True
|
||||
pb_path = args[0]
|
||||
else:
|
||||
use_pb = False
|
||||
meta_path = args[0]
|
||||
restore_model_path = args[1]
|
||||
|
||||
def ini_ckpt():
|
||||
graph = tf.Graph()
|
||||
graph.as_default()
|
||||
configProto = tf.ConfigProto()
|
||||
configProto.gpu_options.allow_growth = True
|
||||
sess = tf.Session(config=configProto)
|
||||
# load_model(model_path, sess)
|
||||
saver = tf.train.import_meta_graph(meta_path)
|
||||
saver.restore(sess, restore_model_path)
|
||||
|
||||
print('Model restred!')
|
||||
return (graph, sess)
|
||||
|
||||
def init_pb(model_path):
|
||||
config = tf.ConfigProto()
|
||||
config.gpu_options.per_process_gpu_memory_fraction = 0.2
|
||||
compute_graph = tf.Graph()
|
||||
compute_graph.as_default()
|
||||
sess = tf.Session(config=config)
|
||||
with tf.gfile.GFile(model_path, 'rb') as fid:
|
||||
graph_def = tf.GraphDef()
|
||||
graph_def.ParseFromString(fid.read())
|
||||
tf.import_graph_def(graph_def, name='')
|
||||
|
||||
# saver = tf.train.Saver(tf.global_variables())
|
||||
# saver.save(sess, save_path='./tmp.ckpt')
|
||||
return (compute_graph, sess)
|
||||
|
||||
if use_pb:
|
||||
model = init_pb(pb_path)
|
||||
else:
|
||||
model = ini_ckpt()
|
||||
|
||||
graph = model[0]
|
||||
sess = model[1]
|
||||
|
||||
return graph, sess
|
@ -0,0 +1,150 @@
|
||||
import time
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from .config import config as cfg
|
||||
from .face_detector import FaceDetector
|
||||
from .face_landmark import FaceLandmark
|
||||
from .LK.lk import GroupTrack
|
||||
|
||||
|
||||
class FaceAna():
|
||||
'''
|
||||
by default the top3 facea sorted by area will be calculated for time reason
|
||||
'''
|
||||
|
||||
def __init__(self, model_dir):
|
||||
self.face_detector = FaceDetector(model_dir)
|
||||
self.face_landmark = FaceLandmark(model_dir)
|
||||
self.trace = GroupTrack()
|
||||
|
||||
self.track_box = None
|
||||
self.previous_image = None
|
||||
self.previous_box = None
|
||||
|
||||
self.diff_thres = 5
|
||||
self.top_k = cfg.DETECT.topk
|
||||
self.iou_thres = cfg.TRACE.iou_thres
|
||||
self.alpha = cfg.TRACE.smooth_box
|
||||
|
||||
def run(self, image):
|
||||
|
||||
boxes = self.face_detector(image)
|
||||
|
||||
if boxes.shape[0] > self.top_k:
|
||||
boxes = self.sort(boxes)
|
||||
|
||||
boxes_return = np.array(boxes)
|
||||
landmarks, states = self.face_landmark(image, boxes)
|
||||
|
||||
if 1:
|
||||
track = []
|
||||
for i in range(landmarks.shape[0]):
|
||||
track.append([
|
||||
np.min(landmarks[i][:, 0]),
|
||||
np.min(landmarks[i][:, 1]),
|
||||
np.max(landmarks[i][:, 0]),
|
||||
np.max(landmarks[i][:, 1])
|
||||
])
|
||||
tmp_box = np.array(track)
|
||||
|
||||
self.track_box = self.judge_boxs(boxes_return, tmp_box)
|
||||
|
||||
self.track_box, landmarks = self.sort_res(self.track_box, landmarks)
|
||||
return self.track_box, landmarks, states
|
||||
|
||||
def sort_res(self, bboxes, points):
|
||||
area = []
|
||||
for bbox in bboxes:
|
||||
bbox_width = bbox[2] - bbox[0]
|
||||
bbox_height = bbox[3] - bbox[1]
|
||||
area.append(bbox_height * bbox_width)
|
||||
|
||||
area = np.array(area)
|
||||
picked = area.argsort()[::-1]
|
||||
sorted_bboxes = [bboxes[x] for x in picked]
|
||||
sorted_points = [points[x] for x in picked]
|
||||
return np.array(sorted_bboxes), np.array(sorted_points)
|
||||
|
||||
def diff_frames(self, previous_frame, image):
|
||||
if previous_frame is None:
|
||||
return True
|
||||
else:
|
||||
_diff = cv2.absdiff(previous_frame, image)
|
||||
diff = np.sum(
|
||||
_diff) / previous_frame.shape[0] / previous_frame.shape[1] / 3.
