For #307, refine performance

pull/1748/head
winlin 5 years ago
parent 9e031c9932
commit c93cd86ce4

@ -488,6 +488,7 @@ vhost rtc.vhost.srs.com {
min_latency on;
play {
# set the MW(merged-write) latency in ms.
# @remark For WebRTC, we enable pass-timestamp mode, so we ignore this config.
# default: 0 (For WebRTC)
mw_latency 0;
# Set the MW(merged-write) min messages.
@ -720,6 +721,7 @@ vhost play.srs.com {
# SRS always set mw on, so we just set the latency value.
# the latency of stream >= mw_latency + mr_latency
# the value recomment is [300, 1800]
# @remark For WebRTC, we enable pass-timestamp mode, so we ignore this config.
# default: 350 (For RTMP/HTTP-FLV)
# default: 0 (For WebRTC)
mw_latency 350;

@ -5420,8 +5420,14 @@ srs_utime_t SrsConfig::get_mw_sleep(string vhost, bool is_rtc)
if (!conf || conf->arg0().empty()) {
return DEFAULT;
}
int v = ::atoi(conf->arg0().c_str());
if (is_rtc && v > 0) {
srs_warn("For RTC, we ignore mw_latency");
return 0;
}
return (srs_utime_t)(::atoi(conf->arg0().c_str()) * SRS_UTIME_MILLISECONDS);
return (srs_utime_t)(v * SRS_UTIME_MILLISECONDS);
}
int SrsConfig::get_mw_msgs(string vhost, bool is_realtime, bool is_rtc)

@ -460,7 +460,7 @@ srs_error_t SrsDtlsSession::unprotect_rtcp(char* out_buf, const char* in_buf, in
return srs_error_new(ERROR_RTC_SRTP_UNPROTECT, "rtcp unprotect failed");
}
SrsRtcPackets::SrsRtcPackets()
SrsRtcPackets::SrsRtcPackets(int nn_cache_max)
{
#if defined(SRS_DEBUG)
debug_id = 0;
@ -477,22 +477,20 @@ SrsRtcPackets::SrsRtcPackets()
nn_dropped = 0;
cursor = 0;
nn_cache = nn_cache_max;
cache = new SrsRtpPacket2[nn_cache];
}
SrsRtcPackets::~SrsRtcPackets()
{
vector<SrsRtpPacket2*>::iterator it;
for (it = packets.begin(); it != packets.end(); ++it) {
SrsRtpPacket2* p = *it;
srs_freep(p);
}
packets.clear();
srs_freepa(cache);
nn_cache = 0;
}
void SrsRtcPackets::reset(bool gso, bool merge_nalus)
{
for (int i = 0; i < cursor; i++) {
SrsRtpPacket2* packet = packets[i];
SrsRtpPacket2* packet = cache + i;
packet->reset();
}
@ -515,17 +513,16 @@ void SrsRtcPackets::reset(bool gso, bool merge_nalus)
SrsRtpPacket2* SrsRtcPackets::fetch()
{
if (cursor >= (int)packets.size()) {
packets.push_back(new SrsRtpPacket2());
if (cursor >= nn_cache) {
return NULL;
}
return packets[cursor++];
return cache + (cursor++);
}
SrsRtpPacket2* SrsRtcPackets::back()
{
srs_assert(cursor > 0);
return packets[cursor - 1];
return cache + cursor - 1;
}
int SrsRtcPackets::size()
@ -535,13 +532,13 @@ int SrsRtcPackets::size()
int SrsRtcPackets::capacity()
{
return (int)packets.size();
return nn_cache;
}
SrsRtpPacket2* SrsRtcPackets::at(int index)
{
srs_assert(index < cursor);
return packets[index];
return cache + index;
}
SrsRtcSenderThread::SrsRtcSenderThread(SrsRtcSession* s, SrsUdpMuxSocket* u, int parent_cid)
@ -688,6 +685,13 @@ srs_error_t SrsRtcSenderThread::cycle()
return srs_error_wrap(err, "rtc create consumer, source url=%s", req->get_stream_url().c_str());
}
// For RTC, we enable pass-timestamp mode, ignore the timestamp in queue, never depends on the duration,
// because RTC allows the audio and video has its own timebase, that is the audio timestamp and video timestamp
// maybe not monotonically increase.
// In this mode, we use mw_msgs to set the delay. We never shrink the consumer queue, instead, we dumps the
// messages and drop them if the shared sender queue is full.
consumer->enable_pass_timestamp();
realtime = _srs_config->get_realtime_enabled(req->vhost, true);
mw_sleep = _srs_config->get_mw_sleep(req->vhost, true);
mw_msgs = _srs_config->get_mw_msgs(req->vhost, realtime, true);
@ -702,8 +706,8 @@ srs_error_t SrsRtcSenderThread::cycle()
srs_trace("RTC source url=%s, source_id=[%d][%d], encrypt=%d, realtime=%d, mw_sleep=%dms, mw_msgs=%d", req->get_stream_url().c_str(),
::getpid(), source->source_id(), rtc_session->encrypt, realtime, srsu2msi(mw_sleep), mw_msgs);
SrsRtcPackets pkts;
SrsMessageArray msgs(SRS_PERF_MW_MSGS);
SrsRtcPackets pkts(SRS_PERF_RTC_RTP_PACKETS);
SrsPithyPrint* pprint = SrsPithyPrint::create_rtc_play();
SrsAutoFree(SrsPithyPrint, pprint);
@ -748,27 +752,29 @@ srs_error_t SrsRtcSenderThread::cycle()
}
// Stat for performance analysis.
if (stat_enabled) {
// Stat the original RAW AV frame, maybe h264+aac.
stat->perf_on_msgs(msg_count);
// Stat the RTC packets, RAW AV frame, maybe h.264+opus.
int nn_rtc_packets = srs_max(pkts.nn_audios, pkts.nn_extras) + pkts.nn_videos;
stat->perf_on_rtc_packets(nn_rtc_packets);
// Stat the RAW RTP packets, which maybe group by GSO.
stat->perf_on_rtp_packets(pkts.size());
// Stat the RTP packets going into kernel.
stat->perf_on_gso_packets(pkts.nn_rtp_pkts);
// Stat the bytes and paddings.
stat->perf_on_rtc_bytes(pkts.nn_bytes, pkts.nn_rtp_bytes, pkts.nn_padding_bytes);
// Stat the messages and dropped count.
stat->perf_on_dropped(msg_count, nn_rtc_packets, pkts.nn_dropped);
if (!stat_enabled) {
continue;
}
// Stat the original RAW AV frame, maybe h264+aac.
stat->perf_on_msgs(msg_count);
// Stat the RTC packets, RAW AV frame, maybe h.264+opus.
int nn_rtc_packets = srs_max(pkts.nn_audios, pkts.nn_extras) + pkts.nn_videos;
stat->perf_on_rtc_packets(nn_rtc_packets);
// Stat the RAW RTP packets, which maybe group by GSO.
stat->perf_on_rtp_packets(pkts.size());
// Stat the RTP packets going into kernel.
stat->perf_on_gso_packets(pkts.nn_rtp_pkts);
// Stat the bytes and paddings.
stat->perf_on_rtc_bytes(pkts.nn_bytes, pkts.nn_rtp_bytes, pkts.nn_padding_bytes);
// Stat the messages and dropped count.
stat->perf_on_dropped(msg_count, nn_rtc_packets, pkts.nn_dropped);
#if defined(SRS_DEBUG)
srs_trace("RTC PLAY perf, msgs %d/%d, rtp %d, gso %d, %d audios, %d extras, %d videos, %d samples, %d/%d/%d bytes",
msg_count, nn_rtc_packets, pkts.size(), pkts.nn_rtp_pkts, pkts.nn_audios, pkts.nn_extras, pkts.nn_videos,
pkts.nn_samples, pkts.nn_bytes, pkts.nn_rtp_bytes, pkts.nn_padding_bytes);
srs_trace("RTC PLAY perf, msgs %d/%d, rtp %d, gso %d, %d audios, %d extras, %d videos, %d samples, %d/%d/%d bytes",
msg_count, nn_rtc_packets, pkts.size(), pkts.nn_rtp_pkts, pkts.nn_audios, pkts.nn_extras, pkts.nn_videos,
pkts.nn_samples, pkts.nn_bytes, pkts.nn_rtp_bytes, pkts.nn_padding_bytes);
#endif
}
pprint->elapse();
if (pprint->can_print()) {
@ -1193,6 +1199,10 @@ srs_error_t SrsRtcSenderThread::packet_nalus(SrsSharedPtrMessage* msg, SrsRtcPac
if (nn_bytes < kRtpMaxPayloadSize) {
// Package NALUs in a single RTP packet.
