diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/analyse/analyzer.py ../jieba/jieba/analyse/analyzer.py --- ./jieba/analyse/analyzer.py 2014-11-07 23:07:02.779210408 +0800 +++ ../jieba/jieba/analyse/analyzer.py 2014-11-07 23:07:02.079210422 +0800 @@ -1,4 +1,4 @@ -##encoding=utf-8 +#encoding=utf-8 from whoosh.analysis import RegexAnalyzer,LowercaseFilter,StopFilter,StemFilter from whoosh.analysis import Tokenizer,Token from whoosh.lang.porter import stem diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/analyse/__init__.py ../jieba/jieba/analyse/__init__.py --- ./jieba/analyse/__init__.py 2014-11-07 23:07:02.879210406 +0800 +++ ../jieba/jieba/analyse/__init__.py 2014-11-07 23:16:27.171198767 +0800 @@ -25,7 +25,7 @@ def set_new_path(self, new_idf_path): if self.path != new_idf_path: - content = open(new_idf_path, 'rb').read().decode('utf-8') + content = open(new_idf_path, 'r', encoding='utf-8').read() idf_freq = {} lines = content.rstrip('\n').split('\n') for line in lines: @@ -81,7 +81,7 @@ freq[k] *= idf_freq.get(k, median_idf) / total if withWeight: - tags = sorted(list(freq.items()), key=itemgetter(1), reverse=True) + tags = sorted(freq.items(), key=itemgetter(1), reverse=True) else: tags = sorted(freq, key=freq.__getitem__, reverse=True) if topK: diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/analyse/textrank.py ../jieba/jieba/analyse/textrank.py --- ./jieba/analyse/textrank.py 2014-11-07 23:07:02.827210407 +0800 +++ ../jieba/jieba/analyse/textrank.py 2014-11-07 23:18:22.059196398 +0800 @@ -1,4 +1,4 @@ -#!/usr/bin/env python +#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys @@ -22,12 +22,12 @@ outSum = collections.defaultdict(float) wsdef = 1.0 / len(self.graph) - for n, out in list(self.graph.items()): + for n, out in self.graph.items(): ws[n] = wsdef outSum[n] = sum((e[2] for e in out), 0.0) for x in range(10): # 10 iters - for n, inedges in list(self.graph.items()): + for n, inedges in self.graph.items(): s = 0 for e in inedges: s += e[2] / outSum[e[1]] * ws[e[1]] @@ -41,7 +41,7 @@ elif w > max_rank: max_rank = w - for n, w in list(ws.items()): + for n, w in ws.items(): # to unify the weights, don't *100. ws[n] = (w - min_rank / 10.0) / (max_rank - min_rank / 10.0) @@ -70,12 +70,12 @@ continue cm[(words[i].word, words[j].word)] += 1 - for terms, w in list(cm.items()): + for terms, w in cm.items(): g.addEdge(terms[0], terms[1], w) nodes_rank = g.rank() if withWeight: - tags = sorted(list(nodes_rank.items()), key=itemgetter(1), reverse=True) + tags = sorted(nodes_rank.items(), key=itemgetter(1), reverse=True) else: tags = sorted(nodes_rank, key=nodes_rank.__getitem__, reverse=True) if topK: diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/finalseg/__init__.py ../jieba/jieba/finalseg/__init__.py --- ./jieba/finalseg/__init__.py 2014-11-07 23:07:03.147210400 +0800 +++ ../jieba/jieba/finalseg/__init__.py 2014-11-07 23:18:43.495195956 +0800 @@ -1,4 +1,3 @@ - import re import os import marshal diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/__init__.py ../jieba/jieba/__init__.py --- ./jieba/__init__.py 2014-11-07 23:07:02.751210408 +0800 +++ ../jieba/jieba/__init__.py 2014-11-07 23:22:34.963191182 +0800 @@ -1,4 +1,3 @@ - __version__ = '0.34' __license__ = 'MIT' @@ -51,7 +50,7 @@ pfdict.add(word[:ch+1]) except ValueError as e: logger.debug('%s at line %s %s' % (f_name, lineno, line)) - raise ValueError(e) + raise e return pfdict, lfreq, ltotal def initialize(dictionary=None): @@ -78,7 +77,8 @@ if os.path.exists(cache_file) and os.path.getmtime(cache_file) > os.path.getmtime(abs_path): logger.debug("Loading model from cache %s" % cache_file) try: - pfdict,FREQ,total,min_freq = marshal.load(open(cache_file,'rb')) + with open(cache_file, 'rb') as cf: + pfdict,FREQ,total,min_freq = marshal.load(cf) # prevent conflict with old version load_from_cache_fail = not isinstance(pfdict, set) except: @@ -228,11 +228,11 @@ '''The main function that segments an entire sentence that contains Chinese characters into seperated words. Parameter: - - sentence: The str/unicode to be segmented. + - sentence: The str to be segmented. - cut_all: Model type. True for full pattern, False for accurate pattern. - HMM: Whether to use the Hidden Markov Model. ''' - if not isinstance(sentence, str): + if isinstance(sentence, bytes): try: sentence = sentence.decode('utf-8') except UnicodeDecodeError: @@ -338,8 +338,6 @@ global pool, cut, cut_for_search if os.name == 'nt': raise Exception("jieba: parallel mode only supports posix system") - if sys.version_info[0]==2 and sys.version_info[1]<6: - raise Exception("jieba: the parallel feature needs Python version>2.5") from multiprocessing import Pool, cpu_count if processnum is None: processnum = cpu_count() @@ -392,12 +390,12 @@ def tokenize(unicode_sentence, mode="default", HMM=True): """Tokenize a sentence and yields tuples of (word, start, end) Parameter: - - sentence: the unicode to be segmented. + - sentence: the str to be segmented. - mode: "default" or "search", "search" is for finer segmentation. - HMM: whether to use the Hidden Markov Model. """ if not isinstance(unicode_sentence, str): - raise Exception("jieba: the input parameter should be unicode.") + raise Exception("jieba: the input parameter should be str.") start = 0 if mode == 'default': for w in cut(unicode_sentence, HMM=HMM): diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/__main__.py ../jieba/jieba/__main__.py --- ./jieba/__main__.py 2014-11-07 23:07:02.563210412 +0800 +++ ../jieba/jieba/__main__.py 2014-11-07 23:07:02.079210422 +0800 @@ -40,7 +40,7 @@ ln = fp.readline() while ln: l = ln.rstrip('\r\n') - print((delim.join(jieba.cut(ln.rstrip('\r\n'), cutall, hmm)).encode('utf-8'))) + print(delim.join(jieba.cut(ln.rstrip('\r\n'), cutall, hmm))) ln = fp.readline() fp.close() diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/posseg/__init__.py ../jieba/jieba/posseg/__init__.py --- ./jieba/posseg/__init__.py 2014-11-07 23:07:03.047210402 +0800 +++ ../jieba/jieba/posseg/__init__.py 2014-11-07 23:19:40.883194772 +0800 @@ -1,4 +1,3 @@ - import re import os from . import viterbi @@ -18,14 +17,14 @@ _curpath = os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) result = {} - with open(f_name, "r") as f: + with open(f_name, "rb") as f: for line in f: line = line.strip() if not line: continue - word, _, tag = line.split(' ') - result[word.decode('utf-8')] = tag - + line = line.decode("utf-8") + word, _, tag = line.split(" ") + result[word] = tag if not isJython: return result @@ -46,7 +45,7 @@ state = {} abs_path = os.path.join(_curpath, CHAR_STATE_TAB_P) - with open(abs_path, 'r') as f: + with open(abs_path, 'rb') as f: state = marshal.load(f) f.closed diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/posseg/viterbi.py ../jieba/jieba/posseg/viterbi.py --- ./jieba/posseg/viterbi.py 2014-11-07 23:07:03.079210402 +0800 +++ ../jieba/jieba/posseg/viterbi.py 2014-11-07 23:07:02.095210422 +0800 @@ -3,14 +3,13 @@ MIN_INF = float("-inf") def get_top_states(t_state_v, K=4): - items = list(t_state_v.items()) - topK = sorted(items, key=operator.itemgetter(1), reverse=True)[:K] + topK = sorted(t_state_v.items(), key=operator.itemgetter(1), reverse=True)[:K] return [x[0] for x in topK] def viterbi(obs, states, start_p, trans_p, emit_p): V = [{}] #tabular mem_path = [{}] - all_states = list(trans_p.keys()) + all_states = trans_p.keys() for y in states.get(obs[0], all_states): #init V[0][y] = start_p[y] + emit_p[y].get(obs[0], MIN_FLOAT) mem_path[0][y] = '' @@ -18,9 +17,9 @@ V.append({}) mem_path.append({}) #prev_states = get_top_states(V[t-1]) - prev_states = [x for x in list(mem_path[t-1].keys()) if len(trans_p[x]) > 0] + prev_states = [x for x in mem_path[t-1].keys() if len(trans_p[x]) > 0] - prev_states_expect_next = set((y for x in prev_states for y in list(trans_p[x].keys()))) + prev_states_expect_next = set((y for x in prev_states for y in trans_p[x].keys())) obs_states = set(states.get(obs[t], all_states)) & prev_states_expect_next if not obs_states: @@ -31,7 +30,7 @@ V[t][y] = prob mem_path[t][y] = state - last = [(V[-1][y], y) for y in list(mem_path[-1].keys())] + last = [(V[-1][y], y) for y in mem_path[-1].keys()] #if len(last)==0: #print obs prob, state = max(last) diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./README.md ../jieba/README.md --- ./README.md 2014-11-07 23:07:02.067210423 +0800 +++ ../jieba/README.md 2014-11-07 23:24:49.263188412 +0800 @@ -4,6 +4,9 @@ "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module. - _Scroll down for English documentation._ +注意! +======== +这个branch `jieba3k` 是专门用于Python3.x的版本 特点 ======== @@ -68,16 +71,16 @@ import jieba seg_list = jieba.cut("我来到北京清华大学", cut_all=True) -print "Full Mode:", "/ ".join(seg_list) # 全模式 +print("Full Mode:", "/ ".join(seg_list)) # 全模式 seg_list = jieba.cut("我来到北京清华大学", cut_all=False) -print "Default Mode:", "/ ".join(seg_list) # 精确模式 +print("Default Mode:", "/ ".join(seg_list)) # 精确模式 seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式 -print ", ".join(seg_list) +print(", ".join(seg_list)) seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式 -print ", ".join(seg_list) +print(", ".join(seg_list)) ``` 输出: @@ -174,7 +177,7 @@ >>> import jieba.posseg as pseg >>> words = pseg.cut("我爱北京天安门") >>> for w in words: -... print w.word, w.flag +... print(w.word, w.flag) ... 我 r 爱 v @@ -203,7 +206,7 @@ ```python result = jieba.tokenize(u'永和服装饰品有限公司') for tk in result: - print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]) + print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) ``` ``` @@ -219,7 +222,7 @@ ```python result = jieba.tokenize(u'永和服装饰品有限公司',mode='search') for tk in result: - print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]) + print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) ``` ``` @@ -408,16 +411,16 @@ import jieba seg_list = jieba.cut("我来到北京清华大学", cut_all=True) -print "Full Mode:", "/ ".join(seg_list) # 全模式 +print("Full Mode:", "/ ".join(seg_list)) # 全模式 seg_list = jieba.cut("我来到北京清华大学", cut_all=False) -print "Default Mode:", "/ ".join(seg_list) # 默认模式 +print("Default Mode:", "/ ".join(seg_list)) # 默认模式 seg_list = jieba.cut("他来到了网易杭研大厦") -print ", ".join(seg_list) +print(", ".join(seg_list)) seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式 -print ", ".join(seg_list) +print(", ".join(seg_list)) ``` Output: @@ -483,7 +486,7 @@ >>> import jieba.posseg as pseg >>> words = pseg.cut("我爱北京天安门") >>> for w in words: -... print w.word, w.flag +... print(w.word, w.flag) ... 