RTC: Cache the large buffer allocation

pull/2204/head
winlin 4 years ago
parent 6e9cb059b3
commit 4d0863468a

@ -500,6 +500,9 @@ rtc_server {
# Whether enable the RTP packet cache.
# default: off
rtp_cache off;
#Whether enable the RTP message(a large buffer) cache.
# default: off
rtp_msg_cache off;
# The black-hole to copy packet to, for debugging.
# For example, when debugging Chrome publish stream, the received packets are encrypted cipher,
# we can set the publisher black-hole, SRS will copy the plaintext packets to black-hole, and

@ -3651,7 +3651,7 @@ srs_error_t SrsConfig::check_normal_config()
string n = conf->at(i)->name;
if (n != "enabled" && n != "listen" && n != "dir" && n != "candidate" && n != "ecdsa"
&& n != "encrypt" && n != "reuseport" && n != "merge_nalus" && n != "perf_stat" && n != "black_hole"
&& n != "ip_family" && n != "rtp_cache") {
&& n != "ip_family" && n != "rtp_cache" && n != "rtp_msg_cache") {
return srs_error_new(ERROR_SYSTEM_CONFIG_INVALID, "illegal rtc_server.%s", n.c_str());
}
}
@ -4919,6 +4919,23 @@ bool SrsConfig::get_rtc_server_rtp_cache()
return SRS_CONF_PERFER_FALSE(conf->arg0());
}
bool SrsConfig::get_rtc_server_rtp_msg_cache()
{
static bool DEFAULT = false;
SrsConfDirective* conf = root->get("rtc_server");
if (!conf) {
return DEFAULT;
}
conf = conf->get("rtp_msg_cache");
if (!conf || conf->arg0().empty()) {
return DEFAULT;
}
return SRS_CONF_PERFER_FALSE(conf->arg0());
}
bool SrsConfig::get_rtc_server_black_hole()
{
static bool DEFAULT = false;

@ -535,6 +535,7 @@ public:
virtual bool get_rtc_server_merge_nalus();
virtual bool get_rtc_server_perf_stat();
virtual bool get_rtc_server_rtp_cache();
virtual bool get_rtc_server_rtp_msg_cache();
virtual bool get_rtc_server_black_hole();
virtual std::string get_rtc_server_black_hole_addr();
private:

@ -1193,11 +1193,11 @@ srs_error_t SrsRtcPublishStream::on_rtp_plaintext(char* plaintext, int nb_plaint
SrsRtpPacket2* pkt = _srs_rtp_cache->allocate();
// Copy the packet body.
pkt->wrap(plaintext, nb_plaintext);
srs_assert(pkt->cache_buffer()->pos() == 0);
char* p = pkt->wrap(plaintext, nb_plaintext);
// Handle the packet.
err = do_on_rtp_plaintext(pkt);
SrsBuffer buf(p, nb_plaintext);
err = do_on_rtp_plaintext(pkt, &buf);
// Release the packet to cache.
_srs_rtp_cache->recycle(pkt);
@ -1205,14 +1205,14 @@ srs_error_t SrsRtcPublishStream::on_rtp_plaintext(char* plaintext, int nb_plaint
return err;
}
srs_error_t SrsRtcPublishStream::do_on_rtp_plaintext(SrsRtpPacket2* pkt)
srs_error_t SrsRtcPublishStream::do_on_rtp_plaintext(SrsRtpPacket2* pkt, SrsBuffer* buf)
{
srs_error_t err = srs_success;
pkt->set_decode_handler(this);
pkt->set_extension_types(&extension_types_);
if ((err = pkt->decode(pkt->cache_buffer())) != srs_success) {
if ((err = pkt->decode(buf)) != srs_success) {
return srs_error_wrap(err, "decode rtp packet");
}

@ -357,7 +357,7 @@ private:
// @remark We copy the plaintext, user should free it.
srs_error_t on_rtp_plaintext(char* plaintext, int nb_plaintext);
private:
srs_error_t do_on_rtp_plaintext(SrsRtpPacket2* pkt);
srs_error_t do_on_rtp_plaintext(SrsRtpPacket2* pkt, SrsBuffer* buf);
public:
srs_error_t check_send_nacks();
public:

@ -287,7 +287,10 @@ srs_error_t SrsRtcServer::initialize()
bool rtp_cache = _srs_config->get_rtc_server_rtp_cache();
_srs_rtp_cache->set_enabled(rtp_cache);
srs_trace("RTC server init ok, rtp_cache=%d", rtp_cache);
bool rtp_msg_cache = _srs_config->get_rtc_server_rtp_msg_cache();
_srs_rtp_msg_cache->set_enabled(rtp_msg_cache);
srs_trace("RTC server init ok, rc=%d, rmc=%d", rtp_cache, rtp_msg_cache);
return err;
}

@ -312,6 +312,8 @@ public:
SrsSharedPtrMessage();
virtual ~SrsSharedPtrMessage();
public:
// For object cache to reset and reuse it.
bool reset() { return true; }
// Create shared ptr message,
// copy header, manage the payload of msg,
// set the payload to NULL to prevent double free.