|
||||
return diff > self.diff_thres
|
||||
|
||||
def sort(self, bboxes):
|
||||
if self.top_k > 100:
|
||||
return bboxes
|
||||
area = []
|
||||
for bbox in bboxes:
|
||||
|
||||
bbox_width = bbox[2] - bbox[0]
|
||||
bbox_height = bbox[3] - bbox[1]
|
||||
area.append(bbox_height * bbox_width)
|
||||
|
||||
area = np.array(area)
|
||||
|
||||
picked = area.argsort()[-self.top_k:][::-1]
|
||||
sorted_bboxes = [bboxes[x] for x in picked]
|
||||
return np.array(sorted_bboxes)
|
||||
|
||||
def judge_boxs(self, previuous_bboxs, now_bboxs):
|
||||
|
||||
def iou(rec1, rec2):
|
||||
|
||||
# computing area of each rectangles
|
||||
S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
|
||||
S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
|
||||
|
||||
# computing the sum_area
|
||||
sum_area = S_rec1 + S_rec2
|
||||
|
||||
# find the each edge of intersect rectangle
|
||||
x1 = max(rec1[0], rec2[0])
|
||||
y1 = max(rec1[1], rec2[1])
|
||||
x2 = min(rec1[2], rec2[2])
|
||||
y2 = min(rec1[3], rec2[3])
|
||||
|
||||
# judge if there is an intersect
|
||||
intersect = max(0, x2 - x1) * max(0, y2 - y1)
|
||||
|
||||
return intersect / (sum_area - intersect)
|
||||
|
||||
if previuous_bboxs is None:
|
||||
return now_bboxs
|
||||
|
||||
result = []
|
||||
|
||||
for i in range(now_bboxs.shape[0]):
|
||||
contain = False
|
||||
for j in range(previuous_bboxs.shape[0]):
|
||||
if iou(now_bboxs[i], previuous_bboxs[j]) > self.iou_thres:
|
||||
result.append(
|
||||
self.smooth(now_bboxs[i], previuous_bboxs[j]))
|
||||
contain = True
|
||||
break
|
||||
if not contain:
|
||||
result.append(now_bboxs[i])
|
||||
|
||||
return np.array(result)
|
||||
|
||||
def smooth(self, now_box, previous_box):
|
||||
|
||||
return self.do_moving_average(now_box[:4], previous_box[:4])
|
||||
|
||||
def do_moving_average(self, p_now, p_previous):
|
||||
p = self.alpha * p_now + (1 - self.alpha) * p_previous
|
||||
return p
|
||||
|
||||
def reset(self):
|
||||
'''
|
||||
reset the previous info used foe tracking,
|
||||
:return:
|
||||
'''
|
||||
self.track_box = None
|
||||
self.previous_image = None
|
||||
self.previous_box = None
|
@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2017 Dan Antoshchenko
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
@ -0,0 +1,26 @@
|
||||
# MTCNN
|
||||
|
||||
`pytorch` implementation of **inference stage** of face detection algorithm described in
|
||||
[Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks](https://arxiv.org/abs/1604.02878).
|
||||
|
||||
## Example
|
||||
![example of a face detection](images/example.png)
|
||||
|
||||
## How to use it
|
||||
Just download the repository and then do this
|
||||
```python
|
||||
from src import detect_faces
|
||||
from PIL import Image
|
||||
|
||||
image = Image.open('image.jpg')
|
||||
bounding_boxes, landmarks = detect_faces(image)
|
||||
```
|
||||
For examples see `test_on_images.ipynb`.
