You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
srs/trunk/research/srt-proxy/main.go

401 lines
13 KiB
Go

package main
import (
"context"
"encoding/binary"
"fmt"
"net"
"os"
"time"
)
// Use FFmpeg to push stream to this proxy:
// ffmpeg -re -i ~/git/srs/trunk/doc/source.flv -c copy -pes_payload_size 0 -f mpegts 'srt://localhost:10081?streamid=#!::r=live/livestream?m=publish'
// Play by SRT from this proxy:
// ffplay 'srt://localhost:10081?streamid=#!::r=live/livestream,latency=20,m=request'
var listenAddress = "127.0.0.1:10081"
// Proxy to backend SRS Server.
// Play by HTTP-FLV from SRS:
// ffplay http://localhost:8080/live/livestream.flv
// Play by SRT from SRS:
// ffplay 'srt://localhost:10080?streamid=#!::r=live/livestream,latency=20,m=request'
var backendAddress = "127.0.0.1:10080"
func main() {
fmt.Println("Hello, SRT!")
if err := doMain(context.Background()); err != nil {
fmt.Println(fmt.Sprintf("err %+v", err))
os.Exit(1)
}
}
func doMain(ctx context.Context) error {
serverAddr, err := net.ResolveUDPAddr("udp", listenAddress)
if err != nil {
return err
}
server, err := net.ListenUDP("udp", serverAddr)
if err != nil {
return err
}
defer server.Close()
fmt.Println("UDP server listening on", server.LocalAddr().String())
start := time.Now()
buf := make([]byte, 4096)
connections := make(map[string]*SRTConnection)
for {
n, clientAddr, err := server.ReadFromUDP(buf)
if err != nil {
return err
}
connection, ok := connections[clientAddr.String()]
if !ok {
connection = &SRTConnection{
start: start,
server: server,
serverAddr: serverAddr,
clientAddr: clientAddr,
}
connections[clientAddr.String()] = connection
fmt.Println("New connection from", clientAddr.String())
}
if err := connection.Consume(buf[:n]); err != nil {
return err
}
fmt.Println(fmt.Sprintf("Received %v bytes from %s", n, clientAddr.String()))
}
return nil
}
type SRTConnection struct {
// Listener start time.
start time.Time
// Local UDP server connection.
server *net.UDPConn
// Local UDP server listen address.
serverAddr *net.UDPAddr
// Client remote address.
clientAddr *net.UDPAddr
// Backend server connection.
backend *net.UDPConn
// Handshake packets with client.
handshake0 *SRTHandshakePacket
handshake1 *SRTHandshakePacket
handshake2 *SRTHandshakePacket
handshake3 *SRTHandshakePacket
}
func (v *SRTConnection) Close() error {
if v.backend != nil {
return v.backend.Close()
}
return nil
}
func (v *SRTConnection) Consume(b []byte) error {
pkt := &SRTHandshakePacket{}
if err := pkt.UnmarshalBinary(b); err != nil {
return err
}
// Handle handshake messages.
if pkt.IsHandshake() {
if pkt.SynCookie == 0 {
// Save handshake packet.
v.handshake0 = pkt
fmt.Println(fmt.Sprintf("Handshake 0: %v", v.handshake0.String()))
// Response handshake 1.
v.handshake1 = &SRTHandshakePacket{
ControlFlag: pkt.ControlFlag,
ControlType: 0,
SubType: 0,
AdditionalInfo: 0,
Timestamp: uint32(time.Since(v.start).Microseconds()),
SocketID: pkt.SRTSocketID,
Version: 5,
EncryptionField: 0,
ExtensionField: 0x4A17,
InitSequence: pkt.InitSequence,
MTU: pkt.MTU,
FlowWindow: pkt.FlowWindow,
HandshakeType: 1,
SRTSocketID: pkt.SRTSocketID,
SynCookie: 0x418d5e4e,
PeerIP: v.serverAddr.IP,
}
fmt.Println(fmt.Sprintf("Handshake 1: %v", v.handshake1.String()))
if b, err := v.handshake1.MarshalBinary(); err != nil {
return err
} else if _, err = v.server.WriteToUDP(b, v.clientAddr); err != nil {
return err
}
return nil
} else {
// Save handshake packet.
v.handshake2 = pkt
fmt.Println(fmt.Sprintf("Handshake 2: %v", v.handshake2.String()))
// Ignore if already connected.
if v.backend == nil {
remoteAddress, err := net.ResolveUDPAddr("udp", backendAddress)
if err != nil {
return err
}
if v.backend, err = net.DialUDP("udp", nil, remoteAddress); err != nil {
return err
}
}
// Proxy handshake 0 to backend server.
if b, err := v.handshake0.MarshalBinary(); err != nil {
return err
} else if _, err = v.backend.Write(b); err != nil {
return err
}
fmt.Println(fmt.Sprintf("Proxy send handshake 0: %v", v.handshake0.String()))
// Read handshake 1 from backend server.
