mirror of https://github.com/fxsjy/jieba.git
Merge master and jieba3k, make the code Python 2/3 compatible
commit
22bcf8be7a
@ -0,0 +1,31 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import sys
|
||||
|
||||
PY2 = sys.version_info[0] == 2
|
||||
|
||||
default_encoding = sys.getfilesystemencoding()
|
||||
|
||||
if PY2:
|
||||
text_type = unicode
|
||||
string_types = (str, unicode)
|
||||
|
||||
iterkeys = lambda d: d.iterkeys()
|
||||
itervalues = lambda d: d.itervalues()
|
||||
iteritems = lambda d: d.iteritems()
|
||||
|
||||
else:
|
||||
text_type = str
|
||||
string_types = (str,)
|
||||
xrange = range
|
||||
|
||||
iterkeys = lambda d: iter(d.keys())
|
||||
itervalues = lambda d: iter(d.values())
|
||||
iteritems = lambda d: iter(d.items())
|
||||
|
||||
def strdecode(sentence):
|
||||
if not isinstance(sentence, text_type):
|
||||
try:
|
||||
sentence = sentence.decode('utf-8')
|
||||
except UnicodeDecodeError:
|
||||
sentence = sentence.decode('gbk', 'ignore')
|
||||
return sentence
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,522 +0,0 @@
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/analyse/analyzer.py ../jieba/jieba/analyse/analyzer.py
|
||||
--- ./jieba/analyse/analyzer.py 2014-11-29 15:46:45.987925569 +0800
|
||||
+++ ../jieba/jieba/analyse/analyzer.py 2014-11-29 15:34:42.859932465 +0800
|
||||
@@ -1,4 +1,4 @@
|
||||
-##encoding=utf-8
|
||||
+#encoding=utf-8
|
||||
from whoosh.analysis import RegexAnalyzer,LowercaseFilter,StopFilter,StemFilter
|
||||
from whoosh.analysis import Tokenizer,Token
|
||||
from whoosh.lang.porter import stem
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/analyse/__init__.py ../jieba/jieba/analyse/__init__.py
|
||||
--- ./jieba/analyse/__init__.py 2014-11-29 15:46:46.139925567 +0800
|
||||
+++ ../jieba/jieba/analyse/__init__.py 2014-11-29 15:36:13.147931604 +0800
|
||||
@@ -26,7 +26,7 @@
|
||||
|
||||
def set_new_path(self, new_idf_path):
|
||||
if self.path != new_idf_path:
|
||||
- content = open(new_idf_path, 'rb').read().decode('utf-8')
|
||||
+ content = open(new_idf_path, 'r', encoding='utf-8').read()
|
||||
idf_freq = {}
|
||||
lines = content.rstrip('\n').split('\n')
|
||||
for line in lines:
|
||||
@@ -93,7 +93,7 @@
|
||||
freq[k] *= idf_freq.get(k, median_idf) / total
|
||||
|
||||
if withWeight:
|
||||
- tags = sorted(list(freq.items()), key=itemgetter(1), reverse=True)
|
||||
+ tags = sorted(freq.items(), key=itemgetter(1), reverse=True)
|
||||
else:
|
||||
tags = sorted(freq, key=freq.__getitem__, reverse=True)
|
||||
if topK:
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/analyse/textrank.py ../jieba/jieba/analyse/textrank.py
|
||||
--- ./jieba/analyse/textrank.py 2014-11-29 15:46:46.043925568 +0800
|
||||
+++ ../jieba/jieba/analyse/textrank.py 2014-11-29 15:36:39.291931354 +0800
|
||||
@@ -1,4 +1,4 @@
|
||||
-#!/usr/bin/env python
|
||||
+#!/usr/bin/env python3
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import sys
|
||||
@@ -22,12 +22,12 @@
|
||||
outSum = collections.defaultdict(float)
|
||||
|
||||
wsdef = 1.0 / len(self.graph)
|
||||
- for n, out in list(self.graph.items()):
|
||||
+ for n, out in self.graph.items():
|
||||
ws[n] = wsdef
|
||||
outSum[n] = sum((e[2] for e in out), 0.0)
|
||||
|
||||
for x in range(10): # 10 iters
|
||||
- for n, inedges in list(self.graph.items()):
|
||||
+ for n, inedges in self.graph.items():
|
||||
s = 0
|
||||
for e in inedges:
|
||||
s += e[2] / outSum[e[1]] * ws[e[1]]
|
||||
@@ -41,7 +41,7 @@
|
||||
elif w > max_rank:
|
||||
max_rank = w
|
||||
|
||||
- for n, w in list(ws.items()):
|
||||
+ for n, w in ws.items():
