import type { ElementsMap, ExcalidrawDiamondElement, ExcalidrawElement, ExcalidrawEllipseElement, ExcalidrawRectangleElement, ExcalidrawRectanguloidElement, } from "./types"; import { getDiamondPoints, getElementBounds } from "./bounds"; import type { FrameNameBounds } from "../types"; import type { GeometricShape } from "../../utils/geometry/shape"; import { getPolygonShape } from "../../utils/geometry/shape"; import { isPointInShape, isPointOnShape } from "../../utils/collision"; import { isTransparent } from "../utils"; import { hasBoundTextElement, isIframeLikeElement, isImageElement, isTextElement, } from "./typeChecks"; import { getBoundTextShape, getCornerRadius, isPathALoop } from "../shapes"; import type { GlobalPoint, Line, LocalPoint, Polygon, Radians, } from "../../math"; import { arc, arcLineInterceptPoints, curve, curveIntersectLine, isPointWithinBounds, line, lineSegment, lineSegmentIntersectionPoints, pointFrom, pointRotateRads, pointsEqual, rectangle, } from "../../math"; import { ellipse, ellipseLineIntersectionPoints } from "../../math/ellipse"; import { debugClear, debugDrawArc, debugDrawCubicBezier, debugDrawLine, debugDrawPoint, } from "../visualdebug"; export const shouldTestInside = (element: ExcalidrawElement) => { if (element.type === "arrow") { return false; } const isDraggableFromInside = !isTransparent(element.backgroundColor) || hasBoundTextElement(element) || isIframeLikeElement(element) || isTextElement(element); if (element.type === "line") { return isDraggableFromInside && isPathALoop(element.points); } if (element.type === "freedraw") { return isDraggableFromInside && isPathALoop(element.points); } return isDraggableFromInside || isImageElement(element); }; export type HitTestArgs = { x: number; y: number; element: ExcalidrawElement; shape: GeometricShape; threshold?: number; frameNameBound?: FrameNameBounds | null; }; export const hitElementItself = ({ x, y, element, shape, threshold = 10, frameNameBound = null, }: HitTestArgs) => { let hit = shouldTestInside(element) ? // Since `inShape` tests STRICTLY againt the insides of a shape // we would need `onShape` as well to include the "borders" isPointInShape(pointFrom(x, y), shape) || isPointOnShape(pointFrom(x, y), shape, threshold) : isPointOnShape(pointFrom(x, y), shape, threshold); // hit test against a frame's name if (!hit && frameNameBound) { hit = isPointInShape(pointFrom(x, y), { type: "polygon", data: getPolygonShape(frameNameBound as ExcalidrawRectangleElement) .data as Polygon, }); } return hit; }; export const hitElementBoundingBox = ( x: number, y: number, element: ExcalidrawElement, elementsMap: ElementsMap, tolerance = 0, ) => { let [x1, y1, x2, y2] = getElementBounds(element, elementsMap); x1 -= tolerance; y1 -= tolerance; x2 += tolerance; y2 += tolerance; return isPointWithinBounds( pointFrom(x1, y1), pointFrom(x, y), pointFrom(x2, y2), ); }; export const hitElementBoundingBoxOnly = < Point extends GlobalPoint | LocalPoint, >( hitArgs: HitTestArgs, elementsMap: ElementsMap, ) => { return ( !hitElementItself(hitArgs) && // bound text is considered part of the element (even if it's outside the bounding box) !hitElementBoundText( hitArgs.x, hitArgs.y, getBoundTextShape(hitArgs.element, elementsMap), ) && hitElementBoundingBox(hitArgs.x, hitArgs.y, hitArgs.element, elementsMap) ); }; export const hitElementBoundText = ( x: number, y: number, textShape: GeometricShape | null, ): boolean => { return !!textShape && isPointInShape(pointFrom(x, y), textShape); }; /** * Intersect a line with an element for binding test * * @param element * @param line * @param offset * @returns */ export const intersectElementWithLine = ( element: ExcalidrawElement, line: Line, offset: number = 0, ): GlobalPoint[] => { switch (element.type) { case "rectangle": case "image": case "text": case "iframe": case "embeddable": case "frame": case "magicframe": return intersectRectanguloidWithLine(element, line, offset); case "diamond": return intersectDiamondWithLine(element, line, offset); case "ellipse": return intersectEllipseWithLine(element, line, offset); default: throw new Error(`Unimplemented element type '${element.type}'`); } }; const intersectRectanguloidWithLine = ( element: ExcalidrawRectanguloidElement, l: Line, offset: number, ): GlobalPoint[] => { const r = rectangle( pointFrom(element.x - offset, element.y - offset), pointFrom( element.x + element.width + offset, element.y + element.height + offset, ), ); const center = pointFrom( element.x + element.width / 2, element.y + element.height / 2, ); // To emulate a rotated rectangle we rotate the point in the inverse angle // instead. It's all the same distance-wise. const rotatedA = pointRotateRads( l[0], center, -element.angle as Radians, ); const rotatedB = pointRotateRads( l[1], center, -element.angle as Radians, ); const roundness = getCornerRadius( Math.min(element.width * offset, element.height * offset), element, ); const sides = [ lineSegment( pointFrom(r[0][0] + roundness, r[0][1]), pointFrom(r[1][0] - roundness, r[0][1]), ), // TOP lineSegment( pointFrom(r[1][0], r[0][1] + roundness), pointFrom(r[1][0], r[1][1] - roundness), ), // RIGHT lineSegment( pointFrom(r[0][0] + roundness, r[1][1]), pointFrom(r[1][0] - roundness, r[1][1]), ), // BOTTOM lineSegment( pointFrom(r[0][0], r[1][1] - roundness), pointFrom(r[0][0], r[0][1] + roundness), ), // LEFT ]; const corners = roundness > 0 ? [ arc( pointFrom(r[0][0] + roundness, r[0][1] + roundness), roundness, Math.PI as Radians, ((3 / 2) * Math.PI) as Radians, ), // TOP LEFT arc( pointFrom(r[1][0] - roundness, r[0][1] + roundness), roundness, ((3 / 2) * Math.PI) as Radians, 0 as Radians, ), // TOP RIGHT arc( pointFrom(r[1][0] - roundness, r[1][1] - roundness), roundness, 0 as Radians, ((1 / 2) * Math.PI) as Radians, ), // BOTTOM RIGHT arc( pointFrom(r[0][0] + roundness, r[1][1] - roundness), roundness, ((1 / 2) * Math.PI) as Radians, Math.PI as Radians, // BOTTOM LEFT ), ] : []; // debugClear(); // sides.forEach((s) => debugDrawLine(s, { color: "red", permanent: true })); // corners.forEach((s) => debugDrawArc(s, { color: "green", permanent: true })); // debugDrawLine(line(rotatedA, rotatedB), { color: "blue", permanent: true }); const sideIntersections: GlobalPoint[] = sides .map((s) => lineSegmentIntersectionPoints(line(rotatedA, rotatedB), s), ) .filter((x) => x != null) .map((j) => pointRotateRads(j!, center, element.angle)); const cornerIntersections: GlobalPoint[] = corners .flatMap((t) => arcLineInterceptPoints(t, line(rotatedA, rotatedB))) .filter((i) => i != null) .map((j) => pointRotateRads(j, center, element.angle)); [...sideIntersections, ...cornerIntersections].forEach((p) => debugDrawPoint(p, { color: "purple", permanent: true }), ); return ( [...sideIntersections, ...cornerIntersections] // Remove duplicates .filter( (p, idx, points) => points.findIndex((d) => pointsEqual(p, d)) === idx, ) ); }; /** * * @param element * @param a * @param b * @returns */ const intersectDiamondWithLine = ( element: ExcalidrawDiamondElement, l: Line, offset: number = 0, ): GlobalPoint[] => { const [topX, topY, rightX, rightY, bottomX, bottomY, leftX, leftY] = getDiamondPoints(element); const center = pointFrom( (topX + bottomX) / 2, (topY + bottomY) / 2, ); const verticalRadius = getCornerRadius(Math.abs(topX - leftX), element); const horizontalRadius = getCornerRadius(Math.abs(rightY - topY), element); // Rotate the point to the inverse direction to simulate the rotated diamond // points. It's all the same distance-wise. const rotatedA = pointRotateRads(l[0], center, -element.angle as Radians); const rotatedB = pointRotateRads(l[1], center, -element.angle as Radians); const [top, right, bottom, left]: GlobalPoint[] = [ pointFrom(element.x + topX, element.y + topY), pointFrom(element.x + rightX, element.y + rightY), pointFrom(element.x + bottomX, element.y + bottomY), pointFrom(element.x + leftX, element.y + leftY), ]; // Create the line segment parts of the diamond // NOTE: Horizontal and vertical seems to be flipped here const topRight = lineSegment( pointFrom(top[0] + horizontalRadius, top[1] + verticalRadius), pointFrom(right[0] - horizontalRadius, right[1] - verticalRadius), ); const bottomRight = lineSegment( pointFrom(bottom[0] + horizontalRadius, bottom[1] - verticalRadius), pointFrom(right[0] - horizontalRadius, right[1] + verticalRadius), ); const bottomLeft = lineSegment( pointFrom(bottom[0] - horizontalRadius, bottom[1] - verticalRadius), pointFrom(left[0] + horizontalRadius, left[1] + verticalRadius), ); const topLeft = lineSegment( pointFrom(top[0] - horizontalRadius, top[1] + verticalRadius), pointFrom(left[0] + horizontalRadius, left[1] - verticalRadius), ); const curves = element.roundness ? [ curve(topRight[1], right, right, bottomRight[1]), // RIGHT curve(bottomRight[0], bottom, bottom, bottomLeft[0]), // BOTTOM curve(bottomLeft[1], left, left, topLeft[1]), // LEFT curve(topLeft[0], top, top, topRight[0]), // TOP ] : []; debugClear(); [topRight, bottomRight, bottomLeft, topLeft].forEach((s) => { debugDrawLine(s, { color: "red", permanent: true }); }); curves.forEach((s) => { debugDrawCubicBezier(s, { color: "green", permanent: true }); }); const sides: GlobalPoint[] = [topRight, bottomRight, bottomLeft, topLeft] .map((s) => lineSegmentIntersectionPoints(line(rotatedA, rotatedB), s), ) .filter((p): p is GlobalPoint => p != null) // Rotate back intersection points .map((p) => pointRotateRads(p!, center, element.angle)); const corners = curves .flatMap((p) => curveIntersectLine(p, line(rotatedA, rotatedB))) .filter((p) => p != null) // Rotate back intersection points .map((p) => pointRotateRads(p, center, element.angle)); return ( [...sides, ...corners] // Remove duplicates .filter( (p, idx, points) => points.findIndex((d) => pointsEqual(p, d)) === idx, ) ); }; /** * * @param element * @param a * @param b * @returns */ const intersectEllipseWithLine = ( element: ExcalidrawEllipseElement, l: Line, offset: number = 0, ): GlobalPoint[] => { const center = pointFrom( element.x + element.width / 2, element.y + element.height / 2, ); const rotatedA = pointRotateRads(l[0], center, -element.angle as Radians); const rotatedB = pointRotateRads(l[1], center, -element.angle as Radians); return ellipseLineIntersectionPoints( ellipse(center, element.width / 2 + offset, element.height / 2 + offset), line(rotatedA, rotatedB), ).map((p) => pointRotateRads(p, center, element.angle)); };