mirror of https://github.com/THUDM/CodeGeeX.git
parent
e5c9b22e81
commit
82d2c020b0
@ -0,0 +1 @@
|
|||||||
|
from .codegeex_model import CodeGeeXModel
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,326 @@
|
|||||||
|
import copy
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
from typing import *
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import paddle.nn.functional as F
|
||||||
|
from dataclasses import dataclass
|
||||||
|
|
||||||
|
|
||||||
|
def get_ltor_masks_and_position_ids(
|
||||||
|
data,
|
||||||
|
eod_token,
|
||||||
|
reset_position_ids,
|
||||||
|
reset_attention_mask,
|
||||||
|
):
|
||||||
|
"""Build masks and position id for left to right model."""
|
||||||
|
|
||||||
|
# Extract batch size and sequence length.
|
||||||
|
micro_batch_size, seq_length = data.shape
|
||||||
|
|
||||||
|
# Attention mask (lower triangular).
|
||||||
|
if reset_attention_mask:
|
||||||
|
att_mask_batch = micro_batch_size
|
||||||
|
else:
|
||||||
|
att_mask_batch = 1
|
||||||
|
attention_mask = paddle.tril(
|
||||||
|
paddle.ones((att_mask_batch, seq_length, seq_length))
|
||||||
|
).reshape([att_mask_batch, 1, seq_length, seq_length])
|
||||||
|
|
||||||
|
# Position ids.
|
||||||
|
position_ids = paddle.arange(seq_length, dtype="int64")
|
||||||
|
position_ids = position_ids.unsqueeze(0).expand_as(data)
|
||||||
|
# We need to clone as the ids will be modifed based on batch index.
|
||||||
|
if reset_position_ids:
|
||||||
|
position_ids = position_ids.clone()
|
||||||
|
|
||||||
|
if reset_position_ids or reset_attention_mask:
|
||||||
|
# Loop through the batches:
|
||||||
|
for b in range(micro_batch_size):
|
||||||
|
|
||||||
|
# Find indecies where EOD token is.
|
||||||
|
eod_index = position_ids[b, data[b] == eod_token]
|
||||||
|
# Detach indecies from positions if going to modify positions.
|
||||||
|
if reset_position_ids:
|
||||||
|
eod_index = eod_index.clone()
|
||||||
|
|
||||||
|
# Loop through EOD indecies:
|
||||||
|
prev_index = 0
|
||||||
|
for j in range(eod_index.shape[0]):
|
||||||
|
i = eod_index[j]
|
||||||
|
# Mask attention loss.
|
||||||
|
if reset_attention_mask:
|
||||||
|
attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
|
||||||
|
# Reset positions.
|
||||||
|
if reset_position_ids:
|
||||||
|
position_ids[b, (i + 1) :] -= i + 1 - prev_index
|
||||||
|
prev_index = i + 1
|
||||||
|
|
||||||
|
# Convert attention mask to binary:
|
||||||
|
attention_mask = attention_mask < 0.5
|
||||||
|
|
||||||
|
return attention_mask, position_ids
|
||||||
|
|
||||||
|
|
||||||
|
def get_batch(
|
||||||
|
context_tokens,
|
||||||
|
micro_batch_size,
|
||||||
|
eod_token,
|
||||||
|
reset_position_ids=False,
|
||||||
|
reset_attention_mask=False,
|
||||||
|
):
|
||||||
|
"""Generate batch from context tokens."""
|
||||||
|
tokens = context_tokens.reshape([micro_batch_size, -1]).cuda()
