mirror of https://github.com/THUDM/CodeGeeX.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
257 lines
7.6 KiB
Python
257 lines
7.6 KiB
Python
# coding=utf-8
|
|
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Megatron global variables."""
|
|
|
|
import os
|
|
import sys
|
|
import time
|
|
import torch
|
|
|
|
from codegeex.megatron.tokenizer import build_tokenizer
|
|
from codegeex.megatron.arguments import parse_args
|
|
|
|
_GLOBAL_ARGS = None
|
|
_GLOBAL_NUM_MICROBATCHES_CALCULATOR = None
|
|
_GLOBAL_TOKENIZER = None
|
|
_GLOBAL_TENSORBOARD_WRITER = None
|
|
_GLOBAL_ADLR_AUTORESUME = None
|
|
_GLOBAL_TIMERS = None
|
|
|
|
|
|
def get_args():
|
|
"""Return arguments."""
|
|
_ensure_var_is_initialized(_GLOBAL_ARGS, "args")
|
|
return _GLOBAL_ARGS
|
|
|
|
|
|
def get_num_microbatches():
|
|
return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get()
|
|
|
|
|
|
def get_current_global_batch_size():
|
|
return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get_current_global_batch_size()
|
|
|
|
|
|
def update_num_microbatches(consumed_samples, consistency_check=True):
|
|
_GLOBAL_NUM_MICROBATCHES_CALCULATOR.update(consumed_samples, consistency_check)
|
|
|
|
|
|
def get_tokenizer():
|
|
"""Return tokenizer."""
|
|
_ensure_var_is_initialized(_GLOBAL_TOKENIZER, "tokenizer")
|
|
return _GLOBAL_TOKENIZER
|
|
|
|
|
|
def get_tensorboard_writer():
|
|
"""Return tensorboard writer. It can be None so no need
|
|
to check if it is initialized."""
|
|
return _GLOBAL_TENSORBOARD_WRITER
|
|
|
|
|
|
def get_adlr_autoresume():
|
|
"""ADLR autoresume object. It can be None so no need
|
|
to check if it is initialized."""
|
|
return _GLOBAL_ADLR_AUTORESUME
|
|
|
|
|
|
def get_timers():
|
|
"""Return timers."""
|
|
_ensure_var_is_initialized(_GLOBAL_TIMERS, "timers")
|
|
return _GLOBAL_TIMERS
|
|
|
|
|
|
def set_global_variables(
|
|
extra_args_provider=None, args_defaults={}, ignore_unknown_args=False
|
|
):
|
|
"""Set args, tokenizer, tensorboard-writer, adlr-autoresume, and timers."""
|
|
args = _parse_args(
|
|
extra_args_provider=extra_args_provider,
|
|
defaults=args_defaults,
|
|
ignore_unknown_args=ignore_unknown_args,
|
|
)
|
|
if args.vocab_file or args.tokenizer_path:
|
|
_ = _build_tokenizer(args)
|
|
_set_tensorboard_writer(args)
|
|
_set_adlr_autoresume(args)
|
|
_set_timers()
|
|
|
|
|
|
def _parse_args(extra_args_provider=None, defaults={}, ignore_unknown_args=False):
|
|
"""Parse entire arguments."""
|
|
global _GLOBAL_ARGS
|
|
_ensure_var_is_not_initialized(_GLOBAL_ARGS, "args")
|
|
_GLOBAL_ARGS = parse_args(
|
|
extra_args_provider=extra_args_provider,
|
|
defaults=defaults,
|
|
ignore_unknown_args=ignore_unknown_args,
|
|
)
|
|
return _GLOBAL_ARGS
|
|
|
|
|
|
def _build_tokenizer(args):
|
|
"""Initialize tokenizer."""
|
|
global _GLOBAL_TOKENIZER
|
|
_ensure_var_is_not_initialized(_GLOBAL_TOKENIZER, "tokenizer")
|
|
_GLOBAL_TOKENIZER = build_tokenizer(args)
|
|
return _GLOBAL_TOKENIZER
|
|
|
|
|
|
def rebuild_tokenizer(args):
|
|
global _GLOBAL_TOKENIZER
|
|
_GLOBAL_TOKENIZER = None
|
|
return _build_tokenizer(args)
|
|
|
|
|
|
def _set_tensorboard_writer(args):
|
|
"""Set tensorboard writer."""
|
|
global _GLOBAL_TENSORBOARD_WRITER
|
|
_ensure_var_is_not_initialized(_GLOBAL_TENSORBOARD_WRITER, "tensorboard writer")
|
|
|
|
if (
|
|
hasattr(args, "tensorboard_dir")
|
|
and args.tensorboard_dir
|
|
and args.rank == (args.world_size - 1)
|
|
):
|
|
try:
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
print("> setting tensorboard ...")