|
||||
# to unify the weights, don't *100.
|
||||
ws[n] = (w - min_rank / 10.0) / (max_rank - min_rank / 10.0)
|
||||
|
||||
@@ -72,12 +72,12 @@
|
||||
continue
|
||||
cm[(words[i].word, words[j].word)] += 1
|
||||
|
||||
- for terms, w in list(cm.items()):
|
||||
+ for terms, w in cm.items():
|
||||
g.addEdge(terms[0], terms[1], w)
|
||||
|
||||
nodes_rank = g.rank()
|
||||
if withWeight:
|
||||
- tags = sorted(list(nodes_rank.items()), key=itemgetter(1), reverse=True)
|
||||
+ tags = sorted(nodes_rank.items(), key=itemgetter(1), reverse=True)
|
||||
else:
|
||||
tags = sorted(nodes_rank, key=nodes_rank.__getitem__, reverse=True)
|
||||
if topK:
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/finalseg/__init__.py ../jieba/jieba/finalseg/__init__.py
|
||||
--- ./jieba/finalseg/__init__.py 2014-11-29 15:46:46.367925565 +0800
|
||||
+++ ../jieba/jieba/finalseg/__init__.py 2014-11-29 15:34:42.859932465 +0800
|
||||
@@ -1,4 +1,3 @@
|
||||
-
|
||||
import re
|
||||
import os
|
||||
import marshal
|
||||
@@ -89,7 +88,7 @@
|
||||
sentence = sentence.decode('utf-8')
|
||||
except UnicodeDecodeError:
|
||||
sentence = sentence.decode('gbk', 'ignore')
|
||||
- re_han, re_skip = re.compile(r"([\u4E00-\u9FA5]+)"), re.compile(r"(\d+\.\d+|[a-zA-Z0-9]+)")
|
||||
+ re_han, re_skip = re.compile("([\u4E00-\u9FA5]+)"), re.compile("(\d+\.\d+|[a-zA-Z0-9]+)")
|
||||
blocks = re_han.split(sentence)
|
||||
for blk in blocks:
|
||||
if re_han.match(blk):
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/__init__.py ../jieba/jieba/__init__.py
|
||||
--- ./jieba/__init__.py 2014-11-29 15:46:45.955925569 +0800
|
||||
+++ ../jieba/jieba/__init__.py 2014-11-29 15:39:03.335929981 +0800
|
||||
@@ -1,4 +1,3 @@
|
||||
-
|
||||
__version__ = '0.35'
|
||||
__license__ = 'MIT'
|
||||
|
||||
@@ -51,7 +50,7 @@
|
||||
pfdict.add(word[:ch+1])
|
||||
except ValueError as e:
|
||||
logger.debug('%s at line %s %s' % (f_name, lineno, line))
|
||||
- raise ValueError(e)
|
||||
+ raise e
|
||||
return pfdict, lfreq, ltotal
|
||||
|
||||
def initialize(dictionary=None):
|
||||
@@ -229,11 +228,11 @@
|
||||
'''The main function that segments an entire sentence that contains
|
||||
Chinese characters into seperated words.
|
||||
Parameter:
|
||||
- - sentence: The str/unicode to be segmented.