|
||||
|
||||
## Requirements
|
||||
* pytorch 0.2
|
||||
* Pillow, numpy
|
||||
|
||||
## Credit
|
||||
This implementation is heavily inspired by:
|
||||
* [pangyupo/mxnet_mtcnn_face_detection](https://github.com/pangyupo/mxnet_mtcnn_face_detection)
|
@ -0,0 +1,187 @@
|
||||
"""
|
||||
Created on Mon Apr 24 15:43:29 2017
|
||||
@author: zhaoy
|
||||
"""
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from .matlab_cp2tform import get_similarity_transform_for_cv2
|
||||
|
||||
# reference facial points, a list of coordinates (x,y)
|
||||
dx = 1
|
||||
dy = 1
|
||||
REFERENCE_FACIAL_POINTS = [
|
||||
[30.29459953 + dx, 51.69630051 + dy], # left eye
|
||||
[65.53179932 + dx, 51.50139999 + dy], # right eye
|
||||
[48.02519989 + dx, 71.73660278 + dy], # nose
|
||||
[33.54930115 + dx, 92.3655014 + dy], # left mouth
|
||||
[62.72990036 + dx, 92.20410156 + dy] # right mouth
|
||||
]
|
||||
|
||||
DEFAULT_CROP_SIZE = (96, 112)
|
||||
|
||||
global FACIAL_POINTS
|
||||
|
||||
|
||||
class FaceWarpException(Exception):
|
||||
|
||||
def __str__(self):
|
||||
return 'In File {}:{}'.format(__file__, super.__str__(self))
|
||||
|
||||
|
||||
def get_reference_facial_points(output_size=None,
|
||||
inner_padding_factor=0.0,
|
||||
outer_padding=(0, 0),
|
||||
default_square=False):
|
||||
|
||||
tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
|
||||
tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
|
||||
|
||||
# 0) make the inner region a square
|
||||
if default_square:
|
||||
size_diff = max(tmp_crop_size) - tmp_crop_size
|
||||
tmp_5pts += size_diff / 2
|
||||
tmp_crop_size += size_diff
|
||||
|
||||
h_crop = tmp_crop_size[0]
|
||||
w_crop = tmp_crop_size[1]
|
||||
if (output_size):
|
||||
if (output_size[0] == h_crop and output_size[1] == w_crop):
|
||||
return tmp_5pts
|
||||
|
||||
if (inner_padding_factor == 0 and outer_padding == (0, 0)):
|
||||
if output_size is None:
|
||||
return tmp_5pts
|
||||
else:
|
||||
raise FaceWarpException(
|
||||
'No paddings to do, output_size must be None or {}'.format(
|
||||
tmp_crop_size))
|
||||
|
||||
# check output size
|
||||
if not (0 <= inner_padding_factor <= 1.0):
|
||||
raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
|
||||
|
||||
factor = inner_padding_factor > 0 or outer_padding[0] > 0
|
||||
factor = factor or outer_padding[1] > 0
|
||||
if (factor and output_size is None):
|
||||
output_size = tmp_crop_size * \
|
||||
(1 + inner_padding_factor * 2).astype(np.int32)
|
||||
output_size += np.array(outer_padding)
|
||||
|
||||
cond1 = outer_padding[0] < output_size[0]
|
||||
cond2 = outer_padding[1] < output_size[1]
|
||||
if not (cond1 and cond2):
|
||||
raise FaceWarpException('Not (outer_padding[0] < output_size[0]'
|
||||
'and outer_padding[1] < output_size[1])')
|
||||
|
||||
# 1) pad the inner region according inner_padding_factor
|
||||
if inner_padding_factor > 0:
|
||||
size_diff = tmp_crop_size * inner_padding_factor * 2
|
||||
tmp_5pts += size_diff / 2
|
||||
tmp_crop_size += np.round(size_diff).astype(np.int32)
|
||||
|
||||
# 2) resize the padded inner region
|
||||
size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
|
||||
|
||||
if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[
|
||||
1] * tmp_crop_size[0]:
|
||||
raise FaceWarpException(