|
|
_GLOBAL_TENSORBOARD_WRITER = SummaryWriter(
|
|
log_dir=args.tensorboard_dir, max_queue=args.tensorboard_queue_size
|
|
)
|
|
except ModuleNotFoundError:
|
|
print(
|
|
"WARNING: TensorBoard writing requested but is not "
|
|
"available (are you using PyTorch 1.1.0 or later?), "
|
|
"no TensorBoard logs will be written.",
|
|
flush=True,
|
|
)
|
|
|
|
|
|
def _set_adlr_autoresume(args):
|
|
"""Initialize ADLR autoresume."""
|
|
global _GLOBAL_ADLR_AUTORESUME
|
|
_ensure_var_is_not_initialized(_GLOBAL_ADLR_AUTORESUME, "adlr autoresume")
|
|
|
|
if args.adlr_autoresume:
|
|
if args.rank == 0:
|
|
print("enabling autoresume ...", flush=True)
|
|
sys.path.append(os.environ.get("SUBMIT_SCRIPTS", "."))
|
|
try:
|
|
from userlib.auto_resume import AutoResume
|
|
except BaseException:
|
|
print("ADLR autoresume is not available, exiting ...")
|
|
sys.exit()
|
|
|
|
_GLOBAL_ADLR_AUTORESUME = AutoResume
|
|
|
|
|
|
def _set_timers():
|
|
"""Initialize timers."""
|
|
global _GLOBAL_TIMERS
|
|
_ensure_var_is_not_initialized(_GLOBAL_TIMERS, "timers")
|
|
_GLOBAL_TIMERS = Timers()
|
|
|
|
|
|
def _ensure_var_is_initialized(var, name):
|
|
"""Make sure the input variable is not None."""
|
|
assert var is not None, "{} is not initialized.".format(name)
|
|
|
|
|
|
def _ensure_var_is_not_initialized(var, name):
|
|
"""Make sure the input variable is not None."""
|
|
assert var is None, "{} is already initialized.".format(name)
|
|
|
|
|
|
class _Timer:
|
|
"""Timer."""
|
|
|
|
def __init__(self, name):
|
|
self.name_ = name
|
|
self.elapsed_ = 0.0
|
|
self.started_ = False
|
|
self.start_time = time.time()
|
|
|
|
def start(self):
|
|
"""Start the timer."""
|
|
assert not self.started_, "timer has already been started"
|
|
torch.cuda.synchronize()
|
|
self.start_time = time.time()
|
|
self.started_ = True
|
|
|
|
def stop(self):
|
|
"""Stop the timer."""
|
|
assert self.started_, "timer is not started"
|
|
torch.cuda.synchronize()
|
|
self.elapsed_ += time.time() - self.start_time
|
|
self.started_ = False
|
|
|
|
def reset(self):
|
|
"""Reset timer."""
|
|
self.elapsed_ = 0.0
|
|
self.started_ = False
|
|
|
|
def elapsed(self, reset=True):
|
|
"""Calculate the elapsed time."""
|
|
started_ = self.started_
|
|
# If the timing in progress, end it first.
|
|
if self.started_:
|
|
self.stop()
|
|
# Get the elapsed time.
|
|
elapsed_ = self.elapsed_
|
|
# Reset the elapsed time
|
|
if reset:
|
|
self.reset()
|
|
# If timing was in progress, set it back.
|
|
if started_:
|
|
self.start()
|
|
return elapsed_
|
|
|
|
|
|
class Timers:
|
|
"""Group of timers."""
|
|
|
|
def __init__(self):
|
|
self.timers = {}
|
|
|
|
def __call__(self, name):
|
|
if name not in self.timers:
|
|
self.timers[name] = _Timer(name)
|
|
return self.timers[name]
|
|
|
|
def write(self, names, writer, iteration, normalizer=1.0, reset=False):
|
|
"""Write timers to a tensorboard writer"""
|
|
# currently when using add_scalars,
|
|
# torch.utils.add_scalars makes each timer its own run, which
|
|
# polutes the runs list, so we just add each as a scalar
|
|
assert normalizer > 0.0
|
|
for name in names:
|
|
value = self.timers[name].elapsed(reset=reset) / normalizer
|
|
writer.add_scalar(name + "-time", value, iteration)
|
|
|
|
def log(self, names, normalizer=1.0, reset=True):
|
|
"""Log a group of timers."""
|
|
assert normalizer > 0.0
|
|
string = "time (ms)"
|
|
for name in names:
|
|
elapsed_time = self.timers[name].elapsed(reset=reset) * 1000.0 / normalizer
|
|
string += " | {}: {:.2f}".format(name, elapsed_time)
|
|
if torch.distributed.is_initialized():
|
|
if torch.distributed.get_rank() == (torch.distributed.get_world_size() - 1):
|
|
print(string, flush=True)
|
|
else:
|
|
print(string, flush=True)
|