diff --git a/.DS_Store b/.DS_Store
index 8f564b7..748a16d 100644
Binary files a/.DS_Store and b/.DS_Store differ
diff --git a/.idea/.gitignore b/.idea/.gitignore
new file mode 100644
index 0000000..73f69e0
--- /dev/null
+++ b/.idea/.gitignore
@@ -0,0 +1,8 @@
+# Default ignored files
+/shelf/
+/workspace.xml
+# Datasource local storage ignored files
+/dataSources/
+/dataSources.local.xml
+# Editor-based HTTP Client requests
+/httpRequests/
diff --git a/.idea/DCT-Net.iml b/.idea/DCT-Net.iml
new file mode 100644
index 0000000..8dc09e5
--- /dev/null
+++ b/.idea/DCT-Net.iml
@@ -0,0 +1,11 @@
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/deployment.xml b/.idea/deployment.xml
new file mode 100644
index 0000000..a4c3763
--- /dev/null
+++ b/.idea/deployment.xml
@@ -0,0 +1,15 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/inspectionProfiles/Project_Default.xml b/.idea/inspectionProfiles/Project_Default.xml
new file mode 100644
index 0000000..ac9a7bf
--- /dev/null
+++ b/.idea/inspectionProfiles/Project_Default.xml
@@ -0,0 +1,110 @@
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/inspectionProfiles/profiles_settings.xml b/.idea/inspectionProfiles/profiles_settings.xml
new file mode 100644
index 0000000..105ce2d
--- /dev/null
+++ b/.idea/inspectionProfiles/profiles_settings.xml
@@ -0,0 +1,6 @@
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/misc.xml b/.idea/misc.xml
new file mode 100644
index 0000000..49317ca
--- /dev/null
+++ b/.idea/misc.xml
@@ -0,0 +1,7 @@
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/modules.xml b/.idea/modules.xml
new file mode 100644
index 0000000..85498b9
--- /dev/null
+++ b/.idea/modules.xml
@@ -0,0 +1,8 @@
+
+
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/vcs.xml b/.idea/vcs.xml
new file mode 100644
index 0000000..94a25f7
--- /dev/null
+++ b/.idea/vcs.xml
@@ -0,0 +1,6 @@
+
+
+
+
+
+
\ No newline at end of file
diff --git a/.idea/webServers.xml b/.idea/webServers.xml
new file mode 100644
index 0000000..05522f9
--- /dev/null
+++ b/.idea/webServers.xml
@@ -0,0 +1,14 @@
+
+
+
+
+
+
\ No newline at end of file
diff --git a/README.md b/README.md
index 65caab8..19aff74 100644
--- a/README.md
+++ b/README.md
@@ -19,13 +19,54 @@ Official implementation of DCT-Net for Portrait Stylization.
## News
(2022-07-07) The paper is available now at arxiv(https://arxiv.org/abs/2207.02426).
+(2022-08-08) cartoon function can be directly call from pythonSDK of [modelscope](https://modelscope.cn/#/models).
+(2022-08-08) The pertained model and infer code of 'anime' style is available now. More styles coming soon.
## Requirements
+* python 3
+* tensorflow (>=1.14)
+* easydict
+* numpy
+* both CPU/GPU are supported
## Quick Start
+### From python SDK
+A quick use with python SDK
+
+- Installation:
+```bash
+conda create -n dctnet python=3.8
+conda activate dctnet
+pip install tensorflow
+pip install "modelscope[cv]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
+```
+
+- Downloads:
+```bash
+python download.py
+```
+
+- Inference:
+```bash
+python run_sdk.py
+```
+
+
+### From source code
+```bash
+python run.py
+```
+
+
+## Acknowledgments
+
+Face detector and aligner are adapted from [Peppa_Pig_Face_Engine](https://github.com/610265158/Peppa_Pig_Face_Engine
+) and [InsightFace](https://github.com/TreB1eN/InsightFace_Pytorch).
+
+
## Citation
@@ -40,6 +81,13 @@ If you find this code useful for your research, please use the following BibTeX
number={4},
pages={1--9},
year={2022},
- publisher={ACM Vancouver, BC, Canada}
+ publisher={ACM New York, NY, USA}
}
```
+
+
+
+
+
+
+
diff --git a/assets/demo.gif b/assets/demo.gif
deleted file mode 100644
index 7e357ac..0000000
Binary files a/assets/demo.gif and /dev/null differ
diff --git a/download.py b/download.py
new file mode 100644
index 0000000..78c4570
--- /dev/null
+++ b/download.py
@@ -0,0 +1,4 @@
+from modelscope.hub.snapshot_download import snapshot_download
+model_dir = snapshot_download('damo/cv_unet_person-image-cartoon_compound-models', cache_dir='.')
+
+
diff --git a/run.py b/run.py
new file mode 100644
index 0000000..99413b1
--- /dev/null
+++ b/run.py
@@ -0,0 +1,23 @@
+
+import cv2
+from source.cartoonize import Cartoonizer
+import os
+
+def process():
+
+ algo = Cartoonizer(dataroot='damo/cv_unet_person-image-cartoon_compound-models')
+ img = cv2.imread('input.png')[...,::-1]
+
+ result = algo.cartoonize(img)
+
+ cv2.imwrite('res.png', result)
+ print('finished!')