|
||||||
|
# Get the attention mask and postition ids.
|
||||||
|
attention_mask, position_ids = get_ltor_masks_and_position_ids(
|
||||||
|
tokens,
|
||||||
|
eod_token,
|
||||||
|
reset_position_ids,
|
||||||
|
reset_attention_mask,
|
||||||
|
)
|
||||||
|
|
||||||
|
return tokens, attention_mask, position_ids
|
||||||
|
|
||||||
|
|
||||||
|
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
|
||||||
|
"""This function has been mostly taken from huggingface conversational
|
||||||
|
ai code at
|
||||||
|
https://medium.com/huggingface/how-to-build-a-state-of-the-art-
|
||||||
|
conversational-ai-with-transfer-learning-2d818ac26313"""
|
||||||
|
|
||||||
|
if top_k > 0:
|
||||||
|
# Remove all tokens with a probability less than the
|
||||||
|
# last token of the top-k
|
||||||
|
indices_to_remove = logits < paddle.topk(logits, top_k)[0][..., -1, None]
|
||||||
|
logits[indices_to_remove] = filter_value
|
||||||
|
|
||||||
|
if top_p > 0.0:
|
||||||
|
# Cconvert to 1D
|
||||||
|
sorted_logits, sorted_indices = paddle.sort(logits, descending=True, axis=-1)
|
||||||
|
cumulative_probs = paddle.cumsum(F.softmax(sorted_logits, axis=-1), axis=-1)
|
||||||
|
|
||||||
|
# Remove tokens with cumulative probability above the threshold
|
||||||
|
sorted_indices_to_remove = cumulative_probs > top_p
|
||||||
|
# Shift the indices to the right to keep also the first token
|
||||||
|
# above the threshold
|
||||||
|
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
||||||
|
sorted_indices_to_remove[..., 0] = 0
|
||||||
|
for i in range(sorted_indices.shape[0]):
|
||||||
|
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
|
||||||
|
logits[i][indices_to_remove] = filter_value
|
||||||
|
|
||||||
|
return logits
|
||||||
|
|
||||||
|
|
||||||
|
def pad_batch(batch, pad_id, seq_length):
|
||||||
|
context_lengths = []
|
||||||
|
for tokens in batch:
|
||||||
|
context_length = len(tokens)
|
||||||
|
if context_length < seq_length:
|
||||||
|
tokens.extend([pad_id] * (seq_length - context_length))
|
||||||
|
context_lengths.append(context_length)
|
||||||
|
return batch, context_lengths
|
||||||
|
|
||||||
|
|
||||||
|
def forward_step(
|
||||||
|
model,
|
||||||
|
tokens,
|
||||||
|
seq_length,
|
||||||
|
position_ids,
|
||||||
|
attention_mask,
|
||||||
|
layer_past=None,
|
||||||
|
get_key_value=None,
|
||||||
|
prompt_length=None,
|
||||||
|
context_length=None,
|
||||||
|
):
|
||||||
|
# Forward pass through the model.
|
||||||
|
output_tensor = model(
|
||||||
|
tokens,
|
||||||
|
position_ids,
|
||||||
|
attention_mask,
|
||||||
|
layer_past=layer_past,
|
||||||
|
get_key_value=get_key_value,
|
||||||
|
prompt_length=prompt_length,
|
||||||
|
context_length=context_length,
|
||||||
|
)
|
||||||
|
|
||||||
|
if get_key_value:
|
||||||
|
output_tensor, layer_past = output_tensor
|
||||||
|
|
||||||
|
if get_key_value:
|
||||||
|
return output_tensor, layer_past
|
||||||
|
|
||||||
|
return output_tensor
|
||||||
|
|
||||||
|
|
||||||
|
def get_token_stream(
|
||||||
|
model,
|
||||||
|
tokenizer,
|
||||||
|
seq_length,
|
||||||
|
out_seq_length,
|
||||||
|
context_tokens,
|
||||||
|
return_scores: bool = False,
|
||||||
|
prompt_length: int = None,