b := make([]byte, 4096)
handshake1p := &SRTHandshakePacket{}
if nn, err := v.backend.Read(b); err != nil {
return err
} else if err := handshake1p.UnmarshalBinary(b[:nn]); err != nil {
return err
}
fmt.Println(fmt.Sprintf("Proxy got handshake 1: %v", handshake1p.String()))
// Proxy handshake 2 to backend server.
handshake2p := *v.handshake2
handshake2p.SynCookie = handshake1p.SynCookie
if b, err := handshake2p.MarshalBinary(); err != nil {
return err
} else if _, err = v.backend.Write(b); err != nil {
return err
}
fmt.Println(fmt.Sprintf("Proxy send handshake 2: %v", handshake2p.String()))
// Read handshake 3 from backend server.
handshake3p := &SRTHandshakePacket{}
if nn, err := v.backend.Read(b); err != nil {
return err
} else if err := handshake3p.UnmarshalBinary(b[:nn]); err != nil {
return err
}
fmt.Println(fmt.Sprintf("Proxy got handshake 3: %v", handshake3p.String()))
// Response handshake 3 to client.
v.handshake3 = &*handshake3p
v.handshake3.SynCookie = v.handshake1.SynCookie
fmt.Println(fmt.Sprintf("Handshake 3: %v", v.handshake3.String()))
if b, err := v.handshake3.MarshalBinary(); err != nil {
return err
} else if _, err = v.server.WriteToUDP(b, v.clientAddr); err != nil {
return err
}
// Start a goroutine to proxy message from backend to client.
go func() {
for {
nn, err := v.backend.Read(b)
if err != nil {
return
} else if _, err = v.server.WriteToUDP(b[:nn], v.clientAddr); err != nil {
return
}
fmt.Println(fmt.Sprintf("Proxy got %d bytes from backend server.", nn))
}
}()
return nil
}
}
// Proxy all other messages to backend server.
if _, err := v.backend.Write(b); err != nil {
return err
}
fmt.Println(fmt.Sprintf("Packet: %v", pkt))
return nil
}
// See https://datatracker.ietf.org/doc/html/draft-sharabayko-srt-01#section-3.2
// See https://datatracker.ietf.org/doc/html/draft-sharabayko-srt-01#section-3.2.1
type SRTHandshakePacket struct {
// F: 1 bit. Packet Type Flag. The control packet has this flag set to
// "1". The data packet has this flag set to "0".
ControlFlag uint8
// Control Type: 15 bits. Control Packet Type. The use of these bits
// is determined by the control packet type definition.
// Handshake control packets (Control Type = 0x0000) are used to
// exchange peer configurations, to agree on connection parameters, and
// to establish a connection.
ControlType uint16
// Subtype: 16 bits. This field specifies an additional subtype for
// specific packets.
SubType uint16
// Type-specific Information: 32 bits. The use of this field depends on
// the particular control packet type. Handshake packets do not use
// this field.
AdditionalInfo uint32
// Timestamp: 32 bits.
Timestamp uint32
// Destination Socket ID: 32 bits.
SocketID uint32
// Version: 32 bits. A base protocol version number. Currently used
// values are 4 and 5. Values greater than 5 are reserved for future
// use.
Version uint32
// Encryption Field: 16 bits. Block cipher family and key size. The
// values of this field are described in Table 2. The default value
// is AES-128.
// 0 | No Encryption Advertised
// 2 | AES-128
// 3 | AES-192
// 4 | AES-256
EncryptionField uint16
// Extension Field: 16 bits. This field is message specific extension
// related to Handshake Type field. The value MUST be set to 0
// except for the following cases. (1) If the handshake control
// packet is the INDUCTION message, this field is sent back by the
// Listener. (2) In the case of a CONCLUSION message, this field
// value should contain a combination of Extension Type values.
// 0x00000001 | HSREQ
// 0x00000002 | KMREQ
// 0x00000004 | CONFIG
// 0x4A17 if HandshakeType is INDUCTION, see https://datatracker.ietf.org/doc/html/draft-sharabayko-srt-01#section-4.3.1.1
ExtensionField uint16
// Initial Packet Sequence Number: 32 bits. The sequence number of the
// very first data packet to be sent.
InitSequence uint32
// Maximum Transmission Unit Size: 32 bits. This value is typically set
// to 1500, which is the default Maximum Transmission Unit (MTU) size
// for Ethernet, but can be less.
MTU uint32
// Maximum Flow Window Size: 32 bits. The value of this field is the
// maximum number of data packets allowed to be "in flight" (i.e. the
// number of sent packets for which an ACK control packet has not yet
// been received).
FlowWindow uint32
// Handshake Type: 32 bits. This field indicates the handshake packet
// type.
