You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
231 lines
6.0 KiB
TypeScript
231 lines
6.0 KiB
TypeScript
1 month ago
|
import {
|
||
|
pointFrom,
|
||
|
pointDistance,
|
||
|
pointFromVector,
|
||
|
pointsEqual,
|
||
|
} from "./point";
|
||
|
import type {
|
||
|
Ellipse,
|
||
|
GlobalPoint,
|
||
|
Line,
|
||
|
LineSegment,
|
||
|
LocalPoint,
|
||
|
} from "./types";
|
||
|
import { PRECISION } from "./utils";
|
||
|
import {
|
||
|
vector,
|
||
|
vectorAdd,
|
||
|
vectorDot,
|
||
|
vectorFromPoint,
|
||
|
vectorScale,
|
||
|
} from "./vector";
|
||
|
|
||
|
/**
|
||
|
* Construct an Ellipse object from the parameters
|
||
|
*
|
||
|
* @param center The center of the ellipse
|
||
|
* @param angle The slanting of the ellipse in radians
|
||
|
* @param halfWidth Half of the width of a non-slanted version of the ellipse
|
||
|
* @param halfHeight Half of the height of a non-slanted version of the ellipse
|
||
|
* @returns The constructed Ellipse object
|
||
|
*/
|
||
|
export function ellipse<Point extends GlobalPoint | LocalPoint>(
|
||
|
center: Point,
|
||
|
halfWidth: number,
|
||
|
halfHeight: number,
|
||
|
): Ellipse<Point> {
|
||
|
return {
|
||
|
center,
|
||
|
halfWidth,
|
||
|
halfHeight,
|
||
|
} as Ellipse<Point>;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Determines if a point is inside or on the ellipse outline
|
||
|
*
|
||
|
* @param p The point to test
|
||
|
* @param ellipse The ellipse to compare against
|
||
|
* @returns TRUE if the point is inside or on the outline of the ellipse
|
||
|
*/
|
||
|
export const ellipseIncludesPoint = <Point extends GlobalPoint | LocalPoint>(
|
||
|
p: Point,
|
||
|
ellipse: Ellipse<Point>,
|
||
|
) => {
|
||
|
const { center, halfWidth, halfHeight } = ellipse;
|
||
|
const normalizedX = (p[0] - center[0]) / halfWidth;
|
||
|
const normalizedY = (p[1] - center[1]) / halfHeight;
|
||
|
|
||
|
return normalizedX * normalizedX + normalizedY * normalizedY <= 1;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Tests whether a point lies on the outline of the ellipse within a given
|
||
|
* tolerance
|
||
|
*
|
||
|
* @param point The point to test
|
||
|
* @param ellipse The ellipse to compare against
|
||
|
* @param threshold The distance to consider a point close enough to be "on" the outline
|
||
|
* @returns TRUE if the point is on the ellise outline
|
||
|
*/
|
||
|
export const ellipseTouchesPoint = <Point extends GlobalPoint | LocalPoint>(
|
||
|
point: Point,
|
||
|
ellipse: Ellipse<Point>,
|
||
|
threshold = PRECISION,
|
||
|
) => {
|
||
|
return ellipseDistanceFromPoint(point, ellipse) <= threshold;
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Determine the shortest euclidean distance from a point to the
|
||
|
* outline of the ellipse
|
||
|
*
|
||
|
* @param p The point to consider
|
||
|
* @param ellipse The ellipse to calculate the distance to
|
||
|
* @returns The eucledian distance
|
||
|
*/
|
||
|
export const ellipseDistanceFromPoint = <
|
||
|
Point extends GlobalPoint | LocalPoint,
|
||
|
>(
|
||
|
p: Point,
|
||
|
ellipse: Ellipse<Point>,
|
||
|
): number => {
|
||
|
const { halfWidth, halfHeight, center } = ellipse;
|
||
|
const a = halfWidth;
|
||
|
const b = halfHeight;
|
||
|
const translatedPoint = vectorAdd(
|
||
|
vectorFromPoint(p),
|
||
|
vectorScale(vectorFromPoint(center), -1),
|
||
|
);
|
||
|
|
||
|
const px = Math.abs(translatedPoint[0]);
|
||
|
const py = Math.abs(translatedPoint[1]);
|
||
|
|
||
|
let tx = 0.707;
|
||
|
let ty = 0.707;
|
||
|
|
||
|
for (let i = 0; i < 3; i++) {
|
||
|
const x = a * tx;
|
||
|
const y = b * ty;
|
||
|
|
||
|
const ex = ((a * a - b * b) * tx ** 3) / a;
|
||
|
const ey = ((b * b - a * a) * ty ** 3) / b;
|
||
|
|
||
|
const rx = x - ex;
|
||
|
const ry = y - ey;
|
||
|
|
||
|
const qx = px - ex;
|
||
|
const qy = py - ey;
|
||
|
|
||
|
const r = Math.hypot(ry, rx);
|
||
|
const q = Math.hypot(qy, qx);
|
||
|
|
||
|
tx = Math.min(1, Math.max(0, ((qx * r) / q + ex) / a));
|
||
|
ty = Math.min(1, Math.max(0, ((qy * r) / q + ey) / b));
|
||
|
const t = Math.hypot(ty, tx);
|
||
|
tx /= t;
|
||
|
ty /= t;
|
||
|
}
|
||
|
|
||
|
const [minX, minY] = [
|
||
|
a * tx * Math.sign(translatedPoint[0]),
|
||
|
b * ty * Math.sign(translatedPoint[1]),
|
||
|
];
|
||
|
|
||
|
return pointDistance(pointFromVector(translatedPoint), pointFrom(minX, minY));
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* Calculate a maximum of two intercept points for a line going throug an
|
||
|
* ellipse.