@ -811,7 +811,6 @@ SrsRtpPacket2::SrsRtpPacket2()
{
payload = NULL;
shared_msg = NULL;
cache_buffer_ = NULL;
reset();
@ -821,11 +820,17 @@ SrsRtpPacket2::SrsRtpPacket2()
SrsRtpPacket2::~SrsRtpPacket2()
{
srs_freep(payload);
srs_freep(shared_msg);
srs_freep(cache_buffer_);
// Recyle the real owner of message, no other reference object.
if (shared_msg && shared_msg->count() == 0) {
_srs_rtp_msg_cache->recycle(shared_msg);
shared_msg = NULL;
} else {
srs_freep(shared_msg);
}
}
void SrsRtpPacket2::reset()
bool SrsRtpPacket2::reset()
{
nalu_type = SrsAvcNaluTypeReserved;
frame_type = SrsFrameTypeReserved;
@ -839,38 +844,49 @@ void SrsRtpPacket2::reset()
// and it's different for each packet.
srs_freep(payload);
// We should reset the cached buffer.
if (cache_buffer_) {
cache_buffer_->skip(-1 * cache_buffer_->pos());
// Recyle the real owner of message, no other reference object.
if (shared_msg && shared_msg->count() == 0) {
_srs_rtp_msg_cache->recycle(shared_msg);
shared_msg = NULL;
} else {
srs_freep(shared_msg);
}
return true;
}
char* SrsRtpPacket2::wrap(int size)
{
// If the buffer is large enough, reuse it.
if (shared_msg && shared_msg->size >= size) {
// The size maybe changed, so we MUST reset it.
cache_buffer_->set_size(size);
return shared_msg->payload;
}
// Create buffer if empty or not large enough.
srs_freep(shared_msg);
shared_msg = new SrsSharedPtrMessage();
// Create a large enough message, with under-layer buffer.
while (true) {
srs_freep(shared_msg);
shared_msg = _srs_rtp_msg_cache->allocate();
// For RTC, we use larger under-layer buffer for each packet.
int nb_buffer = srs_max(size, kRtpPacketSize);
char* buf = new char[nb_buffer];
shared_msg->wrap(buf, nb_buffer);
// If got a cached message(which has payload), but it's too small,
// we free it and allocate a larger one.
if (shared_msg->payload && shared_msg->size < size) {
continue;
}
// The size of buffer must equal to the actual size.
srs_freep(cache_buffer_);
cache_buffer_ = new SrsBuffer(buf, size);
// Create under-layer buffer for new message
if (!shared_msg->payload) {
// For RTC, we use larger under-layer buffer for each packet.
int nb_buffer = srs_max(size, kRtpPacketSize);
char* buf = new char[nb_buffer];
shared_msg->wrap(buf, nb_buffer);
++_srs_pps_objs_rbuf->sugar;
++_srs_pps_objs_rbuf->sugar;
}
return buf;
break;
}
return shared_msg->payload;
}
char* SrsRtpPacket2::wrap(char* data, int size)
@ -885,29 +901,9 @@ char* SrsRtpPacket2::wrap(SrsSharedPtrMessage* msg)
srs_freep(shared_msg);
shared_msg = msg->copy();
srs_freep(cache_buffer_);
cache_buffer_ = new SrsBuffer(msg->payload, msg->size);
return msg->payload;
}
SrsBuffer* SrsRtpPacket2::cache_buffer() const
{
return cache_buffer_;
}
bool SrsRtpPacket2::try_recycle()
{
// When recycling, and there is references about he shared buffer, we must free
// the shared message(may not free the buffer) to stop reuse the shared message.
if (shared_msg && shared_msg->count() > 0) {
srs_freep(shared_msg);
}
// OK, allow to recycle this object.
return true;
}
void SrsRtpPacket2::set_padding(int size)
{
header.set_padding(size);
@ -1026,70 +1022,9 @@ srs_error_t SrsRtpPacket2::decode(SrsBuffer* buf)
return err;
}
SrsRtpPacketCacheManager::SrsRtpPacketCacheManager()
{
enabled_ = false;
}
SrsRtpPacketCacheManager::~SrsRtpPacketCacheManager()
{
list<SrsRtpPacket2*>::iterator it;
for (it = cache_pkts_.begin(); it != cache_pkts_.end(); ++it) {
SrsRtpPacket2* pkt = *it;
srs_freep(pkt);
}
}
void SrsRtpPacketCacheManager::set_enabled(bool v)
{
enabled_ = v;
}
bool SrsRtpPacketCacheManager::enabled()
{
return enabled_;
}
SrsRtpPacket2* SrsRtpPacketCacheManager::allocate()
{
if (!enabled_ || cache_pkts_.empty()) {
return new SrsRtpPacket2();
}
SrsRtpPacket2* pkt = cache_pkts_.back();
cache_pkts_.pop_back();
// We MUST reset it to reuse it.
pkt->reset();
return pkt;
}
void SrsRtpPacketCacheManager::recycle(SrsRtpPacket2* p)
{
// The p may be NULL, because srs_freep(NULL) is ok.
if (!p) {
return;
}
// TODO: FIXME: Directly free to keep low memory?
if (!enabled_) {
srs_freep(p);
return;
}
// If there is any reference about the message, we should free the
// shared message then recycle it(or free it).
if (!p->try_recycle()) {
srs_freep(p);
return;
}
// Recycle it.
cache_pkts_.push_back(p);
}
SrsRtpObjectCacheManager<SrsRtpPacket2>* _srs_rtp_cache = new SrsRtpObjectCacheManager<SrsRtpPacket2>();
SrsRtpPacketCacheManager* _srs_rtp_cache = new SrsRtpPacketCacheManager();
SrsRtpObjectCacheManager<SrsSharedPtrMessage>* _srs_rtp_msg_cache = new SrsRtpObjectCacheManager<SrsSharedPtrMessage>();
SrsRtpRawPayload::SrsRtpRawPayload()
{