// 0xFFFFFFFD | DONE
// 0xFFFFFFFE | AGREEMENT
// 0xFFFFFFFF | CONCLUSION
// 0x00000000 | WAVEHAND
// 0x00000001 | INDUCTION
HandshakeType uint32
// SRT Socket ID: 32 bits. This field holds the ID of the source SRT
// socket from which a handshake packet is issued.
SRTSocketID uint32
// SYN Cookie: 32 bits. Randomized value for processing a handshake.
// The value of this field is specified by the handshake message
// type.
SynCookie uint32
// Peer IP Address: 128 bits. IPv4 or IPv6 address of the packet's
// sender. The value consists of four 32-bit fields.
PeerIP net.IP
// Extensions.
// Extension Type: 16 bits. The value of this field is used to process
// an integrated handshake. Each extension can have a pair of
// request and response types.
// Extension Length: 16 bits. The length of the Extension Contents
// field in four-byte blocks.
// Extension Contents: variable length. The payload of the extension.
ExtraData []byte
}
func (v *SRTHandshakePacket) IsControl() bool {
return v.ControlFlag == 0x80
}
func (v *SRTHandshakePacket) IsHandshake() bool {
return v.IsControl() && v.ControlType == 0x00 && v.SubType == 0x00
}
func (v *SRTHandshakePacket) String() string {
return fmt.Sprintf("Control=%v, CType=%v, SType=%v, Timestamp=%v, SocketID=%v, Version=%v, Encrypt=%v, Extension=%v, InitSequence=%v, MTU=%v, FlowWnd=%v, HSType=%v, SRTSocketID=%v, Cookie=%v, Peer=%vB, Extra=%vB",
v.IsControl(), v.ControlType, v.SubType, v.Timestamp, v.SocketID, v.Version, v.EncryptionField, v.ExtensionField, v.InitSequence, v.MTU, v.FlowWindow, v.HandshakeType, v.SRTSocketID, v.SynCookie, len(v.PeerIP), len(v.ExtraData))
}
func (v *SRTHandshakePacket) UnmarshalBinary(b []byte) error {
if len(b) < 4 {
return fmt.Errorf("Invalid packet length %v", len(b))
}
v.ControlFlag = b[0] & 0x80
v.ControlType = binary.BigEndian.Uint16(b[0:2]) & 0x7fff
v.SubType = binary.BigEndian.Uint16(b[2:4])
if !v.IsHandshake() {
return nil
}
if len(b) < 64 {
return fmt.Errorf("Invalid packet length %v", len(b))
}
v.AdditionalInfo = binary.BigEndian.Uint32(b[4:])
v.Timestamp = binary.BigEndian.Uint32(b[8:])
v.SocketID = binary.BigEndian.Uint32(b[12:])
v.Version = binary.BigEndian.Uint32(b[16:])
v.EncryptionField = binary.BigEndian.Uint16(b[20:])
v.ExtensionField = binary.BigEndian.Uint16(b[22:])
v.InitSequence = binary.BigEndian.Uint32(b[24:])
v.MTU = binary.BigEndian.Uint32(b[28:])
v.FlowWindow = binary.BigEndian.Uint32(b[32:])
v.HandshakeType = binary.BigEndian.Uint32(b[36:])
v.SRTSocketID = binary.BigEndian.Uint32(b[40:])
v.SynCookie = binary.BigEndian.Uint32(b[44:])
// Only support IPv4.
v.PeerIP = net.IPv4(b[51], b[50], b[49], b[48])
v.ExtraData = b[64:]
return nil
}
func (v *SRTHandshakePacket) MarshalBinary() ([]byte, error) {
b := make([]byte, 64+len(v.ExtraData))
binary.BigEndian.PutUint16(b, uint16(v.ControlFlag)<<8|v.ControlType)
binary.BigEndian.PutUint16(b[2:], v.SubType)
binary.BigEndian.PutUint32(b[4:], v.AdditionalInfo)
binary.BigEndian.PutUint32(b[8:], v.Timestamp)
binary.BigEndian.PutUint32(b[12:], v.SocketID)
binary.BigEndian.PutUint32(b[16:], v.Version)
binary.BigEndian.PutUint16(b[20:], v.EncryptionField)
binary.BigEndian.PutUint16(b[22:], v.ExtensionField)
binary.BigEndian.PutUint32(b[24:], v.InitSequence)
binary.BigEndian.PutUint32(b[28:], v.MTU)
binary.BigEndian.PutUint32(b[32:], v.FlowWindow)
binary.BigEndian.PutUint32(b[36:], v.HandshakeType)
binary.BigEndian.PutUint32(b[40:], v.SRTSocketID)
binary.BigEndian.PutUint32(b[44:], v.SynCookie)
// Only support IPv4.
ip := v.PeerIP.To4()
b[48] = ip[3]
b[49] = ip[2]
b[50] = ip[1]
b[51] = ip[0]
if len(v.ExtraData) > 0 {
copy(b[64:], v.ExtraData)
}
return b, nil
}