|
||
|
*/
|
||
|
export function ellipseSegmentInterceptPoints<
|
||
|
Point extends GlobalPoint | LocalPoint,
|
||
|
>(e: Readonly<Ellipse<Point>>, s: Readonly<LineSegment<Point>>): Point[] {
|
||
|
const rx = e.halfWidth;
|
||
|
const ry = e.halfHeight;
|
||
|
|
||
|
const dir = vectorFromPoint(s[1], s[0]);
|
||
|
const diff = vector(s[0][0] - e.center[0], s[0][1] - e.center[1]);
|
||
|
const mDir = vector(dir[0] / (rx * rx), dir[1] / (ry * ry));
|
||
|
const mDiff = vector(diff[0] / (rx * rx), diff[1] / (ry * ry));
|
||
|
|
||
|
const a = vectorDot(dir, mDir);
|
||
|
const b = vectorDot(dir, mDiff);
|
||
|
const c = vectorDot(diff, mDiff) - 1.0;
|
||
|
const d = b * b - a * c;
|
||
|
|
||
|
const intersections: Point[] = [];
|
||
|
|
||
|
if (d > 0) {
|
||
|
const t_a = (-b - Math.sqrt(d)) / a;
|
||
|
const t_b = (-b + Math.sqrt(d)) / a;
|
||
|
|
||
|
if (0 <= t_a && t_a <= 1) {
|
||
|
intersections.push(
|
||
|
pointFrom(
|
||
|
s[0][0] + (s[1][0] - s[0][0]) * t_a,
|
||
|
s[0][1] + (s[1][1] - s[0][1]) * t_a,
|
||
|
),
|
||
|
);
|
||
|
}
|
||
|
|
||
|
if (0 <= t_b && t_b <= 1) {
|
||
|
intersections.push(
|
||
|
pointFrom(
|
||
|
s[0][0] + (s[1][0] - s[0][0]) * t_b,
|
||
|
s[0][1] + (s[1][1] - s[0][1]) * t_b,
|
||
|
),
|
||
|
);
|
||
|
}
|
||
|
} else if (d === 0) {
|
||
|
const t = -b / a;
|
||
|
if (0 <= t && t <= 1) {
|
||
|
intersections.push(
|
||
|
pointFrom(
|
||
|
s[0][0] + (s[1][0] - s[0][0]) * t,
|
||
|
s[0][1] + (s[1][1] - s[0][1]) * t,
|
||
|
),
|
||
|
);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return intersections;
|
||
|
}
|
||
|
|
||
|
export function ellipseLineIntersectionPoints<
|
||
|
Point extends GlobalPoint | LocalPoint,
|
||
|
>(
|
||
|
{ center, halfWidth, halfHeight }: Ellipse<Point>,
|
||
|
[g, h]: Line<Point>,
|
||
|
): Point[] {
|
||
|
const [cx, cy] = center;
|
||
|
const x1 = g[0] - cx;
|
||
|
const y1 = g[1] - cy;
|
||
|
const x2 = h[0] - cx;
|
||
|
const y2 = h[1] - cy;
|
||
|
const a =
|
||
|
Math.pow(x2 - x1, 2) / Math.pow(halfWidth, 2) +
|
||
|
Math.pow(y2 - y1, 2) / Math.pow(halfHeight, 2);
|
||
|
const b =
|
||
|
2 *
|
||
|
((x1 * (x2 - x1)) / Math.pow(halfWidth, 2) +
|
||
|
(y1 * (y2 - y1)) / Math.pow(halfHeight, 2));
|
||
|
const c =
|
||
|
Math.pow(x1, 2) / Math.pow(halfWidth, 2) +
|
||
|
Math.pow(y1, 2) / Math.pow(halfHeight, 2) -
|
||
|
1;
|
||
|
const t1 = (-b + Math.sqrt(Math.pow(b, 2) - 4 * a * c)) / (2 * a);
|
||
|
const t2 = (-b - Math.sqrt(Math.pow(b, 2) - 4 * a * c)) / (2 * a);
|
||
|
const candidates = [
|
||
|
pointFrom<Point>(x1 + t1 * (x2 - x1) + cx, y1 + t1 * (y2 - y1) + cy),
|
||
|
pointFrom<Point>(x1 + t2 * (x2 - x1) + cx, y1 + t2 * (y2 - y1) + cy),
|
||
|
].filter((p) => !isNaN(p[0]) && !isNaN(p[1]));
|
||
|
|
||
|
if (candidates.length === 2 && pointsEqual(candidates[0], candidates[1])) {
|
||
|
return [candidates[0]];
|
||
|
}
|
||
|
|
||
|
return candidates;
|
||
|
}
|