|
||||
+ - sentence: The str to be segmented.
|
||||
- cut_all: Model type. True for full pattern, False for accurate pattern.
|
||||
- HMM: Whether to use the Hidden Markov Model.
|
||||
'''
|
||||
- if not isinstance(sentence, str):
|
||||
+ if isinstance(sentence, bytes):
|
||||
try:
|
||||
sentence = sentence.decode('utf-8')
|
||||
except UnicodeDecodeError:
|
||||
@@ -243,9 +242,9 @@
|
||||
# \r\n|\s : whitespace characters. Will not be handled.
|
||||
|
||||
if cut_all:
|
||||
- re_han, re_skip = re.compile(r"([\u4E00-\u9FA5]+)", re.U), re.compile(r"[^a-zA-Z0-9+#\n]", re.U)
|
||||
+ re_han, re_skip = re.compile("([\u4E00-\u9FA5]+)", re.U), re.compile("[^a-zA-Z0-9+#\n]", re.U)
|
||||
else:
|
||||
- re_han, re_skip = re.compile(r"([\u4E00-\u9FA5a-zA-Z0-9+#&\._]+)", re.U), re.compile(r"(\r\n|\s)", re.U)
|
||||
+ re_han, re_skip = re.compile("([\u4E00-\u9FA5a-zA-Z0-9+#&\._]+)", re.U), re.compile("(\r\n|\s)", re.U)
|
||||
blocks = re_han.split(sentence)
|
||||
if cut_all:
|
||||
cut_block = __cut_all
|
||||
@@ -339,8 +338,6 @@
|
||||
global pool, cut, cut_for_search
|
||||
if os.name == 'nt':
|
||||
raise Exception("jieba: parallel mode only supports posix system")
|
||||
- if sys.version_info[0]==2 and sys.version_info[1]<6:
|
||||
- raise Exception("jieba: the parallel feature needs Python version>2.5")
|
||||
from multiprocessing import Pool, cpu_count
|
||||
if processnum is None:
|
||||
processnum = cpu_count()
|
||||
@@ -393,12 +390,12 @@
|
||||
def tokenize(unicode_sentence, mode="default", HMM=True):
|
||||
"""Tokenize a sentence and yields tuples of (word, start, end)
|
||||
Parameter:
|
||||
- - sentence: the unicode to be segmented.
|
||||
+ - sentence: the str to be segmented.
|
||||
- mode: "default" or "search", "search" is for finer segmentation.
|
||||
- HMM: whether to use the Hidden Markov Model.
|
||||
"""
|
||||
if not isinstance(unicode_sentence, str):
|
||||
- raise Exception("jieba: the input parameter should be unicode.")
|
||||
+ raise Exception("jieba: the input parameter should be str.")
|
||||
start = 0
|
||||
if mode == 'default':
|
||||
for w in cut(unicode_sentence, HMM=HMM):
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/__main__.py ../jieba/jieba/__main__.py
|
||||
--- ./jieba/__main__.py 2014-11-29 15:46:45.747925571 +0800
|
||||
+++ ../jieba/jieba/__main__.py 2014-11-29 15:34:42.859932465 +0800
|
||||
@@ -40,7 +40,7 @@
|
||||
ln = fp.readline()
|
||||
while ln:
|
||||
l = ln.rstrip('\r\n')
|
||||
- print((delim.join(jieba.cut(ln.rstrip('\r\n'), cutall, hmm)).encode('utf-8')))
|
||||
+ print(delim.join(jieba.cut(ln.rstrip('\r\n'), cutall, hmm)))
|
||||
ln = fp.readline()
|
||||
|
||||
fp.close()
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/posseg/__init__.py ../jieba/jieba/posseg/__init__.py
|
||||
--- ./jieba/posseg/__init__.py 2014-11-29 15:46:46.271925566 +0800
|
||||
+++ ../jieba/jieba/posseg/__init__.py 2014-11-29 15:37:52.299930658 +0800
|
||||
@@ -1,4 +1,3 @@
|
||||
-
|
||||
import re
|
||||
import os
|
||||
from . import viterbi
|
||||
@@ -18,14 +17,14 @@
|
||||
_curpath = os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