SrsRtpPacket2* packet = packets.fetch();
if (!packet) {
srs_freep(raw);
return srs_error_new(ERROR_RTC_RTP_MUXER, "cache empty");
}
packet->rtp_header.set_timestamp(msg->timestamp * 90);
packet->rtp_header.set_sequence(video_sequence++);
@ -1216,13 +1226,19 @@ srs_error_t SrsRtcSenderThread::packet_nalus(SrsSharedPtrMessage* msg, SrsRtcPac
int packet_size = srs_min(nb_left, fu_payload_size);
SrsRtpPacket2* packet = packets.fetch();
if (!packet) {
srs_freep(raw);
return srs_error_new(ERROR_RTC_RTP_MUXER, "cache empty");
}
packet->extra_payload = raw;
packet->rtp_header.set_timestamp(msg->timestamp * 90);
packet->rtp_header.set_sequence(video_sequence++);
packet->rtp_header.set_ssrc(video_ssrc);
packet->rtp_header.set_payload_type(video_payload_type);
SrsRtpFUAPayload* fua = packet->reuse_fua();
SrsRtpFUAPayload* fua = new SrsRtpFUAPayload();
packet->payload = fua;
fua->nri = (SrsAvcNaluType)header;
fua->nalu_type = (SrsAvcNaluType)nal_type;
@ -1249,6 +1265,9 @@ srs_error_t SrsRtcSenderThread::packet_opus(SrsSample* sample, SrsRtcPackets& pa
srs_error_t err = srs_success;
SrsRtpPacket2* packet = packets.fetch();
if (!packet) {
return srs_error_new(ERROR_RTC_RTP_MUXER, "cache empty");
}
packet->rtp_header.set_marker(true);
packet->rtp_header.set_timestamp(audio_timestamp);
packet->rtp_header.set_sequence(audio_sequence++);
@ -1291,23 +1310,24 @@ srs_error_t SrsRtcSenderThread::packet_fu_a(SrsSharedPtrMessage* msg, SrsSample*
int packet_size = srs_min(nb_left, fu_payload_size);
SrsRtpPacket2* packet = packets.fetch();
if (!packet) {
return srs_error_new(ERROR_RTC_RTP_MUXER, "cache empty");
}
packet->rtp_header.set_timestamp(msg->timestamp * 90);
packet->rtp_header.set_sequence(video_sequence++);
packet->rtp_header.set_ssrc(video_ssrc);
packet->rtp_header.set_payload_type(video_payload_type);
SrsRtpFUAPayload* fua = packet->reuse_fua();
SrsRtpFUAPayload2* fua = packet->reuse_fua();
fua->nri = (SrsAvcNaluType)header;
fua->nalu_type = (SrsAvcNaluType)nal_type;
fua->start = bool(i == 0);
fua->end = bool(i == num_of_packet - 1);
SrsSample* fragment_sample = new SrsSample();
fragment_sample->bytes = p;
fragment_sample->size = packet_size;
fua->nalus.push_back(fragment_sample);
fua->payload = p;
fua->size = packet_size;
p += packet_size;
nb_left -= packet_size;
@ -1322,6 +1342,9 @@ srs_error_t SrsRtcSenderThread::packet_single_nalu(SrsSharedPtrMessage* msg, Srs
srs_error_t err = srs_success;
SrsRtpPacket2* packet = packets.fetch();
if (!packet) {
return srs_error_new(ERROR_RTC_RTP_MUXER, "cache empty");
}
packet->rtp_header.set_timestamp(msg->timestamp * 90);
packet->rtp_header.set_sequence(video_sequence++);
packet->rtp_header.set_ssrc(video_ssrc);
@ -1355,6 +1378,9 @@ srs_error_t SrsRtcSenderThread::packet_stap_a(SrsSource* source, SrsSharedPtrMes
}
SrsRtpPacket2* packet = packets.fetch();
if (!packet) {
return srs_error_new(ERROR_RTC_RTP_MUXER, "cache empty");
}
packet->rtp_header.set_marker(false);
packet->rtp_header.set_timestamp(msg->timestamp * 90);
packet->rtp_header.set_sequence(video_sequence++);
@ -2017,23 +2043,22 @@ srs_error_t SrsUdpMuxSender::cycle()
cache.swap(hotspot);
cache_pos = 0;
// Collect informations for GSO.
int gso_pos = 0;
if (pos > 0 && stat_enabled) {
// For shared GSO cache, stat the messages.
// @see https://linux.die.net/man/2/sendmmsg
// @see https://linux.die.net/man/2/sendmsg
for (int i = 0; i < pos; i++) {
mmsghdr* mhdr = &hotspot[i];
int real_iovs = mhdr->msg_hdr.msg_iovlen;
gso_pos++; nn_gso_msgs++; nn_gso_iovs += real_iovs;
gso_iovs += real_iovs;
if (pos > 0) {
// Collect informations for GSO.
if (stat_enabled) {
// For shared GSO cache, stat the messages.
// @see https://linux.die.net/man/2/sendmmsg
// @see https://linux.die.net/man/2/sendmsg
for (int i = 0; i < pos; i++) {
mmsghdr* mhdr = &hotspot[i];
int real_iovs = mhdr->msg_hdr.msg_iovlen;
gso_pos++; nn_gso_msgs++; nn_gso_iovs += real_iovs;
gso_iovs += real_iovs;
}
}
}
// Send out all messages.
if (pos > 0) {
// Send out all messages.