|
||||
'Must have (output_size - outer_padding)'
|
||||
'= some_scale * (crop_size * (1.0 + inner_padding_factor)')
|
||||
|
||||
scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
|
||||
tmp_5pts = tmp_5pts * scale_factor
|
||||
|
||||
# 3) add outer_padding to make output_size
|
||||
reference_5point = tmp_5pts + np.array(outer_padding)
|
||||
|
||||
return reference_5point
|
||||
|
||||
|
||||
def get_affine_transform_matrix(src_pts, dst_pts):
|
||||
|
||||
tfm = np.float32([[1, 0, 0], [0, 1, 0]])
|
||||
n_pts = src_pts.shape[0]
|
||||
ones = np.ones((n_pts, 1), src_pts.dtype)
|
||||
src_pts_ = np.hstack([src_pts, ones])
|
||||
dst_pts_ = np.hstack([dst_pts, ones])
|
||||
|
||||
A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
|
||||
|
||||
if rank == 3:
|
||||
tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]],
|
||||
[A[0, 1], A[1, 1], A[2, 1]]])
|
||||
elif rank == 2:
|
||||
tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]])
|
||||
|
||||
return tfm
|
||||
|
||||
|
||||
def warp_and_crop_face(src_img,
|
||||
facial_pts,
|
||||
ratio=0.84,
|
||||
reference_pts=None,
|
||||
crop_size=(96, 112),
|
||||
align_type='similarity'
|
||||
'',
|
||||
return_trans_inv=False):
|
||||
|
||||
if reference_pts is None:
|
||||
if crop_size[0] == 96 and crop_size[1] == 112:
|
||||
reference_pts = REFERENCE_FACIAL_POINTS
|
||||
else:
|
||||
default_square = False
|
||||
inner_padding_factor = 0
|
||||
outer_padding = (0, 0)
|
||||
output_size = crop_size
|
||||
|
||||
reference_pts = get_reference_facial_points(
|
||||
output_size, inner_padding_factor, outer_padding,
|
||||
default_square)
|
||||
|
||||
ref_pts = np.float32(reference_pts)
|
||||
|
||||
factor = ratio
|
||||
ref_pts = (ref_pts - 112 / 2) * factor + 112 / 2
|
||||
ref_pts *= crop_size[0] / 112.
|
||||
|
||||
ref_pts_shp = ref_pts.shape
|
||||
if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
|
||||
raise FaceWarpException(
|
||||
'reference_pts.shape must be (K,2) or (2,K) and K>2')
|
||||
|
||||
if ref_pts_shp[0] == 2:
|
||||
ref_pts = ref_pts.T
|
||||
|
||||
src_pts = np.float32(facial_pts)
|
||||
src_pts_shp = src_pts.shape
|
||||
if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
|
||||
raise FaceWarpException(
|
||||
'facial_pts.shape must be (K,2) or (2,K) and K>2')
|
||||
|
||||
if src_pts_shp[0] == 2:
|
||||
src_pts = src_pts.T
|
||||
|
||||
if src_pts.shape != ref_pts.shape:
|
||||
raise FaceWarpException(
|
||||
'facial_pts and reference_pts must have the same shape')
|
||||
|
||||
if align_type == 'cv2_affine':
|
||||
tfm = cv2.getAffineTransform(src_pts, ref_pts)
|
||||
tfm_inv = cv2.getAffineTransform(ref_pts, src_pts)
|
||||
|
||||
elif align_type == 'affine':
|
||||
tfm = get_affine_transform_matrix(src_pts, ref_pts)
|
||||
tfm_inv = get_affine_transform_matrix(ref_pts, src_pts)
|
||||
else:
|
||||
tfm, tfm_inv = get_similarity_transform_for_cv2(src_pts, ref_pts)
|
||||
|
||||
face_img = cv2.warpAffine(
|
||||
src_img,
|
||||
tfm, (crop_size[0], crop_size[1]),
|
||||
borderValue=(255, 255, 255))
|
||||
|
||||
if return_trans_inv:
|
||||
return face_img, tfm_inv
|
||||
else:
|
||||
return face_img
|
@ -0,0 +1,339 @@
|
||||
"""
|
||||
Created on Tue Jul 11 06:54:28 2017
|
||||
|
||||
@author: zhaoyafei
