# 基于 Flink CDC 构建 MySQL 和 Postgres 的 Streaming ETL 这篇教程将展示如何基于 Flink CDC 快速构建 MySQL 和 Postgres 的流式 ETL。本教程的演示都将在 Flink SQL CLI 中进行,只涉及 SQL,无需一行 Java/Scala 代码,也无需安装 IDE。 假设我们正在经营电子商务业务,商品和订单的数据存储在 MySQL 中,订单对应的物流信息存储在 Postgres 中。 对于订单表,为了方便进行分析,我们希望让它关联上其对应的商品和物流信息,构成一张宽表,并且实时把它写到 ElasticSearch 中。 接下来的内容将介绍如何使用 Flink Mysql/Postgres CDC 来实现这个需求,系统的整体架构如下图所示: ![Flink CDC Streaming ETL](/_static/fig/mysql-postgress-tutorial/flink-cdc-streaming-etl.png "Flink CDC Streaming ETL") ## 准备阶段 准备一台已经安装了 Docker 的 Linux 或者 MacOS 电脑。 ### 准备教程所需要的组件 接下来的教程将以 `docker-compose` 的方式准备所需要的组件。 使用下面的内容创建一个 `docker-compose.yml` 文件: ``` version: '2.1' services: postgres: image: debezium/example-postgres:1.1 ports: - "5432:5432" environment: - POSTGRES_PASSWORD=1234 - POSTGRES_DB=postgres - POSTGRES_USER=postgres - POSTGRES_PASSWORD=postgres mysql: image: debezium/example-mysql:1.1 ports: - "3306:3306" environment: - MYSQL_ROOT_PASSWORD=123456 - MYSQL_USER=mysqluser - MYSQL_PASSWORD=mysqlpw elasticsearch: image: elastic/elasticsearch:7.6.0 environment: - cluster.name=docker-cluster - bootstrap.memory_lock=true - "ES_JAVA_OPTS=-Xms512m -Xmx512m" - discovery.type=single-node ports: - "9200:9200" - "9300:9300" ulimits: memlock: soft: -1 hard: -1 nofile: soft: 65536 hard: 65536 kibana: image: elastic/kibana:7.6.0 ports: - "5601:5601" ``` 该 Docker Compose 中包含的容器有: - MySQL: 商品表 `products` 和 订单表 `orders` 将存储在该数据库中, 这两张表将和 Postgres 数据库中的物流表 `shipments`进行关联,得到一张包含更多信息的订单表 `enriched_orders` - Postgres: 物流表 `shipments` 将存储在该数据库中 - Elasticsearch: 最终的订单表 `enriched_orders` 将写到 Elasticsearch - Kibana: 用来可视化 ElasticSearch 的数据 在 `docker-compose.yml` 所在目录下执行下面的命令来启动本教程需要的组件: ```shell docker-compose up -d ``` 该命令将以 detached 模式自动启动 Docker Compose 配置中定义的所有容器。你可以通过 docker ps 来观察上述的容器是否正常启动了,也可以通过访问 [http://localhost:5601/](http://localhost:5601/) 来查看 Kibana 是否运行正常。 ### 下载 Flink 和所需要的依赖包 1. 下载 [Flink 1.13.2](https://downloads.apache.org/flink/flink-1.13.2/flink-1.13.2-bin-scala_2.11.tgz) 并将其解压至目录 `flink-1.13.2` 2. 下载下面列出的依赖包,并将它们放到目录 `flink-1.13.2/lib/` 下: **下载链接只在已发布的版本上可用** - [flink-sql-connector-elasticsearch7_2.11-1.13.2.jar](https://repo.maven.apache.org/maven2/org/apache/flink/flink-sql-connector-elasticsearch7_2.11/1.13.2/flink-sql-connector-elasticsearch7_2.11-1.13.2.jar) - [flink-sql-connector-mysql-cdc-2.1-SNAPSHOT.jar](https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-mysql-cdc/2.1-SNAPSHOT/flink-sql-connector-mysql-cdc-2.1-SNAPSHOT.jar) - [flink-sql-connector-postgres-cdc-2.1-SNAPSHOT.jar](https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-postgres-cdc/2.1-SNAPSHOT/flink-sql-connector-postgres-cdc-2.1-SNAPSHOT.jar) ### 准备数据 #### 在 MySQL 数据库中准备数据 1. 进入 MySQL 容器 ```shell docker-compose exec mysql mysql -uroot -p123456 ``` 2. 