// @see https://linux.die.net/man/2/sendmmsg
// @see https://linux.die.net/man/2/sendmsg
@ -2053,6 +2078,10 @@ srs_error_t SrsUdpMuxSender::cycle()
}
}
if (!stat_enabled) {
continue;
}
// Increase total messages.
nn_msgs += pos + gso_iovs;
nn_msgs_max = srs_max(pos, nn_msgs_max);

@ -155,9 +155,10 @@ public:
int nn_dropped;
private:
int cursor;
std::vector<SrsRtpPacket2*> packets;
int nn_cache;
SrsRtpPacket2* cache;
public:
SrsRtcPackets();
SrsRtcPackets(int nn_cache_max);
virtual ~SrsRtcPackets();
public:
void reset(bool gso, bool merge_nalus);

@ -269,9 +269,17 @@ void SrsMessageQueue::set_queue_size(srs_utime_t queue_size)
max_queue_size = queue_size;
}
srs_error_t SrsMessageQueue::enqueue(SrsSharedPtrMessage* msg, bool* is_overflow)
srs_error_t SrsMessageQueue::enqueue(SrsSharedPtrMessage* msg, bool* is_overflow, bool pass_timestamp)
{
srs_error_t err = srs_success;
msgs.push_back(msg);
// For RTC, we never care about the timestamp and duration, so we never shrink queue here,
// but we will drop messages in each consumer coroutine.
if (pass_timestamp) {
return err;
}
if (msg->is_av()) {
if (av_start_time == -1) {
@ -281,8 +289,6 @@ srs_error_t SrsMessageQueue::enqueue(SrsSharedPtrMessage* msg, bool* is_overflow
av_end_time = srs_utime_t(msg->timestamp * SRS_UTIME_MILLISECONDS);
}
msgs.push_back(msg);
while (av_end_time - av_start_time > max_queue_size) {
// notice the caller queue already overflow and shrinked.
if (is_overflow) {
@ -295,7 +301,7 @@ srs_error_t SrsMessageQueue::enqueue(SrsSharedPtrMessage* msg, bool* is_overflow
return err;
}
srs_error_t SrsMessageQueue::dump_packets(int max_count, SrsSharedPtrMessage** pmsgs, int& count)
srs_error_t SrsMessageQueue::dump_packets(int max_count, SrsSharedPtrMessage** pmsgs, int& count, bool pass_timestamp)
{
srs_error_t err = srs_success;
@ -308,13 +314,15 @@ srs_error_t SrsMessageQueue::dump_packets(int max_count, SrsSharedPtrMessage** p
count = srs_min(max_count, nb_msgs);
SrsSharedPtrMessage** omsgs = msgs.data();
for (int i = 0; i < count; i++) {
pmsgs[i] = omsgs[i];
memcpy(pmsgs, omsgs, count * sizeof(SrsSharedPtrMessage*));
// For RTC, we enable pass_timestamp mode, which never care about the timestamp and duration,
// so we do not have to update the start time here.
if (!pass_timestamp) {
SrsSharedPtrMessage* last = omsgs[count - 1];
av_start_time = srs_utime_t(last->timestamp * SRS_UTIME_MILLISECONDS);
}
SrsSharedPtrMessage* last = omsgs[count - 1];
av_start_time = srs_utime_t(last->timestamp * SRS_UTIME_MILLISECONDS);
if (count >= nb_msgs) {
// the pmsgs is big enough and clear msgs at most time.
msgs.clear();
@ -433,6 +441,8 @@ SrsConsumer::SrsConsumer(SrsSource* s, SrsConnection* c)
mw_duration = 0;
mw_waiting = false;
#endif
pass_timestamp = false;
}
SrsConsumer::~SrsConsumer()
@ -466,20 +476,35 @@ srs_error_t SrsConsumer::enqueue(SrsSharedPtrMessage* shared_msg, bool atc, SrsR
srs_error_t err = srs_success;
SrsSharedPtrMessage* msg = shared_msg->copy();
if (!atc) {
// For RTC, we enable pass_timestamp mode, which never correct or depends on monotonic increasing of
// timestamp. And in RTC, the audio and video timebase can be different, so we ignore time_jitter here.
if (!pass_timestamp && !atc) {
if ((err = jitter->correct(msg, ag)) != srs_success) {
return srs_error_wrap(err, "consume message");
}
}
if ((err = queue->enqueue(msg, NULL)) != srs_success) {
// Put message in queue, here we may enable pass_timestamp mode.
if ((err = queue->enqueue(msg, NULL, pass_timestamp)) != srs_success) {
return srs_error_wrap(err, "enqueue message");
}
#ifdef SRS_PERF_QUEUE_COND_WAIT
// fire the mw when msgs is enough.
if (mw_waiting) {
// For RTC, we use pass_timestamp mode, we don't care about the timestamp in queue,
// so we only check the messages in queue.
if (pass_timestamp) {
if (queue->size() > mw_min_msgs) {
srs_cond_signal(mw_wait);
mw_waiting = false;
return err;
}
return err;
}
// For RTMP, we wait for messages and duration.
srs_utime_t duration = queue->duration();
bool match_min_msgs = queue->size() > mw_min_msgs;
@ -529,7 +554,7 @@ srs_error_t SrsConsumer::dump_packets(SrsMessageArray* msgs, int& count)
}
// pump msgs from queue.
if ((err = queue->dump_packets(max, msgs->msgs, count)) != srs_success) {
if ((err = queue->dump_packets(max, msgs->msgs, count, pass_timestamp)) != srs_success) {
return srs_error_wrap(err, "dump packets");
}

@ -151,12 +151,13 @@ public:
// Enqueue the message, the timestamp always monotonically.