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from numpy.linalg import inv, lstsq
|
||||
from numpy.linalg import matrix_rank as rank
|
||||
from numpy.linalg import norm
|
||||
|
||||
|
||||
class MatlabCp2tormException(Exception):
|
||||
|
||||
def __str__(self):
|
||||
return 'In File {}:{}'.format(__file__, super.__str__(self))
|
||||
|
||||
|
||||
def tformfwd(trans, uv):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
apply affine transform 'trans' to uv
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
@trans: 3x3 np.array
|
||||
transform matrix
|
||||
@uv: Kx2 np.array
|
||||
each row is a pair of coordinates (x, y)
|
||||
|
||||
Returns:
|
||||
----------
|
||||
@xy: Kx2 np.array
|
||||
each row is a pair of transformed coordinates (x, y)
|
||||
"""
|
||||
uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
|
||||
xy = np.dot(uv, trans)
|
||||
xy = xy[:, 0:-1]
|
||||
return xy
|
||||
|
||||
|
||||
def tforminv(trans, uv):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
apply the inverse of affine transform 'trans' to uv
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
@trans: 3x3 np.array
|
||||
transform matrix
|
||||
@uv: Kx2 np.array
|
||||
each row is a pair of coordinates (x, y)
|
||||
|
||||
Returns:
|
||||
----------
|
||||
@xy: Kx2 np.array
|
||||
each row is a pair of inverse-transformed coordinates (x, y)
|
||||
"""
|
||||
Tinv = inv(trans)
|
||||
xy = tformfwd(Tinv, uv)
|
||||
return xy
|
||||
|
||||
|
||||
def findNonreflectiveSimilarity(uv, xy, options=None):
|
||||
|
||||
options = {'K': 2}
|
||||
|
||||
K = options['K']
|
||||
M = xy.shape[0]
|
||||
x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
|
||||
y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
|
||||
# print('--->x, y:\n', x, y
|
||||
|
||||
tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
|
||||
tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
|
||||
X = np.vstack((tmp1, tmp2))
|
||||
# print('--->X.shape: ', X.shape
|
||||
# print('X:\n', X
|
||||
|
||||
u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
|
||||
v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
|
||||
U = np.vstack((u, v))
|
||||
# print('--->U.shape: ', U.shape
|
||||
# print('U:\n', U
|
||||
|
||||
# We know that X * r = U
|
||||
if rank(X) >= 2 * K:
|
||||
r, _, _, _ = lstsq(X, U)
|
||||
r = np.squeeze(r)
|
||||
else:
|
||||
raise Exception('cp2tform:twoUniquePointsReq')
|
||||
|
||||
# print('--->r:\n', r
|
||||
|
||||
sc = r[0]
|
||||
ss = r[1]
|
||||
tx = r[2]
|
||||
ty = r[3]
|
||||
|
||||
Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
|
||||
|
||||
# print('--->Tinv:\n', Tinv
|
||||
|
||||
T = inv(Tinv)
|
||||
# print('--->T:\n', T
|
||||
|
||||
T[:, 2] = np.array([0, 0, 1])
|
||||
|
||||
return T, Tinv
|
||||
|
||||
|
||||
def findSimilarity(uv, xy, options=None):
|
||||
|
||||
options = {'K': 2}
|
||||
|
||||
# uv = np.array(uv)
|
||||
# xy = np.array(xy)
|
||||
|
||||
# Solve for trans1
|
||||
trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
|
||||
|
||||
# Solve for trans2
|
||||
|
||||
# manually reflect the xy data across the Y-axis
|
||||
xyR = xy
|
||||
xyR[:, 0] = -1 * xyR[:, 0]
|
||||
|
||||
trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
|
||||
|
||||
# manually reflect the tform to undo the reflection done on xyR
|