|
||||
|
||||
result = {}
|
||||
- with open(f_name, "r") as f:
|
||||
+ with open(f_name, "rb") as f:
|
||||
for line in f:
|
||||
line = line.strip()
|
||||
if not line:
|
||||
continue
|
||||
- word, _, tag = line.split(' ')
|
||||
- result[word.decode('utf-8')] = tag
|
||||
-
|
||||
+ line = line.decode("utf-8")
|
||||
+ word, _, tag = line.split(" ")
|
||||
+ result[word] = tag
|
||||
if not isJython:
|
||||
return result
|
||||
|
||||
@@ -105,8 +104,8 @@
|
||||
yield pair(sentence[next:], pos_list[next][1])
|
||||
|
||||
def __cut_detail(sentence):
|
||||
- re_han, re_skip = re.compile(r"([\u4E00-\u9FA5]+)"), re.compile(r"([\.0-9]+|[a-zA-Z0-9]+)")
|
||||
- re_eng, re_num = re.compile(r"[a-zA-Z0-9]+"), re.compile(r"[\.0-9]+")
|
||||
+ re_han, re_skip = re.compile("([\u4E00-\u9FA5]+)"), re.compile("([\.0-9]+|[a-zA-Z0-9]+)")
|
||||
+ re_eng, re_num = re.compile("[a-zA-Z0-9]+"), re.compile("[\.0-9]+")
|
||||
blocks = re_han.split(sentence)
|
||||
for blk in blocks:
|
||||
if re_han.match(blk):
|
||||
@@ -130,7 +129,7 @@
|
||||
x = 0
|
||||
N = len(sentence)
|
||||
buf = ''
|
||||
- re_eng = re.compile(r'[a-zA-Z0-9]',re.U)
|
||||
+ re_eng = re.compile('[a-zA-Z0-9]',re.U)
|
||||
while x < N:
|
||||
y = route[x][1]+1
|
||||
l_word = sentence[x:y]
|
||||
@@ -195,8 +194,8 @@
|
||||
sentence = sentence.decode('utf-8')
|
||||
except UnicodeDecodeError:
|
||||
sentence = sentence.decode('gbk', 'ignore')
|
||||
- re_han, re_skip = re.compile(r"([\u4E00-\u9FA5a-zA-Z0-9+#&\._]+)"), re.compile(r"(\r\n|\s)")
|
||||
- re_eng, re_num = re.compile(r"[a-zA-Z0-9]+"), re.compile(r"[\.0-9]+")
|
||||
+ re_han, re_skip = re.compile("([\u4E00-\u9FA5a-zA-Z0-9+#&\._]+)"), re.compile("(\r\n|\s)")
|
||||
+ re_eng, re_num = re.compile("[a-zA-Z0-9]+"), re.compile("[\.0-9]+")
|
||||
blocks = re_han.split(sentence)
|
||||
if HMM:
|
||||
__cut_blk = __cut_DAG
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/posseg/viterbi.py ../jieba/jieba/posseg/viterbi.py
|
||||
--- ./jieba/posseg/viterbi.py 2014-11-29 15:46:46.303925566 +0800
|
||||
+++ ../jieba/jieba/posseg/viterbi.py 2014-11-29 15:38:28.527930313 +0800
|
||||
@@ -8,7 +8,7 @@
|
||||
def viterbi(obs, states, start_p, trans_p, emit_p):
|
||||
V = [{}] #tabular
|
||||
mem_path = [{}]
|
||||
- all_states = list(trans_p.keys())
|
||||
+ all_states = trans_p.keys()
|
||||
for y in states.get(obs[0], all_states): #init
|
||||
V[0][y] = start_p[y] + emit_p[y].get(obs[0], MIN_FLOAT)
|
||||
mem_path[0][y] = ''
|
||||
@@ -16,9 +16,9 @@
|
||||
V.append({})
|
||||
mem_path.append({})
|
||||
#prev_states = get_top_states(V[t-1])
|
||||
- prev_states = [x for x in list(mem_path[t-1].keys()) if len(trans_p[x]) > 0]
|
||||
+ prev_states = [x for x in mem_path[t-1].keys() if len(trans_p[x]) > 0]
|
||||
|
||||
- prev_states_expect_next = set((y for x in prev_states for y in list(trans_p[x].keys())))
|
||||
+ prev_states_expect_next = set((y for x in prev_states for y in trans_p[x].keys()))
|
||||
obs_states = set(states.get(obs[t], all_states)) & prev_states_expect_next
|
||||
|
||||
if not obs_states:
|
||||
