mirror of https://github.com/fxsjy/jieba.git
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
451 lines
17 KiB
Diff
451 lines
17 KiB
Diff
11 years ago
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/analyse/analyzer.py ../jieba/jieba/analyse/analyzer.py
|
||
|
--- ./jieba/analyse/analyzer.py 2014-11-07 23:07:02.779210408 +0800
|
||
|
+++ ../jieba/jieba/analyse/analyzer.py 2014-11-07 23:07:02.079210422 +0800
|
||
|
@@ -1,4 +1,4 @@
|
||
|
-##encoding=utf-8
|
||
|
+#encoding=utf-8
|
||
|
from whoosh.analysis import RegexAnalyzer,LowercaseFilter,StopFilter,StemFilter
|
||
|
from whoosh.analysis import Tokenizer,Token
|
||
|
from whoosh.lang.porter import stem
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/analyse/__init__.py ../jieba/jieba/analyse/__init__.py
|
||
|
--- ./jieba/analyse/__init__.py 2014-11-07 23:07:02.879210406 +0800
|
||
|
+++ ../jieba/jieba/analyse/__init__.py 2014-11-07 23:16:27.171198767 +0800
|
||
|
@@ -25,7 +25,7 @@
|
||
|
|
||
|
def set_new_path(self, new_idf_path):
|
||
|
if self.path != new_idf_path:
|
||
|
- content = open(new_idf_path, 'rb').read().decode('utf-8')
|
||
|
+ content = open(new_idf_path, 'r', encoding='utf-8').read()
|
||
|
idf_freq = {}
|
||
|
lines = content.rstrip('\n').split('\n')
|
||
|
for line in lines:
|
||
|
@@ -81,7 +81,7 @@
|
||
|
freq[k] *= idf_freq.get(k, median_idf) / total
|
||
|
|
||
|
if withWeight:
|
||
|
- tags = sorted(list(freq.items()), key=itemgetter(1), reverse=True)
|
||
|
+ tags = sorted(freq.items(), key=itemgetter(1), reverse=True)
|
||
|
else:
|
||
|
tags = sorted(freq, key=freq.__getitem__, reverse=True)
|
||
|
if topK:
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/analyse/textrank.py ../jieba/jieba/analyse/textrank.py
|
||
|
--- ./jieba/analyse/textrank.py 2014-11-07 23:07:02.827210407 +0800
|
||
|
+++ ../jieba/jieba/analyse/textrank.py 2014-11-07 23:18:22.059196398 +0800
|
||
|
@@ -1,4 +1,4 @@
|
||
|
-#!/usr/bin/env python
|
||
|
+#!/usr/bin/env python3
|
||
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
import sys
|
||
|
@@ -22,12 +22,12 @@
|
||
|
outSum = collections.defaultdict(float)
|
||
|
|
||
|
wsdef = 1.0 / len(self.graph)
|
||
|
- for n, out in list(self.graph.items()):
|
||
|
+ for n, out in self.graph.items():
|
||
|
ws[n] = wsdef
|
||
|
outSum[n] = sum((e[2] for e in out), 0.0)
|
||
|
|
||
|
for x in range(10): # 10 iters
|
||
|
- for n, inedges in list(self.graph.items()):
|
||
|
+ for n, inedges in self.graph.items():
|
||
|
s = 0
|
||
|
for e in inedges:
|
||
|
s += e[2] / outSum[e[1]] * ws[e[1]]
|
||
|
@@ -41,7 +41,7 @@
|
||
|
elif w > max_rank:
|
||
|
max_rank = w
|
||
|
|
||
|
- for n, w in list(ws.items()):
|
||
|
+ for n, w in ws.items():