+
+
+
+
+if __name__ == '__main__':
+ process()
+
+
+
diff --git a/run_sdk.py b/run_sdk.py
new file mode 100644
index 0000000..15e801d
--- /dev/null
+++ b/run_sdk.py
@@ -0,0 +1,12 @@
+import cv2
+from modelscope.pipelines import pipeline
+from modelscope.utils.constant import Tasks
+
+img_cartoon = pipeline(Tasks.image_portrait_stylization, 'damo/cv_unet_person-image-cartoon_compound-models')
+img_cartoon = pipeline('image-portrait-stylization')
+result = img_cartoon('input.png')
+
+cv2.imwrite('result.png', result['output_img'])
+
+
+
diff --git a/assets/.DS_Store b/source/.DS_Store
similarity index 92%
rename from assets/.DS_Store
rename to source/.DS_Store
index 5008ddf..81f32a8 100644
Binary files a/assets/.DS_Store and b/source/.DS_Store differ
diff --git a/source/__init__.py b/source/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/source/cartoonize.py b/source/cartoonize.py
new file mode 100644
index 0000000..9c9a42b
--- /dev/null
+++ b/source/cartoonize.py
@@ -0,0 +1,120 @@
+import os
+import cv2
+import tensorflow as tf
+import numpy as np
+from source.facelib.facer import FaceAna
+import source.utils as utils
+from source.mtcnn_pytorch.src.align_trans import warp_and_crop_face, get_reference_facial_points
+
+if tf.__version__ >= '2.0':
+ tf = tf.compat.v1
+ tf.disable_eager_execution()
+
+
+class Cartoonizer():
+ def __init__(self, dataroot):
+
+ self.facer = FaceAna(dataroot)
+ self.sess_head = self.load_sess(
+ os.path.join(dataroot, 'cartoon_anime_h.pb'), 'model_head')
+ self.sess_bg = self.load_sess(
+ os.path.join(dataroot, 'cartoon_anime_bg.pb'), 'model_bg')
+
+ self.box_width = 288
+ global_mask = cv2.imread(os.path.join(dataroot, 'alpha.jpg'))
+ global_mask = cv2.resize(
+ global_mask, (self.box_width, self.box_width),
+ interpolation=cv2.INTER_AREA)
+ self.global_mask = cv2.cvtColor(
+ global_mask, cv2.COLOR_BGR2GRAY).astype(np.float32) / 255.0
+
+ def load_sess(self, model_path, name):
+ config = tf.ConfigProto(allow_soft_placement=True)
+ config.gpu_options.allow_growth = True
+ sess = tf.Session(config=config)
+ print(f'loading model from {model_path}')
+ with tf.gfile.FastGFile(model_path, 'rb') as f:
+ graph_def = tf.GraphDef()
+ graph_def.ParseFromString(f.read())
+ sess.graph.as_default()
+ tf.import_graph_def(graph_def, name=name)
+ sess.run(tf.global_variables_initializer())
+ print(f'load model {model_path} done.')
+ return sess
+
+
+ def detect_face(self, img):
+ src_h, src_w, _ = img.shape
+ src_x = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
+ boxes, landmarks, _ = self.facer.run(src_x)
+ if boxes.shape[0] == 0:
+ return None
+ else:
+ return landmarks
+
+
+ def cartoonize(self, img):
+ # img: RGB input
+ ori_h, ori_w, _ = img.shape
+ img = utils.resize_size(img, size=720)
+
+ img_brg = img[:, :, ::-1]
+
+ # background process
+ pad_bg, pad_h, pad_w = utils.padTo16x(img_brg)
+
+ bg_res = self.sess_bg.run(
+ self.sess_bg.graph.get_tensor_by_name(
+ 'model_bg/output_image:0'),
+ feed_dict={'model_bg/input_image:0': pad_bg})
+ res = bg_res[:pad_h, :pad_w, :]
+
+ landmarks = self.detect_face(img_brg)
+ if landmarks is None:
+ print('No face detected!')
+ return res
+
+ print('%d faces detected!'%len(landmarks))
+ for landmark in landmarks:
+ # get facial 5 points
+ f5p = utils.get_f5p(landmark, img_brg)
+
+ # face alignment
+ head_img, trans_inv = warp_and_crop_face(
+ img,
+ f5p,
+ ratio=0.75,
+ reference_pts=get_reference_facial_points(default_square=True),
+ crop_size=(self.box_width, self.box_width),
+ return_trans_inv=True)
+
+ # head process
+ head_res = self.sess_head.run(
+ self.sess_head.graph.get_tensor_by_name(
+ 'model_head/output_image:0'),
+ feed_dict={
+ 'model_head/input_image:0': head_img[:, :, ::-1]
+ })
+
+ # merge head and background
+ head_trans_inv = cv2.warpAffine(
+ head_res,
+ trans_inv, (np.size(img, 1), np.size(img, 0)),
+ borderValue=(0, 0, 0))
+
+ mask = self.global_mask
+ mask_trans_inv = cv2.warpAffine(
+ mask,
+ trans_inv, (np.size(img, 1), np.size(img, 0)),
+ borderValue=(0, 0, 0))
+ mask_trans_inv = np.expand_dims(mask_trans_inv, 2)
+
+ res = mask_trans_inv * head_trans_inv + (1 - mask_trans_inv) * res
+
+ res = cv2.resize(res, (ori_w, ori_h), interpolation=cv2.INTER_AREA)
+
+ return res
+
+
+
+
diff --git a/source/facelib/LICENSE b/source/facelib/LICENSE
new file mode 100644
index 0000000..8e497ab
--- /dev/null
+++ b/source/facelib/LICENSE
@@ -0,0 +1,4 @@
+
+Copyright (c) Peppa_Pig_Face_Engine
+
+https://github.com/610265158/Peppa_Pig_Face_Engine
diff --git a/source/facelib/LK/__init__.py b/source/facelib/LK/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/source/facelib/LK/lk.py b/source/facelib/LK/lk.py
new file mode 100644
index 0000000..df05e3f
--- /dev/null
+++ b/source/facelib/LK/lk.py
@@ -0,0 +1,97 @@
+import numpy as np
+
+from modelscope.models.cv.cartoon.facelib.config import config as cfg
+
+
+class GroupTrack():
+
+ def __init__(self):
+ self.old_frame = None
+ self.previous_landmarks_set = None
+ self.with_landmark = True
+ self.thres = cfg.TRACE.pixel_thres
+ self.alpha = cfg.TRACE.smooth_landmark
+ self.iou_thres = cfg.TRACE.iou_thres
+
+ def calculate(self, img, current_landmarks_set):
+ if self.previous_landmarks_set is None:
+ self.previous_landmarks_set = current_landmarks_set
+ result = current_landmarks_set
+ else:
+ previous_lm_num = self.previous_landmarks_set.shape[0]
+ if previous_lm_num == 0:
+ self.previous_landmarks_set = current_landmarks_set
+ result = current_landmarks_set
+ return result
+ else:
+ result = []
+ for i in range(current_landmarks_set.shape[0]):
+ not_in_flag = True
+ for j in range(previous_lm_num):
+ if self.iou(current_landmarks_set[i],
+ self.previous_landmarks_set[j]
+ ) > self.iou_thres:
+ result.append(
+ self.smooth(current_landmarks_set[i],
+ self.previous_landmarks_set[j]))
+ not_in_flag = False
+ break
+ if not_in_flag:
+ result.append(current_landmarks_set[i])
+
+ result = np.array(result)
+ self.previous_landmarks_set = result
+
+ return result
+
+ def iou(self, p_set0, p_set1):
+ rec1 = [
+ np.min(p_set0[:, 0]),
+ np.min(p_set0[:, 1]),
+ np.max(p_set0[:, 0]),
+ np.max(p_set0[:, 1])