|
||||||
|
micro_batch_size: int = None,
|
||||||
|
bad_ids: List = None,
|
||||||
|
temperature: float = 1.0,
|
||||||
|
topp: float = 1.0,
|
||||||
|
topk: int = 0.0,
|
||||||
|
greedy: bool = False,
|
||||||
|
recompute: bool = False,
|
||||||
|
):
|
||||||
|
context_tokens, context_lengths = pad_batch(context_tokens, tokenizer.eos_token_id, seq_length)
|
||||||
|
|
||||||
|
context_tokens_tensor = paddle.to_tensor(context_tokens, dtype="int64")
|
||||||
|
context_length_tensor = paddle.to_tensor(context_lengths, dtype="int64")
|
||||||
|
context_length = context_length_tensor.min().item()
|
||||||
|
tokens, attention_mask, position_ids = get_batch(
|
||||||
|
context_tokens_tensor,
|
||||||
|
micro_batch_size,
|
||||||
|
tokenizer.eos_token_id,
|
||||||
|
)
|
||||||
|
|
||||||
|
batch_token_iterator = sample_sequence_batch(
|
||||||
|
model,
|
||||||
|
tokenizer,
|
||||||
|
context_tokens_tensor,
|
||||||
|
context_length_tensor,
|
||||||
|
attention_mask,
|
||||||
|
position_ids,
|
||||||
|
seq_length=seq_length,
|
||||||
|
out_seq_length=out_seq_length,
|
||||||
|
return_scores=return_scores,
|
||||||
|
prompt_length=prompt_length,
|
||||||
|
bad_ids=bad_ids,
|
||||||
|
temperature=temperature,
|
||||||
|
topp=topp,
|
||||||
|
topk=topk,
|
||||||
|
greedy=greedy,
|
||||||
|
recompute=recompute,
|
||||||
|
)
|
||||||
|
|
||||||
|
for tokens, lengths in batch_token_iterator:
|
||||||
|
context_length += 1
|
||||||
|
if tokens is not None:
|
||||||
|
yield tokens[:, :context_length], lengths
|
||||||
|
else:
|
||||||
|
yield None, None
|
||||||
|
|
||||||
|
|
||||||
|
def switch(val1, val2, boolean):
|
||||||
|
boolean = boolean.cast(val1.dtype)
|
||||||
|
return (1 - boolean) * val1 + boolean * val2
|
||||||
|
|
||||||
|
|
||||||
|
def sample_sequence_batch(
|
||||||
|
model,
|
||||||
|
tokenizer,
|
||||||
|
context_tokens,
|
||||||
|
context_lengths,
|
||||||
|
attention_mask,
|
||||||
|
position_ids,
|
||||||
|
seq_length,
|
||||||
|
out_seq_length,
|
||||||
|
maxlen=None,
|
||||||
|
return_scores: bool = False,
|
||||||
|
prompt_length: int = None,
|
||||||
|
bad_ids: List = None,
|
||||||
|
temperature: float = 1.0,
|
||||||
|
topp: float = 1.0,
|
||||||
|
topk: int = 0.0,
|
||||||
|
recompute: bool = False,
|
||||||
|
greedy: bool = False,
|
||||||
|
):
|
||||||
|
model.eval()
|
||||||
|
with paddle.no_grad():
|
||||||
|
context_length = context_lengths.min().item()
|
||||||
|
eos_id = tokenizer.eos_token_id
|
||||||
|
|
||||||
|
counter = 0
|
||||||
|
org_context_length = context_length
|
||||||
|
|
||||||
|
layer_past = None
|
||||||
|
batch_size = context_tokens.shape[0]
|
||||||
|
is_done = paddle.zeros([batch_size]).cast("uint8").cuda()
|
||||||
|
tokens = context_tokens
|
||||||
|
if maxlen is None:
|
||||||
|
maxlen = seq_length - 1
|
||||||
|
if maxlen > (org_context_length + out_seq_length):
|
||||||
|
maxlen = org_context_length + out_seq_length
|
||||||
|
|
||||||
|
lengths = paddle.ones([batch_size]).cast("int64").cuda() * maxlen
|
||||||
|
if return_scores:
|
||||||
|
scores = paddle.zeros([batch_size]).cast("float32").cuda()
|
||||||
|
|
||||||
|
while context_length <= (maxlen):
|
||||||
|
|
||||||
|
if recompute:
|
||||||
|