// @param msg, the msg to enqueue, user never free it whatever the return code.
// @param is_overflow, whether overflow and shrinked. NULL to ignore.
virtual srs_error_t enqueue(SrsSharedPtrMessage* msg, bool* is_overflow = NULL);
// @remark If pass_timestamp, we never shrink and never care about the timestamp or duration.
virtual srs_error_t enqueue(SrsSharedPtrMessage* msg, bool* is_overflow = NULL, bool pass_timestamp = false);
// Get packets in consumer queue.
// @pmsgs SrsSharedPtrMessage*[], used to store the msgs, user must alloc it.
// @count the count in array, output param.
// @max_count the max count to dequeue, must be positive.
virtual srs_error_t dump_packets(int max_count, SrsSharedPtrMessage** pmsgs, int& count);
virtual srs_error_t dump_packets(int max_count, SrsSharedPtrMessage** pmsgs, int& count, bool pass_timestamp = false);
// Dumps packets to consumer, use specified args.
// @remark the atc/tba/tbv/ag are same to SrsConsumer.enqueue().
virtual srs_error_t dump_packets(SrsConsumer* consumer, bool atc, SrsRtmpJitterAlgorithm ag);
@ -203,10 +204,17 @@ private:
int mw_min_msgs;
srs_utime_t mw_duration;
#endif
private:
// For RTC, we never use jitter to correct timestamp.
// But we should not change the atc or time_jitter for source or RTMP.
// @remark In this mode, we also never check the queue by timstamp, but only by count.
bool pass_timestamp;
public:
SrsConsumer(SrsSource* s, SrsConnection* c);
virtual ~SrsConsumer();
public:
// Use pass timestamp mode.
void enable_pass_timestamp() { pass_timestamp = true; }
// Set the size of queue.
virtual void set_queue_size(srs_utime_t queue_size);
// when source id changed, notice client to print.

@ -211,5 +211,8 @@
// For RTC, the max iovs in msghdr, the max packets sent in a msghdr.
#define SRS_PERF_RTC_GSO_MAX 64
// For RTC, the max count of RTP packets we process in one loop.
#define SRS_PERF_RTC_RTP_PACKETS 1024
#endif

@ -67,11 +67,6 @@ SrsBuffer::~SrsBuffer()
{
}
char* SrsBuffer::data()
{
return bytes;
}
int SrsBuffer::size()
{
return nb_bytes;

@ -113,7 +113,8 @@ public:
* get data of stream, set by initialize.
* current bytes = data() + pos()
*/
virtual char* data();
inline char* data() { return bytes; }
inline char* head() { return p; }
/**
* the total stream size, set by initialize.
* left bytes = size() - pos().

@ -85,7 +85,7 @@ srs_error_t SrsRtpHeader::encode(SrsBuffer* stream)
// Encode the RTP fix header, 12bytes.
// @see https://tools.ietf.org/html/rfc1889#section-5.1
char* op = stream->data() + stream->pos();
char* op = stream->head();
char* p = op;
// The version, padding, extension and cc, total 1 byte.
@ -148,60 +148,45 @@ size_t SrsRtpHeader::header_size()
return kRtpHeaderFixedSize + cc * 4 + (extension ? (extension_length + 1) * 4 : 0);
}
void SrsRtpHeader::set_marker(bool marker)
{
this->marker = marker;
}
void SrsRtpHeader::set_payload_type(uint8_t payload_type)
{
this->payload_type = payload_type;
}
void SrsRtpHeader::set_sequence(uint16_t sequence)
{
this->sequence = sequence;
}
void SrsRtpHeader::set_timestamp(int64_t timestamp)
{
this->timestamp = (uint32_t)timestamp;
}
void SrsRtpHeader::set_ssrc(uint32_t ssrc)
{
this->ssrc = ssrc;
}
SrsRtpPacket2::SrsRtpPacket2()
{
payload = NULL;
extra_payload = NULL;
padding = 0;
cache_raw = new SrsRtpRawPayload();
cache_fua = new SrsRtpFUAPayload();
cache_fua = new SrsRtpFUAPayload2();
cache_payload = 0;
using_cache = false;
}
SrsRtpPacket2::~SrsRtpPacket2()
{
// We may use the cache as payload.