|
||
|
# to unify the weights, don't *100.
|
||
|
ws[n] = (w - min_rank / 10.0) / (max_rank - min_rank / 10.0)
|
||
|
|
||
|
@@ -70,12 +70,12 @@
|
||
|
continue
|
||
|
cm[(words[i].word, words[j].word)] += 1
|
||
|
|
||
|
- for terms, w in list(cm.items()):
|
||
|
+ for terms, w in cm.items():
|
||
|
g.addEdge(terms[0], terms[1], w)
|
||
|
|
||
|
nodes_rank = g.rank()
|
||
|
if withWeight:
|
||
|
- tags = sorted(list(nodes_rank.items()), key=itemgetter(1), reverse=True)
|
||
|
+ tags = sorted(nodes_rank.items(), key=itemgetter(1), reverse=True)
|
||
|
else:
|
||
|
tags = sorted(nodes_rank, key=nodes_rank.__getitem__, reverse=True)
|
||
|
if topK:
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/finalseg/__init__.py ../jieba/jieba/finalseg/__init__.py
|
||
|
--- ./jieba/finalseg/__init__.py 2014-11-07 23:07:03.147210400 +0800
|
||
|
+++ ../jieba/jieba/finalseg/__init__.py 2014-11-07 23:18:43.495195956 +0800
|
||
|
@@ -1,4 +1,3 @@
|
||
|
-
|
||
|
import re
|
||
|
import os
|
||
|
import marshal
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/__init__.py ../jieba/jieba/__init__.py
|
||
|
--- ./jieba/__init__.py 2014-11-07 23:07:02.751210408 +0800
|
||
|
+++ ../jieba/jieba/__init__.py 2014-11-07 23:22:34.963191182 +0800
|
||
|
@@ -1,4 +1,3 @@
|
||
|
-
|
||
|
__version__ = '0.34'
|
||
|
__license__ = 'MIT'
|
||
|
|
||
|
@@ -51,7 +50,7 @@
|
||
|
pfdict.add(word[:ch+1])
|
||
|
except ValueError as e:
|
||
|
logger.debug('%s at line %s %s' % (f_name, lineno, line))
|
||
|
- raise ValueError(e)
|
||
|
+ raise e
|
||
|
return pfdict, lfreq, ltotal
|
||
|
|
||
|
def initialize(dictionary=None):
|
||
|
@@ -78,7 +77,8 @@
|
||
|
if os.path.exists(cache_file) and os.path.getmtime(cache_file) > os.path.getmtime(abs_path):
|
||
|
logger.debug("Loading model from cache %s" % cache_file)
|
||
|
try:
|
||
|
- pfdict,FREQ,total,min_freq = marshal.load(open(cache_file,'rb'))
|
||
|
+ with open(cache_file, 'rb') as cf:
|
||
|
+ pfdict,FREQ,total,min_freq = marshal.load(cf)
|
||
|
# prevent conflict with old version
|
||
|
load_from_cache_fail = not isinstance(pfdict, set)
|
||
|
except:
|
||
|
@@ -228,11 +228,11 @@
|
||
|
'''The main function that segments an entire sentence that contains
|
||
|
Chinese characters into seperated words.
|
||
|
Parameter:
|
||
|
- - sentence: The str/unicode to be segmented.
|
||
|
+ - sentence: The str to be segmented.
|
||
|
- cut_all: Model type. True for full pattern, False for accurate pattern.
|
||
|
- HMM: Whether to use the Hidden Markov Model.
|
||
|
'''
|
||
|
- if not isinstance(sentence, str):
|
||
|
+ if isinstance(sentence, bytes):
|
||
|
try:
|
||
|
sentence = sentence.decode('utf-8')
|
||
|
except UnicodeDecodeError:
|
||
|
@@ -338,8 +338,6 @@
|
||
|
global pool, cut, cut_for_search
|
||
|
if os.name == 'nt':
|
||
|
raise Exception("jieba: parallel mode only supports posix system")
|
||
|
- if sys.version_info[0]==2 and sys.version_info[1]<6:
|
||
|
- raise Exception("jieba: the parallel feature needs Python version>2.5")
|
||
|
from multiprocessing import Pool, cpu_count
|
||
|
if processnum is None:
|
||
|
processnum = cpu_count()
|
||
|
@@ -392,12 +390,12 @@
|
||
|
def tokenize(unicode_sentence, mode="default", HMM=True):
|
||
|
"""Tokenize a sentence and yields tuples of (word, start, end)
|
||
|
Parameter:
|
||
|
- - sentence: the unicode to be segmented.