我 r 爱 v @@ -512,7 +515,7 @@ ```python result = jieba.tokenize(u'永和服装饰品有限公司') for tk in result: - print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]) + print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) ``` ``` @@ -528,7 +531,7 @@ ```python result = jieba.tokenize(u'永和服装饰品有限公司',mode='search') for tk in result: - print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]) + print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) ``` ``` diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./setup.py ../jieba/setup.py --- ./setup.py 2014-11-07 23:07:02.067210423 +0800 +++ ../jieba/setup.py 2014-11-07 23:07:02.095210422 +0800 @@ -1,5 +1,5 @@ from distutils.core import setup -setup(name='jieba', +setup(name='jieba3k', version='0.35', description='Chinese Words Segementation Utilities', author='Sun, Junyi', diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/extract_topic.py ../jieba/test/extract_topic.py --- ./test/extract_topic.py 2014-11-07 23:07:03.707210389 +0800 +++ ../jieba/test/extract_topic.py 2014-11-07 23:07:02.095210422 +0800 @@ -51,13 +51,13 @@ print("training...") nmf = decomposition.NMF(n_components=n_topic).fit(tfidf) -print(("done in %0.3fs." % (time.time() - t0))) +print("done in %0.3fs." % (time.time() - t0)) # Inverse the vectorizer vocabulary to be able feature_names = count_vect.get_feature_names() for topic_idx, topic in enumerate(nmf.components_): - print(("Topic #%d:" % topic_idx)) - print((" ".join([feature_names[i] - for i in topic.argsort()[:-n_top_words - 1:-1]]))) + print("Topic #%d:" % topic_idx) + print(" ".join([feature_names[i] + for i in topic.argsort()[:-n_top_words - 1:-1]])) print("") diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/jiebacmd.py ../jieba/test/jiebacmd.py --- ./test/jiebacmd.py 2014-11-07 23:07:03.211210399 +0800 +++ ../jieba/test/jiebacmd.py 2014-11-07 23:07:02.099210422 +0800 @@ -23,6 +23,6 @@ break line = line.strip() for word in jieba.cut(line): - print(word.encode(default_encoding)) + print(word) diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/jieba_test.py ../jieba/test/jieba_test.py --- ./test/jieba_test.py 2014-11-07 23:07:03.947210384 +0800 +++ ../jieba/test/jieba_test.py 2014-11-07 23:07:02.099210422 +0800 @@ -1,5 +1,6 @@ #-*-coding: utf-8 -*- import sys +import imp sys.path.append("../") import unittest import types @@ -97,7 +98,7 @@ class JiebaTestCase(unittest.TestCase): def setUp(self): - reload(jieba) + imp.reload(jieba) def tearDown(self): pass @@ -151,7 +152,7 @@ def testTokenize(self): for content in test_contents: - result = jieba.tokenize(content.decode('utf-8')) + result = jieba.tokenize(content) assert isinstance(result, types.GeneratorType), "Test Tokenize Generator error" result = list(result) assert isinstance(result, list), "Test Tokenize error on content: %s" % content @@ -180,7 +181,7 @@ def testTokenize_NOHMM(self): for content in test_contents: - result = jieba.tokenize(content.decode('utf-8'),HMM=False) + result = jieba.tokenize(content,HMM=False) assert isinstance(result, types.GeneratorType), "Test Tokenize Generator error" result = list(result) assert isinstance(result, list), "Test Tokenize error on content: %s" % content diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/test_tokenize_no_hmm.py ../jieba/test/test_tokenize_no_hmm.py --- ./test/test_tokenize_no_hmm.py 2014-11-07 23:07:04.031210382 +0800 +++ ../jieba/test/test_tokenize_no_hmm.py 2014-11-07 23:07:02.099210422 +0800 @@ -7,7 +7,6 @@ def cuttest(test_sent): global g_mode - test_sent = test_sent.decode('utf-8') result = jieba.tokenize(test_sent,mode=g_mode,HMM=False) for tk in result: print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])) diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/test_tokenize.py ../jieba/test/test_tokenize.py --- ./test/test_tokenize.py 2014-11-07 23:07:04.071210381 +0800 +++ ../jieba/test/test_tokenize.py 2014-11-07 23:07:02.099210422 +0800 @@ -7,7 +7,6 @@ def cuttest(test_sent): global g_mode - test_sent = test_sent.decode('utf-8') result = jieba.tokenize(test_sent,mode=g_mode) for tk in result: print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))