@@ -29,7 +29,7 @@
|
||||
V[t][y] = prob
|
||||
mem_path[t][y] = state
|
||||
|
||||
- last = [(V[-1][y], y) for y in list(mem_path[-1].keys())]
|
||||
+ last = [(V[-1][y], y) for y in mem_path[-1].keys()]
|
||||
#if len(last)==0:
|
||||
#print obs
|
||||
prob, state = max(last)
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./README.md ../jieba/README.md
|
||||
--- ./README.md 2014-11-29 15:46:08.487925926 +0800
|
||||
+++ ../jieba/README.md 2014-11-29 15:34:42.859932465 +0800
|
||||
@@ -4,6 +4,9 @@
|
||||
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
|
||||
- _Scroll down for English documentation._
|
||||
|
||||
+注意!
|
||||
+========
|
||||
+这个branch `jieba3k` 是专门用于Python3.x的版本
|
||||
|
||||
特点
|
||||
========
|
||||
@@ -68,16 +71,16 @@
|
||||
import jieba
|
||||
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||||
-print "Full Mode:", "/ ".join(seg_list) # 全模式
|
||||
+print("Full Mode:", "/ ".join(seg_list)) # 全模式
|
||||
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
|
||||
-print "Default Mode:", "/ ".join(seg_list) # 精确模式
|
||||
+print("Default Mode:", "/ ".join(seg_list)) # 精确模式
|
||||
|
||||
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
|
||||
-print ", ".join(seg_list)
|
||||
+print(", ".join(seg_list))
|
||||
|
||||
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||||
-print ", ".join(seg_list)
|
||||
+print(", ".join(seg_list))
|
||||
```
|
||||
|
||||
输出:
|
||||
@@ -174,7 +177,7 @@
|
||||
>>> import jieba.posseg as pseg
|
||||
>>> words = pseg.cut("我爱北京天安门")
|
||||
>>> for w in words:
|
||||
-... print w.word, w.flag
|
||||
+... print(w.word, w.flag)
|
||||
...
|
||||
我 r
|
||||
爱 v
|
||||
@@ -203,7 +206,7 @@
|
||||
```python
|
||||
result = jieba.tokenize(u'永和服装饰品有限公司')
|
||||
for tk in result:
|
||||
- print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
|
||||
+ print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||||
```
|
||||
|
||||
```
|
||||
@@ -219,7 +222,7 @@
|
||||
```python
|
||||
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
|
||||
for tk in result:
|
||||
- print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
|
||||
+ print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||||
```
|
||||
|
||||
```
|
||||
@@ -408,16 +411,16 @@
|
||||
import jieba
|
||||
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||||
-print "Full Mode:", "/ ".join(seg_list) # 全模式
|
||||
+print("Full Mode:", "/ ".join(seg_list)) # 全模式
|
||||
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
|
||||
-print "Default Mode:", "/ ".join(seg_list) # 默认模式
|
||||
+print("Default Mode:", "/ ".join(seg_list)) # 默认模式
|
||||
|
||||
seg_list = jieba.cut("他来到了网易杭研大厦")
|
||||
-print ", ".join(seg_list)
|
||||
+print(", ".join(seg_list))
|
||||
|
||||
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||||
-print ", ".join(seg_list)
|
||||
+print(", ".join(seg_list))
|
||||
```
|
||||
|
||||
Output:
|
||||
@@ -483,7 +486,7 @@
|
||||
>>> import jieba.posseg as pseg
|
||||
>>> words = pseg.cut("我爱北京天安门")
|
||||
>>> for w in words:
|
||||
-... print w.word, w.flag
|
||||
+... print(w.word, w.flag)
|
||||
...