|
||
|
+ - sentence: the str to be segmented.
|
||
|
- mode: "default" or "search", "search" is for finer segmentation.
|
||
|
- HMM: whether to use the Hidden Markov Model.
|
||
|
"""
|
||
|
if not isinstance(unicode_sentence, str):
|
||
|
- raise Exception("jieba: the input parameter should be unicode.")
|
||
|
+ raise Exception("jieba: the input parameter should be str.")
|
||
|
start = 0
|
||
|
if mode == 'default':
|
||
|
for w in cut(unicode_sentence, HMM=HMM):
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/__main__.py ../jieba/jieba/__main__.py
|
||
|
--- ./jieba/__main__.py 2014-11-07 23:07:02.563210412 +0800
|
||
|
+++ ../jieba/jieba/__main__.py 2014-11-07 23:07:02.079210422 +0800
|
||
|
@@ -40,7 +40,7 @@
|
||
|
ln = fp.readline()
|
||
|
while ln:
|
||
|
l = ln.rstrip('\r\n')
|
||
|
- print((delim.join(jieba.cut(ln.rstrip('\r\n'), cutall, hmm)).encode('utf-8')))
|
||
|
+ print(delim.join(jieba.cut(ln.rstrip('\r\n'), cutall, hmm)))
|
||
|
ln = fp.readline()
|
||
|
|
||
|
fp.close()
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/posseg/__init__.py ../jieba/jieba/posseg/__init__.py
|
||
|
--- ./jieba/posseg/__init__.py 2014-11-07 23:07:03.047210402 +0800
|
||
|
+++ ../jieba/jieba/posseg/__init__.py 2014-11-07 23:19:40.883194772 +0800
|
||
|
@@ -1,4 +1,3 @@
|
||
|
-
|
||
|
import re
|
||
|
import os
|
||
|
from . import viterbi
|
||
|
@@ -18,14 +17,14 @@
|
||
|
_curpath = os.path.normpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
|
||
|
|
||
|
result = {}
|
||
|
- with open(f_name, "r") as f:
|
||
|
+ with open(f_name, "rb") as f:
|
||
|
for line in f:
|
||
|
line = line.strip()
|
||
|
if not line:
|
||
|
continue
|
||
|
- word, _, tag = line.split(' ')
|
||
|
- result[word.decode('utf-8')] = tag
|
||
|
-
|
||
|
+ line = line.decode("utf-8")
|
||
|
+ word, _, tag = line.split(" ")
|
||
|
+ result[word] = tag
|
||
|
if not isJython:
|
||
|
return result
|
||
|
|
||
|
@@ -46,7 +45,7 @@
|
||
|
|
||
|
state = {}
|
||
|
abs_path = os.path.join(_curpath, CHAR_STATE_TAB_P)
|
||
|
- with open(abs_path, 'r') as f:
|
||
|
+ with open(abs_path, 'rb') as f:
|
||
|
state = marshal.load(f)
|
||
|
f.closed
|
||
|
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./jieba/posseg/viterbi.py ../jieba/jieba/posseg/viterbi.py
|
||
|
--- ./jieba/posseg/viterbi.py 2014-11-07 23:07:03.079210402 +0800
|
||
|
+++ ../jieba/jieba/posseg/viterbi.py 2014-11-07 23:07:02.095210422 +0800
|
||
|
@@ -3,14 +3,13 @@
|
||
|
MIN_INF = float("-inf")
|
||
|
|
||
|
def get_top_states(t_state_v, K=4):
|
||
|
- items = list(t_state_v.items())
|
||
|
- topK = sorted(items, key=operator.itemgetter(1), reverse=True)[:K]
|
||
|
