# Demo: Db2 CDC to Elasticsearch **1. Create `docker-compose.yml` file using following contents:** ``` version: '2.1' services: db2: image: ruanhang/db2-cdc-demo:v1 privileged: true ports: - 50000:50000 environment: - LICENSE=accept - DB2INSTANCE=db2inst1 - DB2INST1_PASSWORD=admin - DBNAME=testdb - ARCHIVE_LOGS=true elasticsearch: image: elastic/elasticsearch:7.6.0 environment: - cluster.name=docker-cluster - bootstrap.memory_lock=true - "ES_JAVA_OPTS=-Xms512m -Xmx512m" - discovery.type=single-node ports: - "9200:9200" - "9300:9300" ulimits: memlock: soft: -1 hard: -1 nofile: soft: 65536 hard: 65536 kibana: image: elastic/kibana:7.6.0 ports: - "5601:5601" volumes: - /var/run/docker.sock:/var/run/docker.sock ``` The Docker Compose environment consists of the following containers: - Db2: db2 server and a pre-populated `products` table in the database `testdb`. - Elasticsearch: store the result of the `products` table. - Kibana: mainly used to visualize the data in Elasticsearch To start all containers, run the following command in the directory that contains the docker-compose.yml file. ```shell docker-compose up -d ``` This command automatically starts all the containers defined in the Docker Compose configuration in a detached mode. Run docker ps to check whether these containers are running properly. You can also visit http://localhost:5601/ to see if Kibana is running normally. Don’t forget to run the following command to stop all containers after you finished the tutorial: ```shell docker-compose down ``` **2. Download following JAR package to `/lib`** *Download links are available only for stable releases, SNAPSHOT dependency need build by yourself. * - [flink-sql-connector-elasticsearch7-1.16.0.jar](https://repo.maven.apache.org/maven2/org/apache/flink/flink-sql-connector-elasticsearch7/1.16.0/flink-sql-connector-elasticsearch7-1.16.0.jar) - [flink-sql-connector-db2-cdc-2.3.0.jar](https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-db2-cdc/2.3.0/flink-sql-connector-db2-cdc-2.3.0.jar) **3. Launch a Flink cluster and start a Flink SQL CLI** Execute following SQL statements in the Flink SQL CLI: ```sql -- Flink SQL -- checkpoint every 3000 milliseconds Flink SQL> SET execution.checkpointing.interval = 3s; Flink SQL> CREATE TABLE products ( ID INT NOT NULL, NAME STRING, DESCRIPTION STRING, WEIGHT DECIMAL(10,3), PRIMARY KEY (ID) NOT ENFORCED ) WITH ( 'connector' = 'db2-cdc', 'hostname' = 'localhost', 'port' = '50000', 'username' = 'db2inst1', 'password' = 'admin', 'database-name' = 'testdb', 'schema-name' = 'DB2INST1', 'table-name' = 'PRODUCTS' ); Flink SQL> CREATE TABLE es_products ( ID INT NOT NULL, NAME STRING, DESCRIPTION STRING, WEIGHT DECIMAL(10,3), PRIMARY KEY (ID) NOT ENFORCED ) WITH ( 'connector' = 'elasticsearch-7', 'hosts' = 'http://localhost:9200', 'index' = 'enriched_products_1' ); Flink SQL> INSERT INTO es_products SELECT * FROM products; ``` **4. Check result in Elasticsearch** Check the data has been written to Elasticsearch successfully, you can visit [Kibana](http://localhost:5601/) to see the data. **5. Make changes in Db2 and watch result in Elasticsearch** Enter Db2's container to make some changes in Db2, then you can see the result in Elasticsearch will change after executing every SQL statement: ```shell docker exec -it ${containerId} /bin/bash su db2inst1 db2 connect to testdb # enter db2 and execute sqls db2 ``` ```sql UPDATE DB2INST1.PRODUCTS SET DESCRIPTION='18oz carpenter hammer' WHERE ID=106; INSERT INTO DB2INST1.PRODUCTS VALUES (default,'jacket','water resistent white wind breaker',0.2); INSERT INTO DB2INST1.PRODUCTS VALUES (default,'scooter','Big 2-wheel scooter ',5.18); DELETE FROM DB2INST1.PRODUCTS WHERE ID=111; ```