+ ]
+ rec2 = [
+ np.min(p_set1[:, 0]),
+ np.min(p_set1[:, 1]),
+ np.max(p_set1[:, 0]),
+ np.max(p_set1[:, 1])
+ ]
+
+ # computing area of each rectangles
+ S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
+ S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
+
+ # computing the sum_area
+ sum_area = S_rec1 + S_rec2
+
+ # find the each edge of intersect rectangle
+ x1 = max(rec1[0], rec2[0])
+ y1 = max(rec1[1], rec2[1])
+ x2 = min(rec1[2], rec2[2])
+ y2 = min(rec1[3], rec2[3])
+
+ # judge if there is an intersect
+ intersect = max(0, x2 - x1) * max(0, y2 - y1)
+
+ iou = intersect / (sum_area - intersect)
+ return iou
+
+ def smooth(self, now_landmarks, previous_landmarks):
+ result = []
+ for i in range(now_landmarks.shape[0]):
+ x = now_landmarks[i][0] - previous_landmarks[i][0]
+ y = now_landmarks[i][1] - previous_landmarks[i][1]
+ dis = np.sqrt(np.square(x) + np.square(y))
+ if dis < self.thres:
+ result.append(previous_landmarks[i])
+ else:
+ result.append(
+ self.do_moving_average(now_landmarks[i],
+ previous_landmarks[i]))
+
+ return np.array(result)
+
+ def do_moving_average(self, p_now, p_previous):
+ p = self.alpha * p_now + (1 - self.alpha) * p_previous
+ return p
diff --git a/source/facelib/__init__.py b/source/facelib/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/source/facelib/config.py b/source/facelib/config.py
new file mode 100644
index 0000000..d795fdd
--- /dev/null
+++ b/source/facelib/config.py
@@ -0,0 +1,23 @@
+import os
+
+import numpy as np
+from easydict import EasyDict as edict
+
+config = edict()
+os.environ['CUDA_VISIBLE_DEVICES'] = '0'
+
+config.DETECT = edict()
+config.DETECT.topk = 10
+config.DETECT.thres = 0.8
+config.DETECT.input_shape = (512, 512, 3)
+config.KEYPOINTS = edict()
+config.KEYPOINTS.p_num = 68
+config.KEYPOINTS.base_extend_range = [0.2, 0.3]
+config.KEYPOINTS.input_shape = (160, 160, 3)
+config.TRACE = edict()
+config.TRACE.pixel_thres = 1
+config.TRACE.smooth_box = 0.3
+config.TRACE.smooth_landmark = 0.95
+config.TRACE.iou_thres = 0.5
+config.DATA = edict()
+config.DATA.pixel_means = np.array([123., 116., 103.]) # RGB
diff --git a/source/facelib/face_detector.py b/source/facelib/face_detector.py
new file mode 100644
index 0000000..e558971
--- /dev/null
+++ b/source/facelib/face_detector.py
@@ -0,0 +1,116 @@
+import time
+
+import cv2
+import numpy as np
+import tensorflow as tf
+
+from .config import config as cfg
+
+if tf.__version__ >= '2.0':
+ tf = tf.compat.v1
+
+
+class FaceDetector:
+
+ def __init__(self, dir):
+
+ self.model_path = dir + '/detector.pb'
+ self.thres = cfg.DETECT.thres
+ self.input_shape = cfg.DETECT.input_shape
+
+ self._graph = tf.Graph()
+
+ with self._graph.as_default():
+ self._graph, self._sess = self.init_model(self.model_path)
+
+ self.input_image = tf.get_default_graph().get_tensor_by_name(
+ 'tower_0/images:0')
+ self.training = tf.get_default_graph().get_tensor_by_name(
+ 'training_flag:0')
+ self.output_ops = [
+ tf.get_default_graph().get_tensor_by_name('tower_0/boxes:0'),
+ tf.get_default_graph().get_tensor_by_name('tower_0/scores:0'),
+ tf.get_default_graph().get_tensor_by_name(
+ 'tower_0/num_detections:0'),
+ ]
+
+ def __call__(self, image):
+
+ image, scale_x, scale_y = self.preprocess(
+ image,
+ target_width=self.input_shape[1],
+ target_height=self.input_shape[0])
+
+ image = np.expand_dims(image, 0)
+
+ boxes, scores, num_boxes = self._sess.run(
+ self.output_ops,
+ feed_dict={
+ self.input_image: image,
+ self.training: False
+ })
+
+ num_boxes = num_boxes[0]
+ boxes = boxes[0][:num_boxes]
+
+ scores = scores[0][:num_boxes]
+
+ to_keep = scores > self.thres
+ boxes = boxes[to_keep]
+ scores = scores[to_keep]
+
+ y1 = self.input_shape[0] / scale_y
+ x1 = self.input_shape[1] / scale_x
+ y2 = self.input_shape[0] / scale_y
+ x2 = self.input_shape[1] / scale_x
+ scaler = np.array([y1, x1, y2, x2], dtype='float32')
+ boxes = boxes * scaler
+
+ scores = np.expand_dims(scores, 0).reshape([-1, 1])
+
+ for i in range(boxes.shape[0]):
+ boxes[i] = np.array(
+ [boxes[i][1], boxes[i][0], boxes[i][3], boxes[i][2]])
+ return np.concatenate([boxes, scores], axis=1)
+
+ def preprocess(self, image, target_height, target_width, label=None):
+
+ h, w, c = image.shape
+
+ bimage = np.zeros(
+ shape=[target_height, target_width, c],
+ dtype=image.dtype) + np.array(
+ cfg.DATA.pixel_means, dtype=image.dtype)
+ long_side = max(h, w)
+
+ scale_x = scale_y = target_height / long_side
+
+ image = cv2.resize(image, None, fx=scale_x, fy=scale_y)
+
+ h_, w_, _ = image.shape
+ bimage[:h_, :w_, :] = image
+
+ return bimage, scale_x, scale_y
+
+ def init_model(self, *args):
+ pb_path = args[0]
+
+ def init_pb(model_path):
+ config = tf.ConfigProto()
+ config.gpu_options.per_process_gpu_memory_fraction = 0.2
+ compute_graph = tf.Graph()
+ compute_graph.as_default()
+ sess = tf.Session(config=config)
+ with tf.gfile.GFile(model_path, 'rb') as fid:
+ graph_def = tf.GraphDef()
+ graph_def.ParseFromString(fid.read())
+ tf.import_graph_def(graph_def, name='')
+
+ return (compute_graph, sess)
+
+ model = init_pb(pb_path)
+
+ graph = model[0]
+ sess = model[1]
+
+ return graph, sess
diff --git a/source/facelib/face_landmark.py b/source/facelib/face_landmark.py
new file mode 100644
index 0000000..063d40c
--- /dev/null
+++ b/source/facelib/face_landmark.py
@@ -0,0 +1,154 @@
+import cv2
+import numpy as np
+import tensorflow as tf
+
+from .config import config as cfg
+
+if tf.__version__ >= '2.0':
+ tf = tf.compat.v1
+
+
+class FaceLandmark:
+
+ def __init__(self, dir):
+ self.model_path = dir + '/keypoints.pb'
+ self.min_face = 60
+ self.keypoint_num = cfg.KEYPOINTS.p_num * 2
+
+ self._graph = tf.Graph()
+
+ with self._graph.as_default():
+
+ self._graph, self._sess = self.init_model(self.model_path)
+ self.img_input = tf.get_default_graph().get_tensor_by_name(
+ 'tower_0/images:0')
+ self.embeddings = tf.get_default_graph().get_tensor_by_name(
+ 'tower_0/prediction:0')
+ self.training = tf.get_default_graph().get_tensor_by_name(
+ 'training_flag:0')
+
+ self.landmark = self.embeddings[:, :self.keypoint_num]
+ self.headpose = self.embeddings[:, -7:-4] * 90.