if (payload == cache_raw || payload == cache_fua) {
if (using_cache) {
payload = NULL;
}
srs_freep(payload);
srs_freep(extra_payload);
srs_freep(cache_raw);
}
void SrsRtpPacket2::set_padding(int size)
{
rtp_header.set_padding(size > 0);
if (cache_payload) {
cache_payload += size - padding;
}
padding = size;
}
void SrsRtpPacket2::add_padding(int size)
{
rtp_header.set_padding(padding + size > 0);
if (cache_payload) {
cache_payload += size;
}
padding += size;
}
@ -209,31 +194,39 @@ void SrsRtpPacket2::reset()
{
rtp_header.reset();
padding = 0;
cache_payload = 0;
srs_freep(extra_payload);
// We may use the cache as payload.
if (payload == cache_raw || payload == cache_fua) {
if (using_cache) {
payload = NULL;
} else {
srs_freep(payload);
}
srs_freep(payload);
using_cache = false;
}
SrsRtpRawPayload* SrsRtpPacket2::reuse_raw()
{
using_cache = true;
payload = cache_raw;
return cache_raw;
}
SrsRtpFUAPayload* SrsRtpPacket2::reuse_fua()
SrsRtpFUAPayload2* SrsRtpPacket2::reuse_fua()
{
using_cache = true;
payload = cache_fua;
cache_fua->reset();
return cache_fua;
}
int SrsRtpPacket2::nb_bytes()
{
return rtp_header.header_size() + (payload? payload->nb_bytes():0) + padding;
if (!cache_payload) {
cache_payload = rtp_header.header_size() + (payload? payload->nb_bytes():0) + padding;
}
return cache_payload;
}
srs_error_t SrsRtpPacket2::encode(SrsBuffer* buf)
@ -297,12 +290,20 @@ SrsRtpRawNALUs::SrsRtpRawNALUs()
SrsRtpRawNALUs::~SrsRtpRawNALUs()
{
vector<SrsSample*>::iterator it;
for (it = nalus.begin(); it != nalus.end(); ++it) {
SrsSample* p = *it;
srs_freep(p);
if (true) {
int nn_nalus = (int)nalus.size();
for (int i = 0; i < nn_nalus; i++) {
SrsSample* p = nalus[i];
srs_freep(p);
}
}
if (true) {
int nn_nalus = (int)extra_nalus.size();
for (int i = 0; i < nn_nalus; i++) {
SrsSample* p = extra_nalus[i];
srs_freep(p);
}
}
nalus.clear();
}
void SrsRtpRawNALUs::push_back(SrsSample* sample)
@ -330,19 +331,19 @@ uint8_t SrsRtpRawNALUs::skip_first_byte()
return uint8_t(nalus[0]->bytes[0]);
}
srs_error_t SrsRtpRawNALUs::read_samples(vector<SrsSample*>& samples, int size)
srs_error_t SrsRtpRawNALUs::read_samples(vector<SrsSample*>& samples, int packet_size)
{
if (cursor + size < 0 || cursor + size > nn_bytes) {
return srs_error_new(ERROR_RTC_RTP_MUXER, "cursor=%d, max=%d, size=%d", cursor, nn_bytes, size);
if (cursor + packet_size < 0 || cursor + packet_size > nn_bytes) {
return srs_error_new(ERROR_RTC_RTP_MUXER, "cursor=%d, max=%d, size=%d", cursor, nn_bytes, packet_size);
}
int pos = cursor;
cursor += size;
int left = size;
cursor += packet_size;
int left = packet_size;
vector<SrsSample*>::iterator it;
for (it = nalus.begin(); it != nalus.end() && left > 0; ++it) {
SrsSample* p = *it;
int nn_nalus = (int)nalus.size();
for (int i = 0; i < nn_nalus; i++) {
SrsSample* p = nalus[i];
// Ignore previous consumed samples.
