try to fix#3978
**Background**
check #3978
**Research**
I referred the Android platform's solution, because I have android
background, and there is a loop to handle message inside android.
ff007a03c0/core/java/android/os/Handler.java (L701-L706C6)
```
public final boolean sendMessageDelayed(@NonNull Message msg, long delayMillis) {
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
```
59d9dc1f50/libutils/SystemClock.cpp (L37-L51)
```
/*
* native public static long uptimeMillis();
*/
int64_t uptimeMillis()
{
return nanoseconds_to_milliseconds(uptimeNanos());
}
/*
* public static native long uptimeNanos();
*/
int64_t uptimeNanos()
{
return systemTime(SYSTEM_TIME_MONOTONIC);
}
```
59d9dc1f50/libutils/Timers.cpp (L32-L55)
```
#if defined(__linux__)
nsecs_t systemTime(int clock) {
checkClockId(clock);
static constexpr clockid_t clocks[] = {CLOCK_REALTIME, CLOCK_MONOTONIC,
CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID,
CLOCK_BOOTTIME};
static_assert(clock_id_max == arraysize(clocks));
timespec t = {};
clock_gettime(clocks[clock], &t);
return nsecs_t(t.tv_sec)*1000000000LL + t.tv_nsec;
}
#else
nsecs_t systemTime(int clock) {
// TODO: is this ever called with anything but REALTIME on mac/windows?
checkClockId(clock);
// Clock support varies widely across hosts. Mac OS doesn't support
// CLOCK_BOOTTIME (and doesn't even have clock_gettime until 10.12).
// Windows is windows.
timeval t = {};
gettimeofday(&t, nullptr);
return nsecs_t(t.tv_sec)*1000000000LL + nsecs_t(t.tv_usec)*1000LL;
}
#endif
```
For Linux system, we can use `clock_gettime` api, but it's first
appeared in Mac OSX 10.12.
`man clock_gettime`
The requirement is to find an alternative way to get the timestamp in
microsecond unit, but the `clock_gettime` get nanoseconds, the math
formula is the nanoseconds / 1000 = microsecond. Then I check the
performance of this api + math division.
I used those code to check the `clock_gettime` performance.
```
#include <sys/time.h>
#include <time.h>
#include <stdio.h>
#include <unistd.h>
int main() {
struct timeval tv;
struct timespec ts;
clock_t start;
clock_t end;
long t;
while (1) {
start = clock();
gettimeofday(&tv, NULL);
end = clock();
printf("gettimeofday clock is %lu\n", end - start);
printf("gettimeofday is %lld\n", (tv.tv_sec * 1000000LL + tv.tv_usec));
start = clock();
clock_gettime(CLOCK_MONOTONIC, &ts);
t = ts.tv_sec * 1000000L + ts.tv_nsec / 1000L;
end = clock();
printf("clock_monotonic clock is %lu\n", end - start);
printf("clock_monotonic: seconds is %ld, nanoseconds is %ld, sum is %ld\n", ts.tv_sec, ts.tv_nsec, t);
start = clock();
clock_gettime(CLOCK_MONOTONIC_RAW, &ts);
t = ts.tv_sec * 1000000L + ts.tv_nsec / 1000L;
end = clock();
printf("clock_monotonic_raw clock is %lu\n", end - start);
printf("clock_monotonic_raw: nanoseconds is %ld, sum is %ld\n", ts.tv_nsec, t);
sleep(3);
}
return 0;
}
```
Here is output:
env: Mac OS M2 chip.
```
gettimeofday clock is 11
gettimeofday is 1709775727153949
clock_monotonic clock is 2
clock_monotonic: seconds is 1525204, nanoseconds is 409453000, sum is 1525204409453
clock_monotonic_raw clock is 2
clock_monotonic_raw: nanoseconds is 770493000, sum is 1525222770493
```
We can see the `clock_gettime` is faster than `gettimeofday`, so there
are no performance risks.
