90cd4b3014 | 12 years ago | |
---|---|---|
jieba | 12 years ago | |
test | 12 years ago | |
.gitattributes | 13 years ago | |
.gitignore | 13 years ago | |
README.md | 12 years ago | |
setup.py | 12 years ago |
README.md
jieba
"结巴"中文分词:做最好的Python中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
- Scroll down for English documentation.
Feature
- 支持两种分词模式:
- 1)默认模式,试图将句子最精确地切开,适合文本分析;
- 2)全模式,把句子中所有的可以成词的词语都扫描出来,适合搜索引擎。
Usage
- 全自动安装:
easy_install jieba
或者pip install jieba
- 半自动安装:先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install
- 手动安装:将jieba目录放置于当前目录或者site-packages目录
- 通过import jieba 来引用 (第一次import时需要构建Trie树,需要几秒时间)
Algorithm
- 基于Trie树结构实现高效的词图扫描,生成句子中汉字构成的有向无环图(DAG)
- 采用了记忆化搜索实现最大概率路径的计算, 找出基于词频的最大切分组合
- 对于未登录词,采用了基于汉字位置概率的模型,使用了Viterbi算法
功能 1):分词
- jieba.cut方法接受两个输入参数: 1) 第一个参数为需要分词的字符串 2)cut_all参数用来控制分词模式
- 待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
- jieba.cut返回的结构是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list
代码示例( 分词 )
#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print "Full Mode:", "/ ".join(seg_list) #全模式
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #默认模式
seg_list = jieba.cut("他来到了网易杭研大厦")
print ", ".join(seg_list)
Output:
Full Mode: 我/ 来/ 来到/ 到/ 北/ 北京/ 京/ 清/ 清华/ 清华大学/ 华/ 华大/ 大/ 大学/ 学
Default Mode: 我/ 来到/ 北京/ 清华大学
他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了)
功能 2) :添加自定义词典
-
开发者可以指定自己自定义的词典,以便包含jieba词库里没有的词。虽然jieba有新词识别能力,但是自行添加新词可以保证更高的正确率
-
用法: jieba.load_userdict(file_name) # file_name为自定义词典的路径
-
词典格式和dict.txt一样,一个词占一行;每一行分为两部分,一部分为词语,另一部分为词频,用空格隔开
-
范例:
云计算 5 李小福 2 创新办 3 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
功能 3) :关键词提取
- jieba.analyse.extract_tags(sentence,topK) #需要先import jieba.analyse
- setence为待提取的文本
- topK为返回几个TF/IDF权重最大的关键词,默认值为20
代码示例 (关键词提取)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
分词速度
- 1.5 MB / Second in Full Mode
- 400 KB / Second in Default Mode
- Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt
在线演示
jieba
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
Features
- Support two types of segmentation mode:
-
- Default mode, attempt to cut the sentence into the most accurate segmentation, which is suitable for text analysis;
-
- Full mode, break the words of the sentence into words scanned, which is suitable for search engines.
Usage
- Fully automatic installation:
easy_install jieba
orpip install jieba
- Semi-automatic installation: Download http://pypi.python.org/pypi/jieba/ , after extracting run
python setup.py install
- Manutal installation: place the
jieba
directory in the current directory or python site-packages directory. - Use
import jieba
to import, which will first build the Trie tree only on first import (takes a few seconds).
Algorithm
- Based on the Trie tree structure to achieve efficient word graph scanning; sentences using Chinese characters constitute a directed acyclic graph (DAG)
- Employs memory search to calculate the maximum probability path, in order to identify the maximum tangential points based on word frequency combination
- For unknown words, the character position probability-based model is used, using the Viterbi algorithm
Function 1): cut
- The
jieba.cut
method accepts to input parameters: 1) the first parameter is the string that requires segmentation, and the 2) second parameter iscut_all
, a parameter used to control the segmentation pattern. jieba.cut
returned structure is an iterative generator, where you can use afor
loop to get the word segmentation (in unicode), orlist(jieba.cut( ... ))
to create a list.
Code example: segmentation
#encoding=utf-8
import jieba
seg_list = jieba.cut("我来到北京清华大学",cut_all=True)
print "Full Mode:", "/ ".join(seg_list) #全模式
seg_list = jieba.cut("我来到北京清华大学",cut_all=False)
print "Default Mode:", "/ ".join(seg_list) #默认模式
seg_list = jieba.cut("他来到了网易杭研大厦")
print ", ".join(seg_list)
Output:
Full Mode: 我/ 来/ 来到/ 到/ 北/ 北京/ 京/ 清/ 清华/ 清华大学/ 华/ 华大/ 大/ 大学/ 学
Default Mode: 我/ 来到/ 北京/ 清华大学
他, 来到, 了, 网易, 杭研, 大厦 (In this case, "杭研" is not in the dictionary, but is identified by the Viterbi algorithm)
Function 2): Add a custom dictionary
-
Developers can specify their own custom dictionary to include in the jieba thesaurus. jieba has the ability to identify new words, but adding your own new words can ensure a higher rate of correct segmentation.
-
Usage:
jieba.load_userdict(file_name) # file_name is a custom dictionary path
-
The dictionary format is the same as that of
dict.txt
: one word per line; each line is divided into two parts, the first is the word itself, the other is the word frequency, separated by a space -
Example:
云计算 5 李小福 2 创新办 3 之前: 李小福 / 是 / 创新 / 办 / 主任 / 也 / 是 / 云 / 计算 / 方面 / 的 / 专家 / 加载自定义词库后: 李小福 / 是 / 创新办 / 主任 / 也 / 是 / 云计算 / 方面 / 的 / 专家 /
Function 3): Keyword Extraction
jieba.analyse.extract_tags(sentence,topK) # needs to first import jieba.analyse
setence
: the text to be extractedtopK
: To return several TF / IDF weights for the biggest keywords, the default value is 20
Code sample (keyword extraction)
https://github.com/fxsjy/jieba/blob/master/test/extract_tags.py
Segmentation speed
- 1.5 MB / Second in Full Mode
- 400 KB / Second in Default Mode
- Test Env: Intel(R) Core(TM) i7-2600 CPU @ 3.4GHz;《围城》.txt