||||
TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
||||
|
||||
trans2 = np.dot(trans2r, TreflectY)
|
||||
|
||||
# Figure out if trans1 or trans2 is better
|
||||
xy1 = tformfwd(trans1, uv)
|
||||
norm1 = norm(xy1 - xy)
|
||||
|
||||
xy2 = tformfwd(trans2, uv)
|
||||
norm2 = norm(xy2 - xy)
|
||||
|
||||
if norm1 <= norm2:
|
||||
return trans1, trans1_inv
|
||||
else:
|
||||
trans2_inv = inv(trans2)
|
||||
return trans2, trans2_inv
|
||||
|
||||
|
||||
def get_similarity_transform(src_pts, dst_pts, reflective=True):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
Find Similarity Transform Matrix 'trans':
|
||||
u = src_pts[:, 0]
|
||||
v = src_pts[:, 1]
|
||||
x = dst_pts[:, 0]
|
||||
y = dst_pts[:, 1]
|
||||
[x, y, 1] = [u, v, 1] * trans
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
@src_pts: Kx2 np.array
|
||||
source points, each row is a pair of coordinates (x, y)
|
||||
@dst_pts: Kx2 np.array
|
||||
destination points, each row is a pair of transformed
|
||||
coordinates (x, y)
|
||||
@reflective: True or False
|
||||
if True:
|
||||
use reflective similarity transform
|
||||
else:
|
||||
use non-reflective similarity transform
|
||||
|
||||
Returns:
|
||||
----------
|
||||
@trans: 3x3 np.array
|
||||
transform matrix from uv to xy
|
||||
trans_inv: 3x3 np.array
|
||||
inverse of trans, transform matrix from xy to uv
|
||||
"""
|
||||
|
||||
if reflective:
|
||||
trans, trans_inv = findSimilarity(src_pts, dst_pts)
|
||||
else:
|
||||
trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
|
||||
|
||||
return trans, trans_inv
|
||||
|
||||
|
||||
def cvt_tform_mat_for_cv2(trans):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
Convert Transform Matrix 'trans' into 'cv2_trans' which could be
|
||||
directly used by cv2.warpAffine():
|
||||
u = src_pts[:, 0]
|
||||
v = src_pts[:, 1]
|
||||
x = dst_pts[:, 0]
|
||||
y = dst_pts[:, 1]
|
||||
[x, y].T = cv_trans * [u, v, 1].T
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
@trans: 3x3 np.array
|
||||
transform matrix from uv to xy
|
||||
|
||||
Returns:
|
||||
----------
|
||||
@cv2_trans: 2x3 np.array
|
||||
transform matrix from src_pts to dst_pts, could be directly used
|
||||
for cv2.warpAffine()
|
||||
"""
|
||||
cv2_trans = trans[:, 0:2].T
|
||||
|
||||
return cv2_trans
|
||||
|
||||
|
||||
def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
|
||||
"""
|
||||
Function:
|
||||
----------
|
||||
Find Similarity Transform Matrix 'cv2_trans' which could be
|
||||
directly used by cv2.warpAffine():
|
||||
u = src_pts[:, 0]
|
||||
v = src_pts[:, 1]
|
||||
x = dst_pts[:, 0]
|
||||
y = dst_pts[:, 1]
|
||||
[x, y].T = cv_trans * [u, v, 1].T
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
@src_pts: Kx2 np.array
|
||||
source points, each row is a pair of coordinates (x, y)
|
||||
@dst_pts: Kx2 np.array
|
||||
destination points, each row is a pair of transformed
|
||||
coordinates (x, y)
|
||||
reflective: True or False
|
||||
if True:
|
||||
use reflective similarity transform
|
||||
else:
|
||||
use non-reflective similarity transform
|
||||
|
||||
Returns:
|
||||
----------
|
||||
@cv2_trans: 2x3 np.array
|
||||
transform matrix from src_pts to dst_pts, could be directly used
|
||||
for cv2.warpAffine()
|
||||
