mirror of https://github.com/fxsjy/jieba.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
|
12 years ago | |
---|---|---|
jieba | 12 years ago | |
test | 13 years ago | |
.gitattributes | 13 years ago | |
.gitignore | 13 years ago | |
README.md | 12 years ago | |
setup.py | 12 years ago |
README.md
jieba
"结巴"中文分词:做最好的Python中文分词组件
Feature
- 支持两种分词模式:
- 1)默认模式,试图将句子最精确地切开,适合文本分析;
- 2)全模式,把句子中所有的可以成词的词语都扫描出来,适合搜索引擎。
Usage
- 全自动安装:easy_install jieba 或者 pip install jieba
- 半自动安装:先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install
- 手动安装:将jieba目录放置于当前目录或者site-packages目录
- 通过import jieba 来引用 (第一次import时需要构建Trie树,需要几秒时间)
Algorithm
- 基于Trie树结构实现高效的词图扫描,生成句子中汉字构成的有向无环图(DAG)
- 采用了记忆化搜索实现最大概率路径的计算, 找出基于词频的最大切分组合
- 对于未登录词,采用了基于汉字位置概率的模型,使用了Viterbi算法
功能 1):分词
- jieba.cut方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all参数用来控制分词模式
- 待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
- jieba.cut返回的结构是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list
代码示例( 分词 )
#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print "Full Mode:", "/ ".join(seg_list) #全模式
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #默认模式
seg_list = jieba.cut("他来到了网易杭研大厦")
print ", ".join(seg_list)
Output:
Full Mode: 我/ 来/ 来到/ 到/ 北/ 北京/ 京/ 清/ 清华/ 清华大学/ 华/ 华大/ 大/ 大学/ 学
Default Mode: 我/ 来到/ 北京/ 清华大学
他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
功能 2) :添加自定义词典
-
开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率
-
用法: jieba.load_userdict(file_name) # file_name为自定义词典的路径
-
词典格式和dict.txt一样,一个词占一行;每一行分为两部分,一部分为词语,另一部分为词频,用空格隔开
-
范例:
云计算 5 李小福 2 创新办 3 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
功能 3) :关键词提取
- jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse
- setence为待提取的文本
- topK为返回几个TF/IDF权重最大的关键词,默认值为20
代码示例 (关键词提取)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
分词速度
- 1.5 MB / Second in Full Mode
- 400 KB / Second in Default Mode
- Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt