# 演示: PolarDB-X CDC 导入 Elasticsearch 本示例我们通过演示 PolarDB-X 借助 Flink-CDC 将数据导入至 Elasticsearch 来介绍 PolarDB-X 的增量订阅能力,你可以前往:[PolarDB-X](https://github.com/ApsaraDB/galaxysql) 了解更多细节。 ### 准备教程所需要的组件 我们假设你运行在一台 MacOS 或者 Linux 机器上,并且已经安装 docker. #### 配置并启动容器 配置 `docker-compose.yml`。 ```yaml version: '2.1' services: polardbx: polardbx: image: polardbx/polardb-x:2.0.1 container_name: polardbx ports: - "8527:8527" elasticsearch: image: 'elastic/elasticsearch:7.6.0' container_name: elasticsearch environment: - cluster.name=docker-cluster - bootstrap.memory_lock=true - ES_JAVA_OPTS=-Xms512m -Xmx512m - discovery.type=single-node ports: - '9200:9200' - '9300:9300' ulimits: memlock: soft: -1 hard: -1 nofile: soft: 65536 hard: 65536 kibana: image: 'elastic/kibana:7.6.0' container_name: kibana ports: - '5601:5601' volumes: - '/var/run/docker.sock:/var/run/docker.sock' ``` 该 Docker Compose 中包含的容器有: - PolarDB-X: 商品表 `products` 和 订单表 `orders` 将存储在该数据库中, 这两张表将进行关联,得到一张包含更多信息的订单表 `enriched_orders` - Elasticsearch: 最终的订单表 `enriched_orders` 将写到 Elasticsearch - Kibana: 用来可视化 ElasticSearch 的数据 在 `docker-compose.yml` 所在目录下执行下面的命令来启动本教程需要的组件: ```shell docker-compose up -d ``` 该命令将以 detached 模式自动启动 Docker Compose 配置中定义的所有容器。你可以通过 docker ps 来观察上述的容器是否正常启动了,也可以通过访问 [http://localhost:5601/](http://localhost:5601/) 来查看 Kibana 是否运行正常 ### 准备数据: 使用已创建的用户名和密码进行登陆PolarDB-X。 ```shell mysql -h127.0.0.1 -P8527 -upolardbx_root -p"123456" ``` ```sql CREATE DATABASE mydb; USE mydb; -- 创建一张产品表,并写入一些数据 CREATE TABLE products ( id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY, name VARCHAR(255) NOT NULL, description VARCHAR(512) ) AUTO_INCREMENT = 101; INSERT INTO products VALUES (default,"scooter","Small 2-wheel scooter"), (default,"car battery","12V car battery"), (default,"12-pack drill bits","12-pack of drill bits with sizes ranging from #40 to #3"), (default,"hammer","12oz carpenter's hammer"), (default,"hammer","14oz carpenter's hammer"), (default,"hammer","16oz carpenter's hammer"), (default,"rocks","box of assorted rocks"), (default,"jacket","water resistent black wind breaker"), (default,"spare tire","24 inch spare tire"); -- 创建一张订单表,并写入一些数据 CREATE TABLE orders ( order_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY, order_date DATETIME NOT NULL, customer_name VARCHAR(255) NOT NULL, price DECIMAL(10, 5) NOT NULL, product_id INTEGER NOT NULL, order_status BOOLEAN NOT NULL -- Whether order has been placed ) AUTO_INCREMENT = 10001; INSERT INTO orders VALUES (default, '2020-07-30 10:08:22', 'Jark', 50.50, 102, false), (default, '2020-07-30 10:11:09', 'Sally', 15.00, 105, false), (default, '2020-07-30 12:00:30', 'Edward', 25.25, 106, false); ``` ### 下载 Flink 和所需要的依赖包 1. 下载 [Flink 1.16.0](https://archive.apache.org/dist/flink/flink-1.16.0/flink-1.16.0-bin-scala_2.12.tgz) 并将其解压至目录 `flink-1.16.0` 2. 下载下面列出的依赖包,并将它们放到目录 `flink-1.16.0/lib/` 下 ```下载链接只对已发布的版本有效, SNAPSHOT 版本需要本地编译``` - 用于订阅PolarDB-X Binlog: [flink-sql-connector-mysql-cdc-2.3.0.jar](https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-mysql-cdc/2.3.0/flink-sql-connector-mysql-cdc-2.3.0.jar) - 用于写入Elasticsearch: [flink-sql-connector-elasticsearch7-1.16.0.jar](https://repo.maven.apache.org/maven2/org/apache/flink/flink-sql-connector-elasticsearch7/1.16.0/flink-sql-connector-elasticsearch7-1.16.0.jar) 3. 启动flink服务: ```shell ./bin/start-cluster.sh ``` 我们可以访问 [http://localhost:8081/](http://localhost:8081/) 看到Flink正常运行: ![Flink UI](/_static/fig/mysql-postgress-tutorial/flink-ui.png "Flink UI") 4. 启动Flink SQL CLI: ```shell ./bin/sql-client.sh ``` ### 在 Flink SQL CLI 中使用 Flink DDL 创建表 ```sql -- 设置间隔时间为3秒 Flink SQL> SET execution.checkpointing.interval = 3s; -- 创建source1 -订单表 Flink SQL> CREATE TABLE orders ( order_id INT, order_date TIMESTAMP(0), customer_name STRING, price DECIMAL(10, 5), product_id INT, order_status BOOLEAN, PRIMARY KEY (order_id) NOT ENFORCED ) WITH ( 'connector' = 'mysql-cdc', 'hostname' = '127.0.0.1', 'port' = '8527', 'username' = 'polardbx_root', 'password' = '123456', 'database-name' = 'mydb', 'table-name' = 'orders' ); -- 创建source2 -产品表 CREATE TABLE products ( id INT, name STRING, description STRING, PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'mysql-cdc', 'hostname' = '127.0.0.1', 'port' = '8527', 'username' = 'polardbx_root', 'password' = '123456', 'database-name' = 'mydb', 'table-name' = 'products' ); -- 创建sink - 关联后的结果表 Flink SQL> CREATE TABLE enriched_orders ( order_id INT, order_date TIMESTAMP(0), customer_name STRING, price DECIMAL(10, 5), product_id INT, order_status BOOLEAN, product_name STRING, product_description STRING, PRIMARY KEY (order_id) NOT ENFORCED ) WITH ( 'connector' = 'elasticsearch-7', 'hosts' = 'http://localhost:9200', 'index' = 'enriched_orders' ); -- 执行读取和写入 Flink SQL> INSERT INTO enriched_orders SELECT o.order_id, o.order_date, o.customer_name, o.price, o.product_id, o.order_status, p.name, p.description FROM orders AS o LEFT JOIN products AS p ON o.product_id = p.id; ``` ### 在 Kibana 中查看数据 访问 [http://localhost:5601/app/kibana#/management/kibana/index_pattern](http://localhost:5601/app/kibana#/management/kibana/index_pattern) 创建 index pattern `enriched_orders`,之后可以在 [http://localhost:5601/app/kibana#/discover](http://localhost:5601/app/kibana#/discover) 看到写入的数据了。 ### 修改监听表数据,查看增量数据变动 在PolarDB-X中依次执行如下修改操作,每执行一步就刷新一次 Kibana,可以看到 Kibana 中显示的订单数据将实时更新。 ```sql INSERT INTO orders VALUES (default, '2020-07-30 15:22:00', 'Jark', 29.71, 104, false); UPDATE orders SET order_status = true WHERE order_id = 10004; DELETE FROM orders WHERE order_id = 10004; ``` ### 环境清理 在 `docker-compose.yml` 文件所在的目录下执行如下命令停止所有容器: ```shell docker-compose down ``` 进入Flink的部署目录,停止 Flink 集群: ```shell ./bin/stop-cluster.sh ```