logits = model(tokens,
|
||||||
|
position_ids,
|
||||||
|
attention_mask,
|
||||||
|
prompt_length=prompt_length,
|
||||||
|
context_length=context_length,
|
||||||
|
)
|
||||||
|
logits = logits[:, context_length - 1, :]
|
||||||
|
else:
|
||||||
|
if counter == 0:
|
||||||
|
tokens2use = tokens[:, :context_length]
|
||||||
|
positions2use = position_ids[:, :context_length]
|
||||||
|
else:
|
||||||
|
tokens2use = tokens[:, context_length - 1].reshape([
|
||||||
|
batch_size, -1])
|
||||||
|
positions2use = position_ids[:, context_length - 1].reshape([
|
||||||
|
batch_size, -1])
|
||||||
|
logits, layer_past = model(tokens2use,
|
||||||
|
positions2use,
|
||||||
|
attention_mask,
|
||||||
|
layer_past=layer_past,
|
||||||
|
get_key_value=True,
|
||||||
|
prompt_length=prompt_length,
|
||||||
|
context_length=context_length,
|
||||||
|
)
|
||||||
|
logits = logits[:, -1].reshape([batch_size, -1])
|
||||||
|
|
||||||
|
if bad_ids is not None:
|
||||||
|
for bad_id in bad_ids:
|
||||||
|
logits[:, bad_id] = -10000
|
||||||
|
if greedy:
|
||||||
|
prev = paddle.argmax(logits, axis=-1).reshape([-1])
|
||||||
|
else:
|
||||||
|
logits = logits.cast("float32")
|
||||||
|
if return_scores:
|
||||||
|
orig_log_probs = paddle.log_softmax(logits, axis=-1)
|
||||||
|
logits /= temperature
|
||||||
|
logits = top_k_logits(logits, top_k=topk, top_p=topp)
|
||||||
|
log_probs = F.softmax(logits, axis=-1)
|
||||||
|
prev = paddle.multinomial(log_probs, num_samples=1).reshape([-1])
|
||||||
|
|
||||||
|
started = context_lengths <= context_length
|
||||||
|
|
||||||
|
new_tokens = switch(tokens[:, context_length].reshape([-1]), prev, started)
|
||||||
|
|
||||||
|
if not greedy and return_scores:
|
||||||
|
indices = prev.reshape([-1, 1])
|
||||||
|
new_scores = orig_log_probs.gather(1, indices).reshape([-1])
|
||||||
|
new_scores = new_scores * started
|
||||||
|
new_scores = new_scores * is_done.cast("bool").logical_not()
|
||||||
|
scores += new_scores
|
||||||
|
|
||||||
|
tokens[:, context_length] = new_tokens
|
||||||
|
done_token = (prev == eos_id).cast("uint8") & started.cast("uint8")
|
||||||
|
just_finished = (done_token & ~is_done).cast("bool")
|
||||||
|
lengths[just_finished.reshape([-1])] = context_length
|
||||||
|
is_done = is_done | done_token
|
||||||
|
done = paddle.all(is_done.cast("bool"))
|
||||||
|
|
||||||
|
if return_scores:
|
||||||
|
yield tokens, (lengths, scores)
|
||||||
|
else:
|
||||||
|
yield tokens, lengths
|
||||||
|
|
||||||
|
context_length += 1
|
||||||
|
counter += 1
|
||||||
|
if done:
|
||||||
|
break
|
@ -0,0 +1,16 @@
|
|||||||
|
# CodeGeeX-13B paddle configuration
|
||||||
|
|
||||||
|
CHECKPOINT_PATH="<path where you put the checkpoint (e.g., XXX/codegeex_13b.pdparams)>"
|
||||||
|
|
||||||
|
MODEL_ARGS="--num-layers 39 \
|
||||||
|
--hidden-size 5120 \
|
||||||
|
--num-attention-heads 40 \
|
||||||
|
--max-position-embeddings 2048 \
|
||||||
|
--attention-softmax-in-fp32 \
|
||||||
|
--load "$CHECKPOINT_PATH" \
|
||||||
|
--layernorm-epsilon 1e-5 \
|
||||||
|
--fp16 \
|
||||||
|
--ws-encoding-start-id 10 \
|
||||||
|
--ws-encoding-length 10 \
|
||||||
|
--make-vocab-size-divisible-by 52224 \
|
||||||
|
--seq-length 2048"