+ self.state = tf.nn.sigmoid(self.embeddings[:, -4:])
+
+ def __call__(self, img, bboxes):
+ landmark_result = []
+ state_result = []
+ for i, bbox in enumerate(bboxes):
+ landmark, state = self._one_shot_run(img, bbox, i)
+ if landmark is not None:
+ landmark_result.append(landmark)
+ state_result.append(state)
+ return np.array(landmark_result), np.array(state_result)
+
+ def simple_run(self, cropped_img):
+ with self._graph.as_default():
+
+ cropped_img = np.expand_dims(cropped_img, axis=0)
+ landmark, p, states = self._sess.run(
+ [self.landmark, self.headpose, self.state],
+ feed_dict={
+ self.img_input: cropped_img,
+ self.training: False
+ })
+
+ return landmark, states
+
+ def _one_shot_run(self, image, bbox, i):
+
+ bbox_width = bbox[2] - bbox[0]
+ bbox_height = bbox[3] - bbox[1]
+ if (bbox_width <= self.min_face and bbox_height <= self.min_face):
+ return None, None
+ add = int(max(bbox_width, bbox_height))
+ bimg = cv2.copyMakeBorder(
+ image,
+ add,
+ add,
+ add,
+ add,
+ borderType=cv2.BORDER_CONSTANT,
+ value=cfg.DATA.pixel_means)
+ bbox += add
+
+ one_edge = (1 + 2 * cfg.KEYPOINTS.base_extend_range[0]) * bbox_width
+ center = [(bbox[0] + bbox[2]) // 2, (bbox[1] + bbox[3]) // 2]
+
+ bbox[0] = center[0] - one_edge // 2
+ bbox[1] = center[1] - one_edge // 2
+ bbox[2] = center[0] + one_edge // 2
+ bbox[3] = center[1] + one_edge // 2
+
+ bbox = bbox.astype(np.int)
+ crop_image = bimg[bbox[1]:bbox[3], bbox[0]:bbox[2], :]
+ h, w, _ = crop_image.shape
+ crop_image = cv2.resize(
+ crop_image,
+ (cfg.KEYPOINTS.input_shape[1], cfg.KEYPOINTS.input_shape[0]))
+ crop_image = crop_image.astype(np.float32)
+
+ keypoints, state = self.simple_run(crop_image)
+
+ res = keypoints[0][:self.keypoint_num].reshape((-1, 2))
+ res[:, 0] = res[:, 0] * w / cfg.KEYPOINTS.input_shape[1]
+ res[:, 1] = res[:, 1] * h / cfg.KEYPOINTS.input_shape[0]
+
+ landmark = []
+ for _index in range(res.shape[0]):
+ x_y = res[_index]
+ landmark.append([
+ int(x_y[0] * cfg.KEYPOINTS.input_shape[0] + bbox[0] - add),
+ int(x_y[1] * cfg.KEYPOINTS.input_shape[1] + bbox[1] - add)
+ ])
+
+ landmark = np.array(landmark, np.float32)
+
+ return landmark, state
+
+ def init_model(self, *args):
+
+ if len(args) == 1:
+ use_pb = True
+ pb_path = args[0]
+ else:
+ use_pb = False
+ meta_path = args[0]
+ restore_model_path = args[1]
+
+ def ini_ckpt():
+ graph = tf.Graph()
+ graph.as_default()
+ configProto = tf.ConfigProto()
+ configProto.gpu_options.allow_growth = True
+ sess = tf.Session(config=configProto)
+ # load_model(model_path, sess)
+ saver = tf.train.import_meta_graph(meta_path)
+ saver.restore(sess, restore_model_path)
+
+ print('Model restred!')
+ return (graph, sess)
+
+ def init_pb(model_path):
+ config = tf.ConfigProto()
+ config.gpu_options.per_process_gpu_memory_fraction = 0.2
+ compute_graph = tf.Graph()
+ compute_graph.as_default()
+ sess = tf.Session(config=config)
+ with tf.gfile.GFile(model_path, 'rb') as fid:
+ graph_def = tf.GraphDef()
+ graph_def.ParseFromString(fid.read())
+ tf.import_graph_def(graph_def, name='')
+
+ # saver = tf.train.Saver(tf.global_variables())
+ # saver.save(sess, save_path='./tmp.ckpt')
+ return (compute_graph, sess)
+
+ if use_pb:
+ model = init_pb(pb_path)
+ else:
+ model = ini_ckpt()
+
+ graph = model[0]
+ sess = model[1]
+
+ return graph, sess
diff --git a/source/facelib/facer.py b/source/facelib/facer.py
new file mode 100644
index 0000000..62388ab
--- /dev/null
+++ b/source/facelib/facer.py
@@ -0,0 +1,150 @@
+import time
+
+import cv2
+import numpy as np
+
+from .config import config as cfg
+from .face_detector import FaceDetector
+from .face_landmark import FaceLandmark
+from .LK.lk import GroupTrack
+
+
+class FaceAna():
+ '''
+ by default the top3 facea sorted by area will be calculated for time reason
+ '''
+
+ def __init__(self, model_dir):
+ self.face_detector = FaceDetector(model_dir)
+ self.face_landmark = FaceLandmark(model_dir)
+ self.trace = GroupTrack()
+
+ self.track_box = None
+ self.previous_image = None
+ self.previous_box = None
+
+ self.diff_thres = 5
+ self.top_k = cfg.DETECT.topk
+ self.iou_thres = cfg.TRACE.iou_thres
+ self.alpha = cfg.TRACE.smooth_box
+
+ def run(self, image):
+
+ boxes = self.face_detector(image)
+
+ if boxes.shape[0] > self.top_k:
+ boxes = self.sort(boxes)
+
+ boxes_return = np.array(boxes)
+ landmarks, states = self.face_landmark(image, boxes)
+
+ if 1:
+ track = []
+ for i in range(landmarks.shape[0]):
+ track.append([
+ np.min(landmarks[i][:, 0]),
+ np.min(landmarks[i][:, 1]),
+ np.max(landmarks[i][:, 0]),
+ np.max(landmarks[i][:, 1])
+ ])
+ tmp_box = np.array(track)
+
+ self.track_box = self.judge_boxs(boxes_return, tmp_box)
+
+ self.track_box, landmarks = self.sort_res(self.track_box, landmarks)
+ return self.track_box, landmarks, states
+
+ def sort_res(self, bboxes, points):
+ area = []
+ for bbox in bboxes:
+ bbox_width = bbox[2] - bbox[0]
+ bbox_height = bbox[3] - bbox[1]
+ area.append(bbox_height * bbox_width)
+
+ area = np.array(area)
+ picked = area.argsort()[::-1]
+ sorted_bboxes = [bboxes[x] for x in picked]
+ sorted_points = [points[x] for x in picked]
+ return np.array(sorted_bboxes), np.array(sorted_points)
+
+ def diff_frames(self, previous_frame, image):
+ if previous_frame is None:
+ return True
+ else:
+ _diff = cv2.absdiff(previous_frame, image)
+ diff = np.sum(
+ _diff) / previous_frame.shape[0] / previous_frame.shape[1] / 3.