if (pos && pos - p->size >= 0) {
@ -355,9 +356,11 @@ srs_error_t SrsRtpRawNALUs::read_samples(vector<SrsSample*>& samples, int size)
srs_assert(nn > 0);
SrsSample* sample = new SrsSample();
extra_nalus.push_back(sample);
samples.push_back(sample);
sample->bytes = p->bytes + pos;
sample->size = nn;
samples.push_back(sample);
left -= nn;
pos = 0;
@ -370,9 +373,9 @@ int SrsRtpRawNALUs::nb_bytes()
{
int size = 0;
vector<SrsSample*>::iterator it;
for (it = nalus.begin(); it != nalus.end(); ++it) {
SrsSample* p = *it;
int nn_nalus = (int)nalus.size();
for (int i = 0; i < nn_nalus; i++) {
SrsSample* p = nalus[i];
size += p->size;
}
@ -381,9 +384,9 @@ int SrsRtpRawNALUs::nb_bytes()
srs_error_t SrsRtpRawNALUs::encode(SrsBuffer* buf)
{
vector<SrsSample*>::iterator it;
for (it = nalus.begin(); it != nalus.end(); ++it) {
SrsSample* p = *it;
int nn_nalus = (int)nalus.size();
for (int i = 0; i < nn_nalus; i++) {
SrsSample* p = nalus[i];
if (!buf->require(p->size)) {
return srs_error_new(ERROR_RTC_RTP_MUXER, "requires %d bytes", p->size);
@ -402,21 +405,20 @@ SrsRtpSTAPPayload::SrsRtpSTAPPayload()
SrsRtpSTAPPayload::~SrsRtpSTAPPayload()
{
vector<SrsSample*>::iterator it;
for (it = nalus.begin(); it != nalus.end(); ++it) {
SrsSample* p = *it;
int nn_nalus = (int)nalus.size();
for (int i = 0; i < nn_nalus; i++) {
SrsSample* p = nalus[i];
srs_freep(p);
}
nalus.clear();
}
int SrsRtpSTAPPayload::nb_bytes()
{
int size = 1;
vector<SrsSample*>::iterator it;
for (it = nalus.begin(); it != nalus.end(); ++it) {
SrsSample* p = *it;
int nn_nalus = (int)nalus.size();
for (int i = 0; i < nn_nalus; i++) {
SrsSample* p = nalus[i];
size += 2 + p->size;
}
@ -436,9 +438,10 @@ srs_error_t SrsRtpSTAPPayload::encode(SrsBuffer* buf)
buf->write_1bytes(v);
// NALUs.
vector<SrsSample*>::iterator it;
for (it = nalus.begin(); it != nalus.end(); ++it) {
SrsSample* p = *it;
int nn_nalus = (int)nalus.size();
for (int i = 0; i < nn_nalus; i++) {
SrsSample* p = nalus[i];
if (!buf->require(2 + p->size)) {
return srs_error_new(ERROR_RTC_RTP_MUXER, "requires %d bytes", 2 + p->size);
}
@ -458,31 +461,20 @@ SrsRtpFUAPayload::SrsRtpFUAPayload()
SrsRtpFUAPayload::~SrsRtpFUAPayload()
{
vector<SrsSample*>::iterator it;
for (it = nalus.begin(); it != nalus.end(); ++it) {
SrsSample* p = *it;
int nn_nalus = (int)nalus.size();
for (int i = 0; i < nn_nalus; i++) {
SrsSample* p = nalus[i];
srs_freep(p);
}
nalus.clear();
}
void SrsRtpFUAPayload::reset()
{
vector<SrsSample*>::iterator it;
for (it = nalus.begin(); it != nalus.end(); ++it) {
SrsSample* p = *it;
srs_freep(p);
}
nalus.clear();
}
int SrsRtpFUAPayload::nb_bytes()
{
int size = 2;
vector<SrsSample*>::iterator it;
for (it = nalus.begin(); it != nalus.end(); ++it) {
SrsSample* p = *it;
int nn_nalus = (int)nalus.size();
for (int i = 0; i < nn_nalus; i++) {
SrsSample* p = nalus[i];
size += p->size;
}
@ -511,9 +503,10 @@ srs_error_t SrsRtpFUAPayload::encode(SrsBuffer* buf)
buf->write_1bytes(fu_header);
// FU payload, @see https://tools.ietf.org/html/rfc6184#section-5.8
vector<SrsSample*>::iterator it;
for (it = nalus.begin(); it != nalus.end(); ++it) {
SrsSample* p = *it;
int nn_nalus = (int)nalus.size();
for (int i = 0; i < nn_nalus; i++) {
SrsSample* p = nalus[i];
if (!buf->require(p->size)) {
return srs_error_new(ERROR_RTC_RTP_MUXER, "requires %d bytes", p->size);
}
@ -524,6 +517,57 @@ srs_error_t SrsRtpFUAPayload::encode(SrsBuffer* buf)
return srs_success;
}
SrsRtpFUAPayload2::SrsRtpFUAPayload2()
{
start = end = false;
nri = nalu_type = (SrsAvcNaluType)0;
payload = NULL;
size = 0;
}
SrsRtpFUAPayload2::~SrsRtpFUAPayload2()
{
}
int SrsRtpFUAPayload2::nb_bytes()
{
return 2 + size;
}
srs_error_t SrsRtpFUAPayload2::encode(SrsBuffer* buf)
{
if (!buf->require(2 + size)) {
return srs_error_new(ERROR_RTC_RTP_MUXER, "requires %d bytes", 1);
}
// Fast encoding.
char* p = buf->head();
// FU indicator, @see https://tools.ietf.org/html/rfc6184#section-5.8
uint8_t fu_indicate = kFuA;
fu_indicate |= (nri & (~kNalTypeMask));
*p++ = fu_indicate;
// FU header, @see https://tools.ietf.org/html/rfc6184#section-5.8
uint8_t fu_header = nalu_type;
if (start) {
fu_header |= kStart;
}
if (end) {
fu_header |= kEnd;
}
*p++ = fu_header;
// FU payload, @see https://tools.ietf.org/html/rfc6184#section-5.8
memcpy(p, payload, size);
// Consume bytes.