|
@ -0,0 +1,39 @@
|
|||||||
|
# This script is used to test the inference of CodeGeeX.
|
||||||
|
|
||||||
|
GPU=$1
|
||||||
|
PROMPT_FILE=$2
|
||||||
|
|
||||||
|
SCRIPT_PATH=$(realpath "$0")
|
||||||
|
SCRIPT_DIR=$(dirname "$SCRIPT_PATH")
|
||||||
|
MAIN_DIR=$(dirname "$SCRIPT_DIR")
|
||||||
|
TOKENIZER_PATH="$MAIN_DIR/codegeex/tokenizer/"
|
||||||
|
|
||||||
|
# import model configuration
|
||||||
|
source "$MAIN_DIR/configs/codegeex_13b_paddle.sh"
|
||||||
|
|
||||||
|
# export CUDA settings
|
||||||
|
if [ -z "$GPU" ]; then
|
||||||
|
GPU=0
|
||||||
|
fi
|
||||||
|
|
||||||
|
export CUDA_HOME=/usr/local/cuda-11.1/
|
||||||
|
export CUDA_VISIBLE_DEVICES=$GPU
|
||||||
|
|
||||||
|
if [ -z "$PROMPT_FILE" ]; then
|
||||||
|
PROMPT_FILE=$MAIN_DIR/tests/test_prompt.txt
|
||||||
|
fi
|
||||||
|
|
||||||
|
# remove --greedy if using sampling
|
||||||
|
CMD="python $MAIN_DIR/tests/test_inference_paddle.py \
|
||||||
|
--prompt-file $PROMPT_FILE \
|
||||||
|
--tokenizer-path $TOKENIZER_PATH \
|
||||||
|
--micro-batch-size 1 \
|
||||||
|
--out-seq-length 1024 \
|
||||||
|
--temperature 0.8 \
|
||||||
|
--top-p 0.95 \
|
||||||
|
--top-k 0 \
|
||||||
|
--greedy \
|
||||||
|
$MODEL_ARGS"
|
||||||
|
|
||||||
|
echo "$CMD"
|
||||||
|
eval "$CMD"
|
@ -0,0 +1,213 @@
|
|||||||
|
|
||||||
|
import os
|
||||||
|
import copy
|
||||||
|
import time
|
||||||
|
import paddle
|
||||||
|
import random
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from codegeex.paddle.inference import get_token_stream
|
||||||
|
from codegeex.paddle import CodeGeeXModel
|
||||||
|
from codegeex.tokenizer import CodeGeeXTokenizer
|
||||||
|
|
||||||
|
|
||||||
|
def model_provider(args):
|
||||||
|
"""Build the model."""
|
||||||
|
|
||||||
|
old_dtype = paddle.get_default_dtype()
|
||||||
|
paddle.set_default_dtype("float16")
|
||||||
|
model = CodeGeeXModel(
|
||||||
|
args.hidden_size,
|
||||||
|
args.num_layers,
|
||||||
|
args.num_attention_heads,
|
||||||
|
args.padded_vocab_size,
|
||||||
|
args.max_position_embeddings
|
||||||
|
)
|
||||||
|
model.language_model.embedding.word_embeddings.to(dtype="float32")
|
||||||
|
model.language_model.embedding.position_embeddings.to(dtype="float32")
|
||||||
|
model.language_model.topQueryEmbedding.top_query_embeddings.to(dtype="float32")
|
||||||
|
for i in model.language_model.transformer.layers:
|
||||||
|
i.input_layernorm.to(dtype="float32")
|
||||||
|
i.post_attention_layernorm.to(dtype="float32")
|
||||||
|
model.language_model.transformer.topQueryLayer.input_layernorm.to(dtype="float32")
|
||||||
|
model.language_model.transformer.topQueryLayer.post_attention_layernorm.to(dtype="float32")
|
||||||
|
model.language_model.transformer.final_layernorm.to(dtype="float32")
|
||||||
|
paddle.set_default_dtype(old_dtype)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def add_code_generation_args(parser):
|
||||||
|
group = parser.add_argument_group(title="code generation")
|
||||||
|
group.add_argument(
|
||||||
|
"--num-layers",
|
||||||
|
type=int,
|
||||||
|
default=39,
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--hidden-size",
|
||||||
|
type=int,
|
||||||
|
default=5120,
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--num-attention-heads",
|
||||||
|
type=int,
|
||||||
|
default=40,
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--padded-vocab-size",
|
||||||
|
type=int,
|
||||||
|
default=52224,
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--max-position-embeddings",
|
||||||
|
type=int,
|
||||||
|
default=2048,
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--temperature",
|
||||||
|
type=float,
|
||||||
|
default=1.0,
|
||||||
|
help="Sampling temperature.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--greedy",
|
||||||
|
action="store_true",
|
||||||
|
default=False,
|
||||||
|
help="Use greedy sampling.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--top-p",
|
||||||
|
type=float,
|
||||||
|
default=0.0,
|
||||||
|
help="Top p sampling.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--top-k",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="Top k sampling.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--out-seq-length",
|
||||||
|
type=int,
|
||||||
|
default=2048,
|
||||||
|
help="Size of the output generated text.",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--prompt-file",
|
||||||
|
type=str,
|
||||||
|
default="./test_prompt.txt",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--tokenizer-path",
|
||||||
|
type=str,
|
||||||
|
default="./tokenizer",
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--load",
|
||||||
|
type=str,
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--state-dict-path",
|
||||||
|
type=str,
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--micro-batch-size",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
)
|
||||||
|
group.add_argument(
|
||||||
|
"--quantize",
|
||||||
|
action="store_true",
|
||||||
|
)
|
||||||
|
|
||||||
|
return parser
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser = add_code_generation_args(parser)
|
||||||
|
args, _ = parser.parse_known_args()
|
||||||
|
|
||||||
|
print("Loading tokenizer ...")