+ return diff > self.diff_thres
+
+ def sort(self, bboxes):
+ if self.top_k > 100:
+ return bboxes
+ area = []
+ for bbox in bboxes:
+
+ bbox_width = bbox[2] - bbox[0]
+ bbox_height = bbox[3] - bbox[1]
+ area.append(bbox_height * bbox_width)
+
+ area = np.array(area)
+
+ picked = area.argsort()[-self.top_k:][::-1]
+ sorted_bboxes = [bboxes[x] for x in picked]
+ return np.array(sorted_bboxes)
+
+ def judge_boxs(self, previuous_bboxs, now_bboxs):
+
+ def iou(rec1, rec2):
+
+ # computing area of each rectangles
+ S_rec1 = (rec1[2] - rec1[0]) * (rec1[3] - rec1[1])
+ S_rec2 = (rec2[2] - rec2[0]) * (rec2[3] - rec2[1])
+
+ # computing the sum_area
+ sum_area = S_rec1 + S_rec2
+
+ # find the each edge of intersect rectangle
+ x1 = max(rec1[0], rec2[0])
+ y1 = max(rec1[1], rec2[1])
+ x2 = min(rec1[2], rec2[2])
+ y2 = min(rec1[3], rec2[3])
+
+ # judge if there is an intersect
+ intersect = max(0, x2 - x1) * max(0, y2 - y1)
+
+ return intersect / (sum_area - intersect)
+
+ if previuous_bboxs is None:
+ return now_bboxs
+
+ result = []
+
+ for i in range(now_bboxs.shape[0]):
+ contain = False
+ for j in range(previuous_bboxs.shape[0]):
+ if iou(now_bboxs[i], previuous_bboxs[j]) > self.iou_thres:
+ result.append(
+ self.smooth(now_bboxs[i], previuous_bboxs[j]))
+ contain = True
+ break
+ if not contain:
+ result.append(now_bboxs[i])
+
+ return np.array(result)
+
+ def smooth(self, now_box, previous_box):
+
+ return self.do_moving_average(now_box[:4], previous_box[:4])
+
+ def do_moving_average(self, p_now, p_previous):
+ p = self.alpha * p_now + (1 - self.alpha) * p_previous
+ return p
+
+ def reset(self):
+ '''
+ reset the previous info used foe tracking,
+ :return:
+ '''
+ self.track_box = None
+ self.previous_image = None
+ self.previous_box = None
diff --git a/source/mtcnn_pytorch/LICENSE b/source/mtcnn_pytorch/LICENSE
new file mode 100644
index 0000000..9210f5b
--- /dev/null
+++ b/source/mtcnn_pytorch/LICENSE
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2017 Dan Antoshchenko
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
diff --git a/source/mtcnn_pytorch/README.md b/source/mtcnn_pytorch/README.md
new file mode 100644
index 0000000..b748cf5
--- /dev/null
+++ b/source/mtcnn_pytorch/README.md
@@ -0,0 +1,26 @@
+# MTCNN
+
+`pytorch` implementation of **inference stage** of face detection algorithm described in
+[Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks](https://arxiv.org/abs/1604.02878).
+
+## Example
+![example of a face detection](images/example.png)
+
+## How to use it
+Just download the repository and then do this
+```python
+from src import detect_faces
+from PIL import Image
+
+image = Image.open('image.jpg')
+bounding_boxes, landmarks = detect_faces(image)
+```
+For examples see `test_on_images.ipynb`.
+
+## Requirements
+* pytorch 0.2
+* Pillow, numpy
+
+## Credit
+This implementation is heavily inspired by:
+* [pangyupo/mxnet_mtcnn_face_detection](https://github.com/pangyupo/mxnet_mtcnn_face_detection)
diff --git a/source/mtcnn_pytorch/__init__.py b/source/mtcnn_pytorch/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/source/mtcnn_pytorch/src/__init__.py b/source/mtcnn_pytorch/src/__init__.py
new file mode 100644
index 0000000..e69de29
diff --git a/source/mtcnn_pytorch/src/align_trans.py b/source/mtcnn_pytorch/src/align_trans.py
new file mode 100644
index 0000000..baa3ba7
--- /dev/null
+++ b/source/mtcnn_pytorch/src/align_trans.py
@@ -0,0 +1,187 @@
+"""
+Created on Mon Apr 24 15:43:29 2017
+@author: zhaoy
+"""
+import cv2
+import numpy as np
+
+from .matlab_cp2tform import get_similarity_transform_for_cv2
+
+# reference facial points, a list of coordinates (x,y)
+dx = 1
+dy = 1
+REFERENCE_FACIAL_POINTS = [
+ [30.29459953 + dx, 51.69630051 + dy], # left eye
+ [65.53179932 + dx, 51.50139999 + dy], # right eye
+ [48.02519989 + dx, 71.73660278 + dy], # nose
+ [33.54930115 + dx, 92.3655014 + dy], # left mouth
+ [62.72990036 + dx, 92.20410156 + dy] # right mouth
+]
+
+DEFAULT_CROP_SIZE = (96, 112)
+
+global FACIAL_POINTS
+
+
+class FaceWarpException(Exception):
+
+ def __str__(self):
+ return 'In File {}:{}'.format(__file__, super.__str__(self))
+
+
+def get_reference_facial_points(output_size=None,
+ inner_padding_factor=0.0,
+ outer_padding=(0, 0),
+ default_square=False):
+
+ tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
+ tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
+
+ # 0) make the inner region a square
+ if default_square:
+ size_diff = max(tmp_crop_size) - tmp_crop_size
+ tmp_5pts += size_diff / 2
+ tmp_crop_size += size_diff
+
+ h_crop = tmp_crop_size[0]
+ w_crop = tmp_crop_size[1]
+ if (output_size):
+ if (output_size[0] == h_crop and output_size[1] == w_crop):
+ return tmp_5pts
+
+ if (inner_padding_factor == 0 and outer_padding == (0, 0)):
+ if output_size is None:
+ return tmp_5pts
+ else:
+ raise FaceWarpException(
+ 'No paddings to do, output_size must be None or {}'.format(
+ tmp_crop_size))
+
+ # check output size
+ if not (0 <= inner_padding_factor <= 1.0):
+ raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
+
+ factor = inner_padding_factor > 0 or outer_padding[0] > 0
+ factor = factor or outer_padding[1] > 0
+ if (factor and output_size is None):
+ output_size = tmp_crop_size * \
+ (1 + inner_padding_factor * 2).astype(np.int32)
+ output_size += np.array(outer_padding)
+
+ cond1 = outer_padding[0] < output_size[0]
+ cond2 = outer_padding[1] < output_size[1]
+ if not (cond1 and cond2):
+ raise FaceWarpException('Not (outer_padding[0] < output_size[0]'
+ 'and outer_padding[1] < output_size[1])')
+
+ # 1) pad the inner region according inner_padding_factor
+ if inner_padding_factor > 0:
+ size_diff = tmp_crop_size * inner_padding_factor * 2
+ tmp_5pts += size_diff / 2
+ tmp_crop_size += np.round(size_diff).astype(np.int32)
+
+ # 2) resize the padded inner region
+ size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
+
+ if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[
+ 1] * tmp_crop_size[0]:
+ raise FaceWarpException(
+ 'Must have (output_size - outer_padding)'
+ '= some_scale * (crop_size * (1.0 + inner_padding_factor)')
+
+ scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
+ tmp_5pts = tmp_5pts * scale_factor
+
+ # 3) add outer_padding to make output_size
+ reference_5point = tmp_5pts + np.array(outer_padding)
+
+ return reference_5point
+
+
+def get_affine_transform_matrix(src_pts, dst_pts):
+
+ tfm = np.float32([[1, 0, 0], [0, 1, 0]])
+ n_pts = src_pts.shape[0]
+ ones = np.ones((n_pts, 1), src_pts.dtype)
+ src_pts_ = np.hstack([src_pts, ones])
+ dst_pts_ = np.hstack([dst_pts, ones])
+
+ A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
+
+ if rank == 3:
+ tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]],
+ [A[0, 1], A[1, 1], A[2, 1]]])
+ elif rank == 2:
+ tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]])
+
+ return tfm
+
+
+def warp_and_crop_face(src_img,
+ facial_pts,
+ ratio=0.84,
+ reference_pts=None,
+ crop_size=(96, 112),
+ align_type='similarity'
+ '',
+ return_trans_inv=False):
+
+ if reference_pts is None:
+ if crop_size[0] == 96 and crop_size[1] == 112:
+ reference_pts = REFERENCE_FACIAL_POINTS
+ else:
+ default_square = False
+ inner_padding_factor = 0
+ outer_padding = (0, 0)
+ output_size = crop_size
+
+ reference_pts = get_reference_facial_points(
+ output_size, inner_padding_factor, outer_padding,
+ default_square)
+
+ ref_pts = np.float32(reference_pts)
+
+ factor = ratio
+ ref_pts = (ref_pts - 112 / 2) * factor + 112 / 2
+ ref_pts *= crop_size[0] / 112.
+
+ ref_pts_shp = ref_pts.shape
+ if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
+ raise FaceWarpException(
+ 'reference_pts.shape must be (K,2) or (2,K) and K>2')
+
+ if ref_pts_shp[0] == 2:
+ ref_pts = ref_pts.T
+
+ src_pts = np.float32(facial_pts)
+ src_pts_shp = src_pts.shape
+ if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
+ raise FaceWarpException(
+ 'facial_pts.shape must be (K,2) or (2,K) and K>2')
+
+ if src_pts_shp[0] == 2:
+ src_pts = src_pts.T
+
+ if src_pts.shape != ref_pts.shape:
+ raise FaceWarpException(
+ 'facial_pts and reference_pts must have the same shape')
+
+ if align_type == 'cv2_affine':
+ tfm = cv2.getAffineTransform(src_pts, ref_pts)
+ tfm_inv = cv2.getAffineTransform(ref_pts, src_pts)
+
+ elif align_type == 'affine':