|
||||
我 r
|
||||
爱 v
|
||||
@@ -512,7 +515,7 @@
|
||||
```python
|
||||
result = jieba.tokenize(u'永和服装饰品有限公司')
|
||||
for tk in result:
|
||||
- print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
|
||||
+ print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||||
```
|
||||
|
||||
```
|
||||
@@ -528,7 +531,7 @@
|
||||
```python
|
||||
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
|
||||
for tk in result:
|
||||
- print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
|
||||
+ print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||||
```
|
||||
|
||||
```
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./setup.py ../jieba/setup.py
|
||||
--- ./setup.py 2014-11-29 15:46:46.379925565 +0800
|
||||
+++ ../jieba/setup.py 2014-11-29 15:42:20.263928103 +0800
|
||||
@@ -11,7 +11,7 @@
|
||||
|
||||
完整文档见 ``README.md``
|
||||
|
||||
-GitHub: https://github.com/fxsjy/jieba
|
||||
+GitHub: https://github.com/fxsjy/jieba/tree/jieba3k
|
||||
|
||||
特点
|
||||
====
|
||||
@@ -34,17 +34,11 @@
|
||||
Python 2.x
|
||||
----------
|
||||
|
||||
-- 全自动安装: ``easy_install jieba`` 或者 ``pip install jieba``
|
||||
-- 半自动安装:先下载 https://pypi.python.org/pypi/jieba/ ,解压后运行
|
||||
- python setup.py install
|
||||
-- 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录
|
||||
-- 通过 ``import jieba`` 来引用
|
||||
+见 https://pypi.python.org/pypi/jieba/
|
||||
|
||||
Python 3.x
|
||||
----------
|
||||
|
||||
-见 https://pypi.python.org/pypi/jieba3k/
|
||||
-
|
||||
- 目前 master 分支是只支持 Python 2.x 的
|
||||
- Python 3.x 版本的分支也已经基本可用:
|
||||
https://github.com/fxsjy/jieba/tree/jieba3k
|
||||
@@ -59,13 +53,13 @@
|
||||
|
||||
"""
|
||||
|
||||
-setup(name='jieba',
|
||||
+setup(name='jieba3k',
|
||||
version='0.35.1',
|
||||
description='Chinese Words Segementation Utilities',
|
||||
long_description=LONGDOC,
|
||||
author='Sun, Junyi',
|
||||
author_email='ccnusjy@gmail.com',
|
||||
- url='https://github.com/fxsjy/jieba',
|
||||
+ url='https://github.com/fxsjy/jieba/tree/jieba3k',
|
||||
license="MIT",
|
||||
classifiers=[
|
||||
'Intended Audience :: Developers',
|
||||
@@ -73,9 +67,8 @@
|
||||
'Operating System :: OS Independent',
|
||||
'Natural Language :: Chinese (Simplified)',
|
||||
'Natural Language :: Chinese (Traditional)',
|
||||
'Programming Language :: Python',
|
||||
- 'Programming Language :: Python :: 2',
|
||||
+ 'Programming Language :: Python :: 3',
|
||||
'Topic :: Text Processing',
|
||||
'Topic :: Text Processing :: Indexing',
|
||||
'Topic :: Text Processing :: Linguistic',
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/extract_topic.py ../jieba/test/extract_topic.py
|
||||
--- ./test/extract_topic.py 2014-11-29 15:46:47.003925559 +0800
|
||||
+++ ../jieba/test/extract_topic.py 2014-11-29 15:34:42.919932464 +0800
|
||||
@@ -51,13 +51,13 @@
|
||||
print("training...")