buf->skip(2 + size);
return srs_success;
}
SrsRtpSharedPacket::SrsRtpSharedPacketPayload::SrsRtpSharedPacketPayload()
{
payload = NULL;

@ -39,7 +39,7 @@ const uint8_t kNalTypeMask = 0x1F;
class SrsBuffer;
class SrsRtpRawPayload;
class SrsRtpFUAPayload;
class SrsRtpFUAPayload2;
class SrsRtpHeader
{
@ -65,17 +65,17 @@ public:
public:
size_t header_size();
public:
void set_marker(bool marker);
inline void set_marker(bool v) { marker = v; }
bool get_marker() const { return marker; }
void set_payload_type(uint8_t payload_type);
inline void set_payload_type(uint8_t v) { payload_type = v; }
uint8_t get_payload_type() const { return payload_type; }
void set_sequence(uint16_t sequence);
inline void set_sequence(uint16_t v) { sequence = v; }
uint16_t get_sequence() const { return sequence; }
void set_timestamp(int64_t timestamp);
inline void set_timestamp(int64_t v) { timestamp = (uint32_t)v; }
int64_t get_timestamp() const { return timestamp; }
void set_ssrc(uint32_t ssrc);
inline void set_ssrc(uint32_t v) { ssrc = v; }
uint32_t get_ssrc() const { return ssrc; }
void set_padding(bool v) { padding = v; }
inline void set_padding(bool v) { padding = v; }
};
class SrsRtpPacket2
@ -84,9 +84,16 @@ public:
SrsRtpHeader rtp_header;
ISrsEncoder* payload;
int padding;
public:
// User can set an extra payload, we will free it.
// For example, when reassemble NALUs by SrsRtpRawNALUs, we can set the extra payload to
// SrsRtpRawNALUs, then we can use SrsRtpFUAPayload which never free samples.
ISrsEncoder* extra_payload;
private:
SrsRtpRawPayload* cache_raw;
SrsRtpFUAPayload* cache_fua;
SrsRtpFUAPayload2* cache_fua;
bool using_cache;
int cache_payload;
public:
SrsRtpPacket2();
virtual ~SrsRtpPacket2();
@ -100,7 +107,7 @@ public:
// Reuse the cached raw message as payload.
SrsRtpRawPayload* reuse_raw();
// Reuse the cached fua message as payload.
SrsRtpFUAPayload* reuse_fua();
SrsRtpFUAPayload2* reuse_fua();
// interface ISrsEncoder
public:
virtual int nb_bytes();
@ -111,7 +118,8 @@ public:
class SrsRtpRawPayload : public ISrsEncoder
{
public:
// @remark We only refer to the memory, user must free it.
// The RAW payload, directly point to the shared memory.
// @remark We only refer to the memory, user must free its bytes.
char* payload;
int nn_payload;
public:
@ -127,6 +135,9 @@ public:
class SrsRtpRawNALUs : public ISrsEncoder
{
private:
// The returned samples.
std::vector<SrsSample*> extra_nalus;
// We will manage the samples, but the sample itself point to the shared memory.
std::vector<SrsSample*> nalus;
int nn_bytes;
int cursor;
@ -137,7 +148,8 @@ public:
void push_back(SrsSample* sample);
public:
uint8_t skip_first_byte();
srs_error_t read_samples(std::vector<SrsSample*>& samples, int size);
// We will manage the returned samples, if user want to manage it, please copy it.
srs_error_t read_samples(std::vector<SrsSample*>& samples, int packet_size);
// interface ISrsEncoder
public:
virtual int nb_bytes();
@ -163,6 +175,7 @@ public:
};
// FU-A, for one NALU with multiple fragments.
// With more than one payload.
class SrsRtpFUAPayload : public ISrsEncoder
{
public:
@ -178,8 +191,29 @@ public:
public:
SrsRtpFUAPayload();
virtual ~SrsRtpFUAPayload();
// interface ISrsEncoder
public:
void reset();
virtual int nb_bytes();
virtual srs_error_t encode(SrsBuffer* buf);
};
// FU-A, for one NALU with multiple fragments.
// With only one payload.
class SrsRtpFUAPayload2 : public ISrsEncoder
{
public:
// The NRI in NALU type.
SrsAvcNaluType nri;
// The FUA header.
bool start;
bool end;
SrsAvcNaluType nalu_type;
// The payload and size,
char* payload;
int size;
public:
SrsRtpFUAPayload2();
virtual ~SrsRtpFUAPayload2();
// interface ISrsEncoder
public:
virtual int nb_bytes();

Loading…
Cancel
Save