+ tfm = get_affine_transform_matrix(src_pts, ref_pts)
+ tfm_inv = get_affine_transform_matrix(ref_pts, src_pts)
+ else:
+ tfm, tfm_inv = get_similarity_transform_for_cv2(src_pts, ref_pts)
+
+ face_img = cv2.warpAffine(
+ src_img,
+ tfm, (crop_size[0], crop_size[1]),
+ borderValue=(255, 255, 255))
+
+ if return_trans_inv:
+ return face_img, tfm_inv
+ else:
+ return face_img
diff --git a/source/mtcnn_pytorch/src/matlab_cp2tform.py b/source/mtcnn_pytorch/src/matlab_cp2tform.py
new file mode 100644
index 0000000..96a5f96
--- /dev/null
+++ b/source/mtcnn_pytorch/src/matlab_cp2tform.py
@@ -0,0 +1,339 @@
+"""
+Created on Tue Jul 11 06:54:28 2017
+
+@author: zhaoyafei
+"""
+
+import numpy as np
+from numpy.linalg import inv, lstsq
+from numpy.linalg import matrix_rank as rank
+from numpy.linalg import norm
+
+
+class MatlabCp2tormException(Exception):
+
+ def __str__(self):
+ return 'In File {}:{}'.format(__file__, super.__str__(self))
+
+
+def tformfwd(trans, uv):
+ """
+ Function:
+ ----------
+ apply affine transform 'trans' to uv
+
+ Parameters:
+ ----------
+ @trans: 3x3 np.array
+ transform matrix
+ @uv: Kx2 np.array
+ each row is a pair of coordinates (x, y)
+
+ Returns:
+ ----------
+ @xy: Kx2 np.array
+ each row is a pair of transformed coordinates (x, y)
+ """
+ uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
+ xy = np.dot(uv, trans)
+ xy = xy[:, 0:-1]
+ return xy
+
+
+def tforminv(trans, uv):
+ """
+ Function:
+ ----------
+ apply the inverse of affine transform 'trans' to uv
+
+ Parameters:
+ ----------
+ @trans: 3x3 np.array
+ transform matrix
+ @uv: Kx2 np.array
+ each row is a pair of coordinates (x, y)
+
+ Returns:
+ ----------
+ @xy: Kx2 np.array
+ each row is a pair of inverse-transformed coordinates (x, y)
+ """
+ Tinv = inv(trans)
+ xy = tformfwd(Tinv, uv)
+ return xy
+
+
+def findNonreflectiveSimilarity(uv, xy, options=None):
+
+ options = {'K': 2}
+
+ K = options['K']
+ M = xy.shape[0]
+ x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
+ y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
+ # print('--->x, y:\n', x, y
+
+ tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
+ tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
+ X = np.vstack((tmp1, tmp2))
+ # print('--->X.shape: ', X.shape
+ # print('X:\n', X
+
+ u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
+ v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
+ U = np.vstack((u, v))
+ # print('--->U.shape: ', U.shape
+ # print('U:\n', U
+
+ # We know that X * r = U
+ if rank(X) >= 2 * K:
+ r, _, _, _ = lstsq(X, U)
+ r = np.squeeze(r)
+ else:
+ raise Exception('cp2tform:twoUniquePointsReq')
+
+ # print('--->r:\n', r
+
+ sc = r[0]
+ ss = r[1]
+ tx = r[2]
+ ty = r[3]
+
+ Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
+
+ # print('--->Tinv:\n', Tinv
+
+ T = inv(Tinv)
+ # print('--->T:\n', T
+
+ T[:, 2] = np.array([0, 0, 1])
+
+ return T, Tinv
+
+
+def findSimilarity(uv, xy, options=None):
+
+ options = {'K': 2}
+
+ # uv = np.array(uv)
+ # xy = np.array(xy)
+
+ # Solve for trans1
+ trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
+
+ # Solve for trans2
+
+ # manually reflect the xy data across the Y-axis
+ xyR = xy
+ xyR[:, 0] = -1 * xyR[:, 0]
+
+ trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
+
+ # manually reflect the tform to undo the reflection done on xyR
+ TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
+
+ trans2 = np.dot(trans2r, TreflectY)
+
+ # Figure out if trans1 or trans2 is better
+ xy1 = tformfwd(trans1, uv)
+ norm1 = norm(xy1 - xy)
+
+ xy2 = tformfwd(trans2, uv)
+ norm2 = norm(xy2 - xy)
+
+ if norm1 <= norm2:
+ return trans1, trans1_inv
+ else:
+ trans2_inv = inv(trans2)
+ return trans2, trans2_inv
+
+
+def get_similarity_transform(src_pts, dst_pts, reflective=True):
+ """
+ Function:
+ ----------
+ Find Similarity Transform Matrix 'trans':
+ u = src_pts[:, 0]
+ v = src_pts[:, 1]
+ x = dst_pts[:, 0]
+ y = dst_pts[:, 1]
+ [x, y, 1] = [u, v, 1] * trans
+
+ Parameters:
+ ----------
+ @src_pts: Kx2 np.array
+ source points, each row is a pair of coordinates (x, y)
+ @dst_pts: Kx2 np.array
+ destination points, each row is a pair of transformed
+ coordinates (x, y)
+ @reflective: True or False
+ if True:
+ use reflective similarity transform
+ else:
+ use non-reflective similarity transform
+
+ Returns:
+ ----------
+ @trans: 3x3 np.array
+ transform matrix from uv to xy
+ trans_inv: 3x3 np.array
+ inverse of trans, transform matrix from xy to uv
+ """
+
+ if reflective:
+ trans, trans_inv = findSimilarity(src_pts, dst_pts)
+ else:
+ trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
+
+ return trans, trans_inv
+
+
+def cvt_tform_mat_for_cv2(trans):
+ """
+ Function:
+ ----------
+ Convert Transform Matrix 'trans' into 'cv2_trans' which could be
+ directly used by cv2.warpAffine():
+ u = src_pts[:, 0]
+ v = src_pts[:, 1]
+ x = dst_pts[:, 0]
+ y = dst_pts[:, 1]
+ [x, y].T = cv_trans * [u, v, 1].T
+
+ Parameters:
+ ----------
+ @trans: 3x3 np.array
+ transform matrix from uv to xy
+
+ Returns:
+ ----------
+ @cv2_trans: 2x3 np.array
+ transform matrix from src_pts to dst_pts, could be directly used
+ for cv2.warpAffine()
+ """
+ cv2_trans = trans[:, 0:2].T
+
+ return cv2_trans
+
+
+def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
+ """
+ Function:
+ ----------
+ Find Similarity Transform Matrix 'cv2_trans' which could be
+ directly used by cv2.warpAffine():
+ u = src_pts[:, 0]
+ v = src_pts[:, 1]
+ x = dst_pts[:, 0]
+ y = dst_pts[:, 1]
+ [x, y].T = cv_trans * [u, v, 1].T