**MacOS solution**
`clock_gettime` api only available until mac os 10.12, for the mac os
older than 10.12, just keep the `gettimeofday`.
check osx version in `auto/options.sh`, then add MACRO in
`auto/depends.sh`, the MACRO is `MD_OSX_HAS_NO_CLOCK_GETTIME`.
**CYGWIN**
According to google search, it seems the
`clock_gettime(CLOCK_MONOTONIC)` is not support well at least 10 years
ago, but I didn't own an windows machine, so can't verify it. so keep
win's solution.
---------
Co-authored-by: winlin <winlinvip@gmail.com>
For coroutine, we should use `__sanitizer_start_switch_fiber` which
similar to`VALGRIND_STACK_REGISTER`, see
https://github.com/google/sanitizers/issues/189#issuecomment-1346243598
for details. If not fix this, asan will output warning:
```
==72269==WARNING: ASan is ignoring requested __asan_handle_no_return: stack type: default top: 0x00016f638000; bottom 0x000106bec000; size: 0x000068a4c000 (1755627520)
False positive error reports may follow
For details see https://github.com/google/sanitizers/issues/189
```
It will cause asan failed to get the stack, see
`research/st/asan-switch.cpp` for example:
```
==71611==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x000103600733 at pc 0x0001009d3d7c bp 0x000100b4bd40 sp 0x000100b4bd38
WRITE of size 1 at 0x000103600733 thread T0
#0 0x1009d3d78 in foo(void*) asan-switch.cpp:13
```
After fix this issue, it should provide the full stack when crashing:
```
==73437==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x000103300733 at pc 0x000100693d7c bp 0x00016f76f550 sp 0x00016f76f548
WRITE of size 1 at 0x000103300733 thread T0
#0 0x100693d78 in foo(void*) asan-switch.cpp:13
#1 0x100693df4 in main asan-switch.cpp:23
#2 0x195aa20dc (<unknown module>)
```
For primordial coroutine, if not set the stack by
`st_set_primordial_stack`, then the stack is NULL and asan can't get the
stack tracing. Note that it's optional and only make it fail to display
the stack information, no other errors.
---
Co-authored-by: john <hondaxiao@tencent.com>
Improvements for ST(State Threads):
1. ST: Use g++ for CXX compiler.
2. ST: Remove macros for clist.
3. ST: Remove macros for global thread and vp.
4. ST: Remove macros for vp queue operations.
5. ST: Remove macros for context switch.
6. ST: Remove macros for setjmp/longjmp.
7. ST: Remove macro for stack pad.
8. ST: Refine macro for valgrind.
---------
Co-authored-by: Jacob Su <suzp1984@gmail.com>
To manage an object:
```cpp
// Before
MyClass* ptr = new MyClass();
SrsAutoFree(MyClass, ptr);
ptr->do_something();
// Now
SrsUniquePtr<MyClass> ptr(new MyClass());
ptr->do_something();
```
To manage an array of objects:
```cpp
// Before
char* ptr = new char[10];
SrsAutoFreeA(char, ptr);
ptr[0] = 0xf;
// Now
SrsUniquePtr<char[]> ptr(new char[10]);
ptr[0] = 0xf;
```
In fact, SrsUniquePtr is a limited subset of SrsAutoFree, mainly
managing pointers and arrays. SrsUniquePtr is better than SrsAutoFree
because it has the same API to standard unique ptr.
```cpp
SrsUniquePtr<MyClass> ptr(new MyClass());
ptr->do_something();
MyClass* p = ptr.get();
```
SrsAutoFree actually uses a pointer to a pointer, so it can be set to
NULL, allowing the pointer's value to be changed later (this usage is
different from SrsUniquePtr).
```cpp
// OK to free ptr correctly.
MyClass* ptr;
SrsAutoFree(MyClass, ptr);
ptr = new MyClass();
// Crash because ptr is an invalid pointer.
MyClass* ptr;
SrsUniquePtr<MyClass> ptr(ptr);
ptr = new MyClass();
```
Additionally, SrsAutoFreeH can use specific release functions, which
SrsUniquePtr does not support.
---------
Co-authored-by: Jacob Su <suzp1984@gmail.com>