|
||||||
|
tokenizer = CodeGeeXTokenizer(
|
||||||
|
tokenizer_path=args.tokenizer_path,
|
||||||
|
mode="codegeex-13b")
|
||||||
|
|
||||||
|
print("Loading state dict ...")
|
||||||
|
state_dict = paddle.load(args.load)
|
||||||
|
state_dict = state_dict["module"]
|
||||||
|
|
||||||
|
print("Building CodeGeeX model ...")
|
||||||
|
model = model_provider(args)
|
||||||
|
model.set_state_dict(state_dict)
|
||||||
|
model.eval()
|
||||||
|
model.to(dtype="float16")
|
||||||
|
if args.quantize:
|
||||||
|
raise NotImplementedError("quantize")
|
||||||
|
|
||||||
|
with open(args.prompt_file, "r") as f:
|
||||||
|
prompt = f.readlines()
|
||||||
|
prompt = "".join(prompt)
|
||||||
|
|
||||||
|
times = {}
|
||||||
|
out_seq_lengths = [args.out_seq_length]
|
||||||
|
micro_batch_size = args.micro_batch_size
|
||||||
|
seq_length = args.max_position_embeddings
|
||||||
|
for out_seq_length in out_seq_lengths:
|
||||||
|
print(f"Generating with out_seq_len {out_seq_length}...")
|
||||||
|
|
||||||
|
times[out_seq_length] = []
|
||||||
|
for prompt in [prompt]:
|
||||||
|
t0 = time.perf_counter()
|
||||||
|
tokens = tokenizer.encode_code(prompt)
|
||||||
|
print(tokens)
|
||||||
|
print("Current prompt:")
|
||||||
|
print(prompt)
|
||||||
|
n_token_prompt = len(tokens)
|
||||||
|
print("N_token_prompt:", n_token_prompt)
|
||||||
|
token_stream = get_token_stream(
|
||||||
|
model,
|
||||||
|
tokenizer,
|
||||||
|
seq_length,
|
||||||
|
out_seq_length,
|
||||||
|
[copy.deepcopy(tokens) for _ in range(micro_batch_size)],
|
||||||
|
micro_batch_size=micro_batch_size,
|
||||||
|
topk=args.top_k,
|
||||||
|
topp=args.top_p,
|
||||||
|
temperature=args.temperature,
|
||||||
|
greedy=args.greedy,
|
||||||
|
)
|
||||||
|
is_finished = [False for _ in range(micro_batch_size)]
|
||||||
|
for i, generated in enumerate(token_stream):
|
||||||
|
generated_tokens = generated[0]
|
||||||
|
for j in range(micro_batch_size):
|
||||||
|
if is_finished[j]:
|
||||||
|
continue
|
||||||
|
if generated_tokens[j].cpu().numpy()[-1] == tokenizer.eos_token_id or len(
|
||||||
|
generated_tokens[j]) >= out_seq_length:
|
||||||
|
is_finished[j] = True
|
||||||
|
generated_tokens_ = generated_tokens[j].cpu().numpy().tolist()
|
||||||
|
generated_code = tokenizer.decode_code(generated_tokens_[n_token_prompt:])
|
||||||
|
generated_code = "".join(generated_code)
|
||||||
|
t1 = time.perf_counter()
|
||||||
|
print("Total generation time:", t1 - t0, "# Tokens:", len(generated_tokens_) - n_token_prompt)
|
||||||
|
print(f"{(t1 - t0) / (len(generated_tokens_) - n_token_prompt)}s/token")
|
||||||
|
times[out_seq_length].append(t1 - t0)
|
||||||
|
print("================================= Generated code:")
|
||||||
|
print(generated_code)
|
||||||
|
|
||||||
|
if all(is_finished):
|
||||||
|
break
|
||||||
|
|
||||||
|
print(times)
|
||||||
|
for out_seq_length in times.keys():
|
||||||
|
print(out_seq_length, np.mean(times[out_seq_length]))
|
||||||
|
|
||||||
|
print("Generation finished.")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
Reference in New Issue