+
+ Parameters:
+ ----------
+ @src_pts: Kx2 np.array
+ source points, each row is a pair of coordinates (x, y)
+ @dst_pts: Kx2 np.array
+ destination points, each row is a pair of transformed
+ coordinates (x, y)
+ reflective: True or False
+ if True:
+ use reflective similarity transform
+ else:
+ use non-reflective similarity transform
+
+ Returns:
+ ----------
+ @cv2_trans: 2x3 np.array
+ transform matrix from src_pts to dst_pts, could be directly used
+ for cv2.warpAffine()
+ """
+ trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
+ cv2_trans = cvt_tform_mat_for_cv2(trans)
+ cv2_trans_inv = cvt_tform_mat_for_cv2(trans_inv)
+
+ return cv2_trans, cv2_trans_inv
+
+
+if __name__ == '__main__':
+ """
+ u = [0, 6, -2]
+ v = [0, 3, 5]
+ x = [-1, 0, 4]
+ y = [-1, -10, 4]
+
+ # In Matlab, run:
+ #
+ # uv = [u'; v'];
+ # xy = [x'; y'];
+ # tform_sim=cp2tform(uv,xy,'similarity');
+ #
+ # trans = tform_sim.tdata.T
+ # ans =
+ # -0.0764 -1.6190 0
+ # 1.6190 -0.0764 0
+ # -3.2156 0.0290 1.0000
+ # trans_inv = tform_sim.tdata.Tinv
+ # ans =
+ #
+ # -0.0291 0.6163 0
+ # -0.6163 -0.0291 0
+ # -0.0756 1.9826 1.0000
+ # xy_m=tformfwd(tform_sim, u,v)
+ #
+ # xy_m =
+ #
+ # -3.2156 0.0290
+ # 1.1833 -9.9143
+ # 5.0323 2.8853
+ # uv_m=tforminv(tform_sim, x,y)
+ #
+ # uv_m =
+ #
+ # 0.5698 1.3953
+ # 6.0872 2.2733
+ # -2.6570 4.3314
+ """
+ u = [0, 6, -2]
+ v = [0, 3, 5]
+ x = [-1, 0, 4]
+ y = [-1, -10, 4]
+
+ uv = np.array((u, v)).T
+ xy = np.array((x, y)).T
+
+ print('\n--->uv:')
+ print(uv)
+ print('\n--->xy:')
+ print(xy)
+
+ trans, trans_inv = get_similarity_transform(uv, xy)
+
+ print('\n--->trans matrix:')
+ print(trans)
+
+ print('\n--->trans_inv matrix:')
+ print(trans_inv)
+
+ print('\n---> apply transform to uv')
+ print('\nxy_m = uv_augmented * trans')
+ uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
+ xy_m = np.dot(uv_aug, trans)
+ print(xy_m)
+
+ print('\nxy_m = tformfwd(trans, uv)')
+ xy_m = tformfwd(trans, uv)
+ print(xy_m)
+
+ print('\n---> apply inverse transform to xy')
+ print('\nuv_m = xy_augmented * trans_inv')
+ xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
+ uv_m = np.dot(xy_aug, trans_inv)
+ print(uv_m)
+
+ print('\nuv_m = tformfwd(trans_inv, xy)')
+ uv_m = tformfwd(trans_inv, xy)
+ print(uv_m)
+
+ uv_m = tforminv(trans, xy)
+ print('\nuv_m = tforminv(trans, xy)')
+ print(uv_m)
diff --git a/source/utils.py b/source/utils.py
new file mode 100644
index 0000000..45c31a3
--- /dev/null
+++ b/source/utils.py
@@ -0,0 +1,107 @@
+import os
+
+import cv2
+import numpy as np
+
+
+def resize_size(image, size=720):
+ h, w, c = np.shape(image)
+ if min(h, w) > size:
+ if h > w:
+ h, w = int(size * h / w), size
+ else:
+ h, w = size, int(size * w / h)
+ image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA)
+ return image
+
+
+def padTo16x(image):
+ h, w, c = np.shape(image)
+ if h % 16 == 0 and w % 16 == 0:
+ return image, h, w
+ nh, nw = (h // 16 + 1) * 16, (w // 16 + 1) * 16
+ img_new = np.ones((nh, nw, 3), np.uint8) * 255
+ img_new[:h, :w, :] = image
+
+ return img_new, h, w
+
+
+def get_f5p(landmarks, np_img):
+ eye_left = find_pupil(landmarks[36:41], np_img)
+ eye_right = find_pupil(landmarks[42:47], np_img)
+ if eye_left is None or eye_right is None:
+ print('cannot find 5 points with find_puil, used mean instead.!')
+ eye_left = landmarks[36:41].mean(axis=0)
+ eye_right = landmarks[42:47].mean(axis=0)
+ nose = landmarks[30]
+ mouth_left = landmarks[48]
+ mouth_right = landmarks[54]
+ f5p = [[eye_left[0], eye_left[1]], [eye_right[0], eye_right[1]],
+ [nose[0], nose[1]], [mouth_left[0], mouth_left[1]],
+ [mouth_right[0], mouth_right[1]]]
+ return f5p
+
+
+def find_pupil(landmarks, np_img):
+ h, w, _ = np_img.shape
+ xmax = int(landmarks[:, 0].max())
+ xmin = int(landmarks[:, 0].min())
+ ymax = int(landmarks[:, 1].max())
+ ymin = int(landmarks[:, 1].min())
+
+ if ymin >= ymax or xmin >= xmax or ymin < 0 or xmin < 0 or ymax > h or xmax > w:
+ return None
+ eye_img_bgr = np_img[ymin:ymax, xmin:xmax, :]
+ eye_img = cv2.cvtColor(eye_img_bgr, cv2.COLOR_BGR2GRAY)
+ eye_img = cv2.equalizeHist(eye_img)
+ n_marks = landmarks - np.array([xmin, ymin]).reshape([1, 2])
+ eye_mask = cv2.fillConvexPoly(
+ np.zeros_like(eye_img), n_marks.astype(np.int32), 1)
+ ret, thresh = cv2.threshold(eye_img, 100, 255,
+ cv2.THRESH_BINARY | cv2.THRESH_OTSU)
+ thresh = (1 - thresh / 255.) * eye_mask
+ cnt = 0
+ xm = []
+ ym = []
+ for i in range(thresh.shape[0]):
+ for j in range(thresh.shape[1]):
+ if thresh[i, j] > 0.5:
+ xm.append(j)
+ ym.append(i)
+ cnt += 1
+ if cnt != 0:
+ xm.sort()
+ ym.sort()
+ xm = xm[cnt // 2]
+ ym = ym[cnt // 2]
+ else:
+ xm = thresh.shape[1] / 2
+ ym = thresh.shape[0] / 2
+
+ return xm + xmin, ym + ymin
+
+
+def all_file(file_dir):
+ L = []
+ for root, dirs, files in os.walk(file_dir):
+ for file in files:
+ extend = os.path.splitext(file)[1]
+ if extend == '.png' or extend == '.jpg' or extend == '.jpeg':
+ L.append(os.path.join(root, file))
+ return L
+
+def initialize_mask(box_width):
+ h, w = [box_width, box_width]
+ mask = np.zeros((h, w), np.uint8)
+
+ center = (int(w / 2), int(h / 2))
+ axes = (int(w * 0.4), int(h * 0.49))
+ mask = cv2.ellipse(img=mask, center=center, axes=axes, angle=0, startAngle=0, endAngle=360, color=(1),
+ thickness=-1)
+ mask = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
+
+ maxn = max(w, h) * 0.15
+ mask[(mask < 255) & (mask > 0)] = mask[(mask < 255) & (mask > 0)] / maxn
+ mask = np.clip(mask, 0, 1)
+
+ return mask.astype(float)