"""
|
||||
trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
|
||||
cv2_trans = cvt_tform_mat_for_cv2(trans)
|
||||
cv2_trans_inv = cvt_tform_mat_for_cv2(trans_inv)
|
||||
|
||||
return cv2_trans, cv2_trans_inv
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
"""
|
||||
u = [0, 6, -2]
|
||||
v = [0, 3, 5]
|
||||
x = [-1, 0, 4]
|
||||
y = [-1, -10, 4]
|
||||
|
||||
# In Matlab, run:
|
||||
#
|
||||
# uv = [u'; v'];
|
||||
# xy = [x'; y'];
|
||||
# tform_sim=cp2tform(uv,xy,'similarity');
|
||||
#
|
||||
# trans = tform_sim.tdata.T
|
||||
# ans =
|
||||
# -0.0764 -1.6190 0
|
||||
# 1.6190 -0.0764 0
|
||||
# -3.2156 0.0290 1.0000
|
||||
# trans_inv = tform_sim.tdata.Tinv
|
||||
# ans =
|
||||
#
|
||||
# -0.0291 0.6163 0
|
||||
# -0.6163 -0.0291 0
|
||||
# -0.0756 1.9826 1.0000
|
||||
# xy_m=tformfwd(tform_sim, u,v)
|
||||
#
|
||||
# xy_m =
|
||||
#
|
||||
# -3.2156 0.0290
|
||||
# 1.1833 -9.9143
|
||||
# 5.0323 2.8853
|
||||
# uv_m=tforminv(tform_sim, x,y)
|
||||
#
|
||||
# uv_m =
|
||||
#
|
||||
# 0.5698 1.3953
|
||||
# 6.0872 2.2733
|
||||
# -2.6570 4.3314
|
||||
"""
|
||||
u = [0, 6, -2]
|
||||
v = [0, 3, 5]
|
||||
x = [-1, 0, 4]
|
||||
y = [-1, -10, 4]
|
||||
|
||||
uv = np.array((u, v)).T
|
||||
xy = np.array((x, y)).T
|
||||
|
||||
print('\n--->uv:')
|
||||
print(uv)
|
||||
print('\n--->xy:')
|
||||
print(xy)
|
||||
|
||||
trans, trans_inv = get_similarity_transform(uv, xy)
|
||||
|
||||
print('\n--->trans matrix:')
|
||||
print(trans)
|
||||
|
||||
print('\n--->trans_inv matrix:')
|
||||
print(trans_inv)
|
||||
|
||||
print('\n---> apply transform to uv')
|
||||
print('\nxy_m = uv_augmented * trans')
|
||||
uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
|
||||
xy_m = np.dot(uv_aug, trans)
|
||||
print(xy_m)
|
||||
|
||||
print('\nxy_m = tformfwd(trans, uv)')
|
||||
xy_m = tformfwd(trans, uv)
|
||||
print(xy_m)
|
||||
|
||||
print('\n---> apply inverse transform to xy')
|
||||
print('\nuv_m = xy_augmented * trans_inv')
|
||||
xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
|
||||
uv_m = np.dot(xy_aug, trans_inv)
|
||||
print(uv_m)
|
||||
|
||||
print('\nuv_m = tformfwd(trans_inv, xy)')
|
||||
uv_m = tformfwd(trans_inv, xy)
|
||||
print(uv_m)
|
||||
|
||||
uv_m = tforminv(trans, xy)
|
||||
print('\nuv_m = tforminv(trans, xy)')
|
||||
print(uv_m)
|
@ -0,0 +1,107 @@
|
||||
import os
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def resize_size(image, size=720):
|
||||
h, w, c = np.shape(image)
|
||||
if min(h, w) > size:
|
||||
if h > w:
|
||||
h, w = int(size * h / w), size
|
||||
else:
|
||||
h, w = size, int(size * w / h)
|
||||
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
|
||||
return image
|
||||
|
||||
|
||||
def padTo16x(image):
|
||||
h, w, c = np.shape(image)
|
||||
if h % 16 == 0 and w % 16 == 0:
|
||||
return image, h, w
|
||||
nh, nw = (h // 16 + 1) * 16, (w // 16 + 1) * 16
|
||||
img_new = np.ones((nh, nw, 3), np.uint8) * 255
|
||||
img_new[:h, :w, :] = image
|
||||
|
||||
return img_new, h, w
|
||||
|
||||
|
||||
def get_f5p(landmarks, np_img):
|
||||
eye_left = find_pupil(landmarks[36:41], np_img)
|
||||
eye_right = find_pupil(landmarks[42:47], np_img)
|
||||
if eye_left is None or eye_right is None:
|
||||
print('cannot find 5 points with find_puil, used mean instead.!')