+ topK = sorted(t_state_v.items(), key=operator.itemgetter(1), reverse=True)[:K]
|
||
|
return [x[0] for x in topK]
|
||
|
|
||
|
def viterbi(obs, states, start_p, trans_p, emit_p):
|
||
|
V = [{}] #tabular
|
||
|
mem_path = [{}]
|
||
|
- all_states = list(trans_p.keys())
|
||
|
+ all_states = trans_p.keys()
|
||
|
for y in states.get(obs[0], all_states): #init
|
||
|
V[0][y] = start_p[y] + emit_p[y].get(obs[0], MIN_FLOAT)
|
||
|
mem_path[0][y] = ''
|
||
|
@@ -18,9 +17,9 @@
|
||
|
V.append({})
|
||
|
mem_path.append({})
|
||
|
#prev_states = get_top_states(V[t-1])
|
||
|
- prev_states = [x for x in list(mem_path[t-1].keys()) if len(trans_p[x]) > 0]
|
||
|
+ prev_states = [x for x in mem_path[t-1].keys() if len(trans_p[x]) > 0]
|
||
|
|
||
|
- prev_states_expect_next = set((y for x in prev_states for y in list(trans_p[x].keys())))
|
||
|
+ prev_states_expect_next = set((y for x in prev_states for y in trans_p[x].keys()))
|
||
|
obs_states = set(states.get(obs[t], all_states)) & prev_states_expect_next
|
||
|
|
||
|
if not obs_states:
|
||
|
@@ -31,7 +30,7 @@
|
||
|
V[t][y] = prob
|
||
|
mem_path[t][y] = state
|
||
|
|
||
|
- last = [(V[-1][y], y) for y in list(mem_path[-1].keys())]
|
||
|
+ last = [(V[-1][y], y) for y in mem_path[-1].keys()]
|
||
|
#if len(last)==0:
|
||
|
#print obs
|
||
|
prob, state = max(last)
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./README.md ../jieba/README.md
|
||
|
--- ./README.md 2014-11-07 23:07:02.067210423 +0800
|
||
|
+++ ../jieba/README.md 2014-11-07 23:24:49.263188412 +0800
|
||
|
@@ -4,6 +4,9 @@
|
||
|
"Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation module.
|
||
|
- _Scroll down for English documentation._
|
||
|
|
||
|
+注意!
|
||
|
+========
|
||
|
+这个branch `jieba3k` 是专门用于Python3.x的版本
|
||
|
|
||
|
特点
|
||
|
========
|
||
|
@@ -68,16 +71,16 @@
|
||
|
import jieba
|
||
|
|
||
|
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||
|
-print "Full Mode:", "/ ".join(seg_list) # 全模式
|
||
|
+print("Full Mode:", "/ ".join(seg_list)) # 全模式
|
||
|
|
||
|
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
|
||
|
-print "Default Mode:", "/ ".join(seg_list) # 精确模式
|
||
|
+print("Default Mode:", "/ ".join(seg_list)) # 精确模式
|
||
|
|
||
|
seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
|
||
|
-print ", ".join(seg_list)
|
||
|
+print(", ".join(seg_list))
|
||
|
|
||
|
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||
|
-print ", ".join(seg_list)
|
||
|
+print(", ".join(seg_list))
|
||
|
```
|
||
|
|
||
|
输出:
|
||
|
@@ -174,7 +177,7 @@
|
||
|
>>> import jieba.posseg as pseg
|
||
|
>>> words = pseg.cut("我爱北京天安门")
|
||
|
>>> for w in words:
|
||
|
-... print w.word, w.flag
|
||
|
+... print(w.word, w.flag)
|
||
|
...