|
||||
|
||||
nmf = decomposition.NMF(n_components=n_topic).fit(tfidf)
|
||||
-print(("done in %0.3fs." % (time.time() - t0)))
|
||||
+print("done in %0.3fs." % (time.time() - t0))
|
||||
|
||||
# Inverse the vectorizer vocabulary to be able
|
||||
feature_names = count_vect.get_feature_names()
|
||||
|
||||
for topic_idx, topic in enumerate(nmf.components_):
|
||||
- print(("Topic #%d:" % topic_idx))
|
||||
- print((" ".join([feature_names[i]
|
||||
- for i in topic.argsort()[:-n_top_words - 1:-1]])))
|
||||
+ print("Topic #%d:" % topic_idx)
|
||||
+ print(" ".join([feature_names[i]
|
||||
+ for i in topic.argsort()[:-n_top_words - 1:-1]]))
|
||||
print("")
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/jiebacmd.py ../jieba/test/jiebacmd.py
|
||||
--- ./test/jiebacmd.py 2014-11-29 15:46:46.443925564 +0800
|
||||
+++ ../jieba/test/jiebacmd.py 2014-11-29 15:34:42.919932464 +0800
|
||||
@@ -23,6 +23,6 @@
|
||||
break
|
||||
line = line.strip()
|
||||
for word in jieba.cut(line):
|
||||
- print(word.encode(default_encoding))
|
||||
+ print(word)
|
||||
|
||||
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/jieba_test.py ../jieba/test/jieba_test.py
|
||||
--- ./test/jieba_test.py 2014-11-29 15:46:47.271925556 +0800
|
||||
+++ ../jieba/test/jieba_test.py 2014-11-29 15:34:42.919932464 +0800
|
||||
@@ -152,7 +152,7 @@
|
||||
#-*-coding: utf-8 -*-
|
||||
import sys
|
||||
+import imp
|
||||
sys.path.append("../")
|
||||
import unittest
|
||||
import types
|
||||
@@ -97,7 +98,7 @@
|
||||
|
||||
class JiebaTestCase(unittest.TestCase):
|
||||
def setUp(self):
|
||||
- reload(jieba)
|
||||
+ imp.reload(jieba)
|
||||
|
||||
def tearDown(self):
|
||||
pass
|
||||
@@ -151,7 +152,7 @@
|
||||
|
||||
def testTokenize(self):
|
||||
for content in test_contents:
|
||||
- result = jieba.tokenize(content.decode('utf-8'))
|
||||
+ result = jieba.tokenize(content)
|
||||
assert isinstance(result, types.GeneratorType), "Test Tokenize Generator error"
|
||||
result = list(result)
|
||||
assert isinstance(result, list), "Test Tokenize error on content: %s" % content
|
||||
@@ -181,7 +181,7 @@
|
||||
|
||||
def testTokenize_NOHMM(self):
|
||||
for content in test_contents:
|
||||
- result = jieba.tokenize(content.decode('utf-8'),HMM=False)
|
||||
+ result = jieba.tokenize(content,HMM=False)
|
||||
assert isinstance(result, types.GeneratorType), "Test Tokenize Generator error"
|
||||
result = list(result)
|
||||
assert isinstance(result, list), "Test Tokenize error on content: %s" % content
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/test_tokenize_no_hmm.py ../jieba/test/test_tokenize_no_hmm.py
|
||||
--- ./test/test_tokenize_no_hmm.py 2014-11-29 15:46:47.355925556 +0800
|
||||
+++ ../jieba/test/test_tokenize_no_hmm.py 2014-11-29 15:34:42.919932464 +0800
|
||||
@@ -7,7 +7,6 @@
|
||||
|
||||
def cuttest(test_sent):
|
||||
global g_mode
|
||||
- test_sent = test_sent.decode('utf-8')
|
||||
result = jieba.tokenize(test_sent,mode=g_mode,HMM=False)
|
||||
for tk in result:
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||||
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/test_tokenize.py ../jieba/test/test_tokenize.py
|
||||
--- ./test/test_tokenize.py 2014-11-29 15:46:47.403925555 +0800
|
||||
+++ ../jieba/test/test_tokenize.py 2014-11-29 15:34:42.919932464 +0800
|
||||
@@ -7,7 +7,6 @@
|
||||
|
||||
def cuttest(test_sent):
|
||||
global g_mode
|
||||
- test_sent = test_sent.decode('utf-8')
|
||||
result = jieba.tokenize(test_sent,mode=g_mode)
|
||||
for tk in result:
|
||||
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
@ -1,34 +0,0 @@
|
||||
#!/bin/bash
|
||||
# Set 2to3 path.
|
||||
PYTHON2TO3=2to3
|
||||
# Copy the python2 version.
|
||||
echo Jieba 2to3 manual conversion tool
|
||||
echo
|
||||
if ! git rev-parse; then
|
||||
exit 1
|
||||
fi
|
||||
echo Copying working directory to ../jieba2
|
||||
if [ -d ../jieba2 ]; then
|
||||
echo Found existing ../jieba2
|
||||
read -p "Replace it with new one? (y/n) " -r
|
||||
if ! [[ $REPLY =~ ^[Yy]$ ]]; then
|
||||
echo Cancelled.
|
||||
exit
|
||||
else
|
||||
rm -rf ../jieba2
|
||||
fi
|
||||
fi
|
||||
if ! git checkout jieba3k; then
|
||||
exit 1
|
||||
fi
|
||||
cp -r . ../jieba2
|
||||
cd ../jieba2
|
||||
if ! git checkout master; then
|
||||
exit 1
|
||||
fi
|
||||
# Here starts auto conversion.
|
||||
echo Converting jieba2 to Python3 ...
|
||||
find . -type f -name '*.py' \! -path '*/build/*' \! -name 'prob_*.py' \! -name 'char_state_tab.py' -exec $PYTHON2TO3 -w -n {} +
|
||||
find . -type f \! -path '*/build/*' -a \( -name 'prob_*.py' -o -name 'char_state_tab.py' \) -exec sed -i "s/u'\\\u/'\\\u/g" {} \;
|
||||
patch -p0 -s <../jieba/test/2to3.diff
|
||||
echo Done. Compare jieba and jieba2 to manually port.
|
@ -1,17 +1,18 @@
|
||||
#encoding=utf-8
|
||||
from __future__ import unicode_literals
|
||||
import sys
|
||||
sys.path.append("../")
|
||||
|
||||
import jieba
|
||||
|
||||
seg_list = jieba.cut(u"我来到北京清华大学", cut_all=True)
|
||||
print u"Full Mode:", u"/ ".join(seg_list) # 全模式
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||||
print("Full Mode: " + "/ ".join(seg_list)) # 全模式
|
||||
|
||||
seg_list = jieba.cut(u"我来到北京清华大学", cut_all=False)
|
||||
print u"Default Mode:", u"/ ".join(seg_list) # 默认模式
|
||||
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
|
||||
print("Default Mode: " + "/ ".join(seg_list)) # 默认模式
|
||||
|
||||
seg_list = jieba.cut(u"他来到了网易杭研大厦")
|
||||
print u", ".join(seg_list)
|
||||
seg_list = jieba.cut("他来到了网易杭研大厦")
|
||||
print(", ".join(seg_list))
|
||||
|
||||
seg_list = jieba.cut_for_search(u"小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||||
print u", ".join(seg_list)
|
||||
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||||
print(", ".join(seg_list))
|
||||
|
Loading…
Reference in New Issue