|
||||
eye_left = landmarks[36:41].mean(axis=0)
|
||||
eye_right = landmarks[42:47].mean(axis=0)
|
||||
nose = landmarks[30]
|
||||
mouth_left = landmarks[48]
|
||||
mouth_right = landmarks[54]
|
||||
f5p = [[eye_left[0], eye_left[1]], [eye_right[0], eye_right[1]],
|
||||
[nose[0], nose[1]], [mouth_left[0], mouth_left[1]],
|
||||
[mouth_right[0], mouth_right[1]]]
|
||||
return f5p
|
||||
|
||||
|
||||
def find_pupil(landmarks, np_img):
|
||||
h, w, _ = np_img.shape
|
||||
xmax = int(landmarks[:, 0].max())
|
||||
xmin = int(landmarks[:, 0].min())
|
||||
ymax = int(landmarks[:, 1].max())
|
||||
ymin = int(landmarks[:, 1].min())
|
||||
|
||||
if ymin >= ymax or xmin >= xmax or ymin < 0 or xmin < 0 or ymax > h or xmax > w:
|
||||
return None
|
||||
eye_img_bgr = np_img[ymin:ymax, xmin:xmax, :]
|
||||
eye_img = cv2.cvtColor(eye_img_bgr, cv2.COLOR_BGR2GRAY)
|
||||
eye_img = cv2.equalizeHist(eye_img)
|
||||
n_marks = landmarks - np.array([xmin, ymin]).reshape([1, 2])
|
||||
eye_mask = cv2.fillConvexPoly(
|
||||
np.zeros_like(eye_img), n_marks.astype(np.int32), 1)
|
||||
ret, thresh = cv2.threshold(eye_img, 100, 255,
|
||||
cv2.THRESH_BINARY | cv2.THRESH_OTSU)
|
||||
thresh = (1 - thresh / 255.) * eye_mask
|
||||
cnt = 0
|
||||
xm = []
|
||||
ym = []
|
||||
for i in range(thresh.shape[0]):
|
||||
for j in range(thresh.shape[1]):
|
||||
if thresh[i, j] > 0.5:
|
||||
xm.append(j)
|
||||
ym.append(i)
|
||||
cnt += 1
|
||||
if cnt != 0:
|
||||
xm.sort()
|
||||
ym.sort()
|
||||
xm = xm[cnt // 2]
|
||||
ym = ym[cnt // 2]
|
||||
else:
|
||||
xm = thresh.shape[1] / 2
|
||||
ym = thresh.shape[0] / 2
|
||||
|
||||
return xm + xmin, ym + ymin
|
||||
|
||||
|
||||
def all_file(file_dir):
|
||||
L = []
|
||||
for root, dirs, files in os.walk(file_dir):
|
||||
for file in files:
|
||||
extend = os.path.splitext(file)[1]
|
||||
if extend == '.png' or extend == '.jpg' or extend == '.jpeg':
|
||||
L.append(os.path.join(root, file))
|
||||
return L
|
||||
|
||||
def initialize_mask(box_width):
|
||||
h, w = [box_width, box_width]
|
||||
mask = np.zeros((h, w), np.uint8)
|
||||
|
||||
center = (int(w / 2), int(h / 2))
|
||||
axes = (int(w * 0.4), int(h * 0.49))
|
||||
mask = cv2.ellipse(img=mask, center=center, axes=axes, angle=0, startAngle=0, endAngle=360, color=(1),
|
||||
thickness=-1)
|
||||
mask = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
|
||||
|
||||
maxn = max(w, h) * 0.15
|
||||
mask[(mask < 255) & (mask > 0)] = mask[(mask < 255) & (mask > 0)] / maxn
|
||||
mask = np.clip(mask, 0, 1)
|
||||
|
||||
return mask.astype(float)
|
Loading…
Reference in New Issue