|
||
|
我 r
|
||
|
爱 v
|
||
|
@@ -203,7 +206,7 @@
|
||
|
```python
|
||
|
result = jieba.tokenize(u'永和服装饰品有限公司')
|
||
|
for tk in result:
|
||
|
- print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
|
||
|
+ print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||
|
```
|
||
|
|
||
|
```
|
||
|
@@ -219,7 +222,7 @@
|
||
|
```python
|
||
|
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
|
||
|
for tk in result:
|
||
|
- print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
|
||
|
+ print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||
|
```
|
||
|
|
||
|
```
|
||
|
@@ -408,16 +411,16 @@
|
||
|
import jieba
|
||
|
|
||
|
seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
|
||
|
-print "Full Mode:", "/ ".join(seg_list) # 全模式
|
||
|
+print("Full Mode:", "/ ".join(seg_list)) # 全模式
|
||
|
|
||
|
seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
|
||
|
-print "Default Mode:", "/ ".join(seg_list) # 默认模式
|
||
|
+print("Default Mode:", "/ ".join(seg_list)) # 默认模式
|
||
|
|
||
|
seg_list = jieba.cut("他来到了网易杭研大厦")
|
||
|
-print ", ".join(seg_list)
|
||
|
+print(", ".join(seg_list))
|
||
|
|
||
|
seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
|
||
|
-print ", ".join(seg_list)
|
||
|
+print(", ".join(seg_list))
|
||
|
```
|
||
|
|
||
|
Output:
|
||
|
@@ -483,7 +486,7 @@
|
||
|
>>> import jieba.posseg as pseg
|
||
|
>>> words = pseg.cut("我爱北京天安门")
|
||
|
>>> for w in words:
|
||
|
-... print w.word, w.flag
|
||
|
+... print(w.word, w.flag)
|
||
|
...
|
||
|
我 r
|
||
|
爱 v
|
||
|
@@ -512,7 +515,7 @@
|
||
|
```python
|
||
|
result = jieba.tokenize(u'永和服装饰品有限公司')
|
||
|
for tk in result:
|
||
|
- print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
|
||
|
+ print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||
|
```
|
||
|
|
||
|
```
|
||
|
@@ -528,7 +531,7 @@
|
||
|
```python
|
||
|
result = jieba.tokenize(u'永和服装饰品有限公司',mode='search')
|
||
|
for tk in result:
|
||
|
- print "word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2])
|
||
|
+ print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||
|
```
|
||
|
|
||
|
```
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./setup.py ../jieba/setup.py
|
||
|
--- ./setup.py 2014-11-07 23:07:02.067210423 +0800
|
||
|
+++ ../jieba/setup.py 2014-11-07 23:07:02.095210422 +0800
|
||
|
@@ -1,5 +1,5 @@
|
||
|
from distutils.core import setup
|
||
|
-setup(name='jieba',
|
||
|
+setup(name='jieba3k',
|
||
|
version='0.34',
|
||
|
description='Chinese Words Segementation Utilities',
|
||
|
author='Sun, Junyi',
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/extract_topic.py ../jieba/test/extract_topic.py
|
||
|
--- ./test/extract_topic.py 2014-11-07 23:07:03.707210389 +0800
|
||
|
+++ ../jieba/test/extract_topic.py 2014-11-07 23:07:02.095210422 +0800
|
||
|
@@ -51,13 +51,13 @@
|
||
|
print("training...")