@ -285,8 +285,6 @@ public:
SrsRtpHeader header;
ISrsRtpPayloader* payload;
private:
// The buffer bind to the shared message.
SrsBuffer* cache_buffer_;
// The original shared message, all RTP packets can refer to its data.
SrsSharedPtrMessage* shared_msg;
// Helper fields.
@ -306,17 +304,12 @@ public:
virtual ~SrsRtpPacket2();
public:
// Reset the object to reuse it.
void reset();
virtual bool reset();
// Wrap buffer to shared_message, which is managed by us.
char* wrap(int size);
char* wrap(char* data, int size);
// Wrap the shared message, we copy it.
char* wrap(SrsSharedPtrMessage* msg);
// Get the cache buffer which binds to the shared message.
SrsBuffer* cache_buffer() const;
// Try to start recycle, return whether it's reusable.
// @remark If not reusable, user should free it directly.
bool try_recycle();
public:
// Set the padding of RTP packet.
void set_padding(int size);
@ -337,27 +330,75 @@ public:
virtual srs_error_t decode(SrsBuffer* buf);
};
// The RTP packet cache manager.
class SrsRtpPacketCacheManager
// The RTP packet or message cache manager.
template<typename T>
class SrsRtpObjectCacheManager
{
private:
bool enabled_;
std::list<SrsRtpPacket2*> cache_pkts_;
std::list<T*> cache_objs_;
public:
SrsRtpPacketCacheManager();
virtual ~SrsRtpPacketCacheManager();
SrsRtpObjectCacheManager() {
enabled_ = false;
}
virtual ~SrsRtpObjectCacheManager() {
typedef typename std::list<T*>::iterator iterator;
for (iterator it = cache_objs_.begin(); it != cache_objs_.end(); ++it) {
T* obj = *it;
srs_freep(obj);
}
}
public:
// Enable or disable cache.
void set_enabled(bool v);
bool enabled();
// Try to allocate from cache, create new packet if no cache.
SrsRtpPacket2* allocate();
// Recycle the packet to cache.
void set_enabled(bool v) {
enabled_ = v;
}
bool enabled() {
return enabled_;
}
// Try to allocate from cache, create new object if no cache.
T* allocate() {
while (true) {
if (!enabled_ || cache_objs_.empty()) {
return new T();
}
T* obj = cache_objs_.back();
cache_objs_.pop_back();
// If reset the object fail, drop the cached object.
if (!obj->reset()) {
srs_freep(obj);
continue;
}
return obj;
}
}
// Recycle the object to cache.
// @remark User can directly free the packet.
void recycle(SrsRtpPacket2* p);
void recycle(T* p) {
// The p may be NULL, because srs_freep(NULL) is ok.
if (!p) {
return;
}
// TODO: FIXME: Directly free to keep low memory?
if (!enabled_) {
srs_freep(p);
return;
}
// Recycle it.
cache_objs_.push_back(p);
}
};
extern SrsRtpPacketCacheManager* _srs_rtp_cache;
// For RTP packets cache.
extern SrsRtpObjectCacheManager<SrsRtpPacket2>* _srs_rtp_cache;
// For RTP packet shared messages cache.
extern SrsRtpObjectCacheManager<SrsSharedPtrMessage>* _srs_rtp_msg_cache;
// Single payload data.
class SrsRtpRawPayload : public ISrsRtpPayloader

Loading…
Cancel
Save