# coding=utf-8 # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Megatron global variables.""" import os import sys import time import torch from codegeex.megatron.tokenizer import build_tokenizer from codegeex.megatron.arguments import parse_args _GLOBAL_ARGS = None _GLOBAL_NUM_MICROBATCHES_CALCULATOR = None _GLOBAL_TOKENIZER = None _GLOBAL_TENSORBOARD_WRITER = None _GLOBAL_ADLR_AUTORESUME = None _GLOBAL_TIMERS = None def get_args(): """Return arguments.""" _ensure_var_is_initialized(_GLOBAL_ARGS, "args") return _GLOBAL_ARGS def get_num_microbatches(): return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get() def get_current_global_batch_size(): return _GLOBAL_NUM_MICROBATCHES_CALCULATOR.get_current_global_batch_size() def update_num_microbatches(consumed_samples, consistency_check=True): _GLOBAL_NUM_MICROBATCHES_CALCULATOR.update(consumed_samples, consistency_check) def get_tokenizer(): """Return tokenizer.""" _ensure_var_is_initialized(_GLOBAL_TOKENIZER, "tokenizer") return _GLOBAL_TOKENIZER def get_tensorboard_writer(): """Return tensorboard writer. It can be None so no need to check if it is initialized.""" return _GLOBAL_TENSORBOARD_WRITER def get_adlr_autoresume(): """ADLR autoresume object. It can be None so no need to check if it is initialized.""" return _GLOBAL_ADLR_AUTORESUME def get_timers(): """Return timers.""" _ensure_var_is_initialized(_GLOBAL_TIMERS, "timers") return _GLOBAL_TIMERS def set_global_variables( extra_args_provider=None, args_defaults={}, ignore_unknown_args=False ): """Set args, tokenizer, tensorboard-writer, adlr-autoresume, and timers.""" args = _parse_args( extra_args_provider=extra_args_provider, defaults=args_defaults, ignore_unknown_args=ignore_unknown_args, ) if args.vocab_file or args.tokenizer_path: _ = _build_tokenizer(args) _set_tensorboard_writer(args) _set_adlr_autoresume(args) _set_timers() def _parse_args(extra_args_provider=None, defaults={}, ignore_unknown_args=False): """Parse entire arguments.""" global _GLOBAL_ARGS _ensure_var_is_not_initialized(_GLOBAL_ARGS, "args") _GLOBAL_ARGS = parse_args( extra_args_provider=extra_args_provider, defaults=defaults, ignore_unknown_args=ignore_unknown_args, ) return _GLOBAL_ARGS def _build_tokenizer(args): """Initialize tokenizer.""" global _GLOBAL_TOKENIZER _ensure_var_is_not_initialized(_GLOBAL_TOKENIZER, "tokenizer") _GLOBAL_TOKENIZER = build_tokenizer(args) return _GLOBAL_TOKENIZER def rebuild_tokenizer(args): global _GLOBAL_TOKENIZER _GLOBAL_TOKENIZER = None return _build_tokenizer(args) def _set_tensorboard_writer(args): """Set tensorboard writer.""" global _GLOBAL_TENSORBOARD_WRITER _ensure_var_is_not_initialized(_GLOBAL_TENSORBOARD_WRITER, "tensorboard writer") if ( hasattr(args, "tensorboard_dir") and args.tensorboard_dir and args.rank == (args.world_size - 1) ): try: from torch.utils.tensorboard import SummaryWriter print("> setting tensorboard ...") _GLOBAL_TENSORBOARD_WRITER = SummaryWriter( log_dir=args.tensorboard_dir, max_queue=args.tensorboard_queue_size ) except ModuleNotFoundError: print( "WARNING: TensorBoard writing requested but is not " "available (are you using PyTorch 1.1.0 or later?), " "no TensorBoard logs will be written.", flush=True, ) def _set_adlr_autoresume(args): """Initialize ADLR autoresume.""" global _GLOBAL_ADLR_AUTORESUME _ensure_var_is_not_initialized(_GLOBAL_ADLR_AUTORESUME, "adlr autoresume") if args.adlr_autoresume: if args.rank == 0: print("enabling autoresume ...", flush=True) sys.path.append(os.environ.get("SUBMIT_SCRIPTS", ".")) try: from userlib.auto_resume import AutoResume except BaseException: print("ADLR autoresume is not available, exiting ...") sys.exit() _GLOBAL_ADLR_AUTORESUME = AutoResume def _set_timers(): """Initialize timers.""" global _GLOBAL_TIMERS _ensure_var_is_not_initialized(_GLOBAL_TIMERS, "timers") _GLOBAL_TIMERS = Timers() def _ensure_var_is_initialized(var, name): """Make sure the input variable is not None.""" assert var is not None, "{} is not initialized.".format(name) def _ensure_var_is_not_initialized(var, name): """Make sure the input variable is not None.""" assert var is None, "{} is already initialized.".format(name) class _Timer: """Timer.""" def __init__(self, name): self.name_ = name self.elapsed_ = 0.0 self.started_ = False self.start_time = time.time() def start(self): """Start the timer.""" assert not self.started_, "timer has already been started" torch.cuda.synchronize() self.start_time = time.time() self.started_ = True def stop(self): """Stop the timer.""" assert self.started_, "timer is not started" torch.cuda.synchronize() self.elapsed_ += time.time() - self.start_time self.started_ = False def reset(self): """Reset timer.""" self.elapsed_ = 0.0 self.started_ = False def elapsed(self, reset=True): """Calculate the elapsed time.""" started_ = self.started_ # If the timing in progress, end it first. if self.started_: self.stop() # Get the elapsed time. elapsed_ = self.elapsed_ # Reset the elapsed time if reset: self.reset() # If timing was in progress, set it back. if started_: self.start() return elapsed_ class Timers: """Group of timers.""" def __init__(self): self.timers = {} def __call__(self, name): if name not in self.timers: self.timers[name] = _Timer(name) return self.timers[name] def write(self, names, writer, iteration, normalizer=1.0, reset=False): """Write timers to a tensorboard writer""" # currently when using add_scalars, # torch.utils.add_scalars makes each timer its own run, which # polutes the runs list, so we just add each as a scalar assert normalizer > 0.0 for name in names: value = self.timers[name].elapsed(reset=reset) / normalizer writer.add_scalar(name + "-time", value, iteration) def log(self, names, normalizer=1.0, reset=True): """Log a group of timers.""" assert normalizer > 0.0 string = "time (ms)" for name in names: elapsed_time = self.timers[name].elapsed(reset=reset) * 1000.0 / normalizer string += " | {}: {:.2f}".format(name, elapsed_time) if torch.distributed.is_initialized(): if torch.distributed.get_rank() == (torch.distributed.get_world_size() - 1): print(string, flush=True) else: print(string, flush=True)