|
||
|
|
||
|
nmf = decomposition.NMF(n_components=n_topic).fit(tfidf)
|
||
|
-print(("done in %0.3fs." % (time.time() - t0)))
|
||
|
+print("done in %0.3fs." % (time.time() - t0))
|
||
|
|
||
|
# Inverse the vectorizer vocabulary to be able
|
||
|
feature_names = count_vect.get_feature_names()
|
||
|
|
||
|
for topic_idx, topic in enumerate(nmf.components_):
|
||
|
- print(("Topic #%d:" % topic_idx))
|
||
|
- print((" ".join([feature_names[i]
|
||
|
- for i in topic.argsort()[:-n_top_words - 1:-1]])))
|
||
|
+ print("Topic #%d:" % topic_idx)
|
||
|
+ print(" ".join([feature_names[i]
|
||
|
+ for i in topic.argsort()[:-n_top_words - 1:-1]]))
|
||
|
print("")
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/jiebacmd.py ../jieba/test/jiebacmd.py
|
||
|
--- ./test/jiebacmd.py 2014-11-07 23:07:03.211210399 +0800
|
||
|
+++ ../jieba/test/jiebacmd.py 2014-11-07 23:07:02.099210422 +0800
|
||
|
@@ -23,6 +23,6 @@
|
||
|
break
|
||
|
line = line.strip()
|
||
|
for word in jieba.cut(line):
|
||
|
- print(word.encode(default_encoding))
|
||
|
+ print(word)
|
||
|
|
||
|
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/jieba_test.py ../jieba/test/jieba_test.py
|
||
|
--- ./test/jieba_test.py 2014-11-07 23:07:03.947210384 +0800
|
||
|
+++ ../jieba/test/jieba_test.py 2014-11-07 23:07:02.099210422 +0800
|
||
|
@@ -1,5 +1,6 @@
|
||
|
#-*-coding: utf-8 -*-
|
||
|
import sys
|
||
|
+import imp
|
||
|
sys.path.append("../")
|
||
|
import unittest
|
||
|
import types
|
||
|
@@ -97,7 +98,7 @@
|
||
|
|
||
|
class JiebaTestCase(unittest.TestCase):
|
||
|
def setUp(self):
|
||
|
- reload(jieba)
|
||
|
+ imp.reload(jieba)
|
||
|
|
||
|
def tearDown(self):
|
||
|
pass
|
||
|
@@ -151,7 +152,7 @@
|
||
|
|
||
|
def testTokenize(self):
|
||
|
for content in test_contents:
|
||
|
- result = jieba.tokenize(content.decode('utf-8'))
|
||
|
+ result = jieba.tokenize(content)
|
||
|
assert isinstance(result, types.GeneratorType), "Test Tokenize Generator error"
|
||
|
result = list(result)
|
||
|
assert isinstance(result, list), "Test Tokenize error on content: %s" % content
|
||
|
@@ -180,7 +181,7 @@
|
||
|
|
||
|
def testTokenize_NOHMM(self):
|
||
|
for content in test_contents:
|
||
|
- result = jieba.tokenize(content.decode('utf-8'),HMM=False)
|
||
|
+ result = jieba.tokenize(content,HMM=False)
|
||
|
assert isinstance(result, types.GeneratorType), "Test Tokenize Generator error"
|
||
|
result = list(result)
|
||
|
assert isinstance(result, list), "Test Tokenize error on content: %s" % content
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/test_tokenize_no_hmm.py ../jieba/test/test_tokenize_no_hmm.py
|
||
|
--- ./test/test_tokenize_no_hmm.py 2014-11-07 23:07:04.031210382 +0800
|
||
|
+++ ../jieba/test/test_tokenize_no_hmm.py 2014-11-07 23:07:02.099210422 +0800
|
||
|
@@ -7,7 +7,6 @@
|
||
|
|
||
|
def cuttest(test_sent):
|
||
|
global g_mode
|
||
|
- test_sent = test_sent.decode('utf-8')
|
||
|
result = jieba.tokenize(test_sent,mode=g_mode,HMM=False)
|
||
|
for tk in result:
|
||
|
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|
||
|
diff -d -r -u '--exclude=.git' '--exclude=prob_*.py' '--exclude=char_state_tab.py' ./test/test_tokenize.py ../jieba/test/test_tokenize.py
|
||
|
--- ./test/test_tokenize.py 2014-11-07 23:07:04.071210381 +0800
|
||
|
+++ ../jieba/test/test_tokenize.py 2014-11-07 23:07:02.099210422 +0800
|
||
|
@@ -7,7 +7,6 @@
|
||
|
|
||
|
def cuttest(test_sent):
|
||
|
global g_mode
|
||
|
- test_sent = test_sent.decode('utf-8')
|
||
|
result = jieba.tokenize(test_sent,mode=g_mode)
|
||
|
for tk in result:
|
||
|
print("word %s\t\t start: %d \t\t end:%d" % (tk[0],tk[1],tk[2]))
|