创建数据库和表 `products`,`orders`,并插入数据 ```sql -- MySQL CREATE DATABASE mydb; USE mydb; CREATE TABLE products ( id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY, name VARCHAR(255) NOT NULL, description VARCHAR(512) ); ALTER TABLE products AUTO_INCREMENT = 101; INSERT INTO products VALUES (default,"scooter","Small 2-wheel scooter"), (default,"car battery","12V car battery"), (default,"12-pack drill bits","12-pack of drill bits with sizes ranging from #40 to #3"), (default,"hammer","12oz carpenter's hammer"), (default,"hammer","14oz carpenter's hammer"), (default,"hammer","16oz carpenter's hammer"), (default,"rocks","box of assorted rocks"), (default,"jacket","water resistent black wind breaker"), (default,"spare tire","24 inch spare tire"); CREATE TABLE orders ( order_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY, order_date DATETIME NOT NULL, customer_name VARCHAR(255) NOT NULL, price DECIMAL(10, 5) NOT NULL, product_id INTEGER NOT NULL, order_status BOOLEAN NOT NULL -- Whether order has been placed ) AUTO_INCREMENT = 10001; INSERT INTO orders VALUES (default, '2020-07-30 10:08:22', 'Jark', 50.50, 102, false), (default, '2020-07-30 10:11:09', 'Sally', 15.00, 105, false), (default, '2020-07-30 12:00:30', 'Edward', 25.25, 106, false); ``` #### 在 Postgres 数据库中准备数据 1. 进入 Postgres 容器 ```shell docker-compose exec postgres psql -h localhost -U postgres ``` 2. 创建表 `shipments`,并插入数据 ```sql -- PG CREATE TABLE shipments ( shipment_id SERIAL NOT NULL PRIMARY KEY, order_id SERIAL NOT NULL, origin VARCHAR(255) NOT NULL, destination VARCHAR(255) NOT NULL, is_arrived BOOLEAN NOT NULL ); ALTER SEQUENCE public.shipments_shipment_id_seq RESTART WITH 1001; ALTER TABLE public.shipments REPLICA IDENTITY FULL; INSERT INTO shipments VALUES (default,10001,'Beijing','Shanghai',false), (default,10002,'Hangzhou','Shanghai',false), (default,10003,'Shanghai','Hangzhou',false); ``` ## 启动 Flink 集群和 Flink SQL CLI 1. 使用下面的命令跳转至 Flink 目录下 ``` cd flink-1.13.2 ``` 2. 使用下面的命令启动 Flink 集群 ```shell ./bin/start-cluster.sh ``` 启动成功的话,可以在 [http://localhost:8081/](http://localhost:8081/) 访问到 Flink Web UI,如下所示: ![Flink UI](/_static/fig/mysql-postgress-tutorial/flink-ui.png "Flink UI") 3. 使用下面的命令启动 Flink SQL CLI ```shell ./bin/sql-client.sh ``` 启动成功后,可以看到如下的页面: ![Flink SQL_Client](/_static/fig/mysql-postgress-tutorial/flink-sql-client.png "Flink SQL Client") ## 在 Flink SQL CLI 中使用 Flink DDL 创建表 首先,开启 checkpoint,每隔3秒做一次 checkpoint ```sql -- Flink SQL Flink SQL> SET execution.checkpointing.interval = 3s; ``` 然后, 对于数据库中的表 `products`, `orders`, `shipments`, 使用 Flink SQL CLI 创建对应的表,用于同步这些底层数据库表的数据 ```sql -- Flink SQL Flink SQL> CREATE TABLE products ( id INT, name STRING, description STRING, PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'mysql-cdc', 'hostname' = 'localhost', 'port' = '3306', 'username' = 'root', 'password' = '123456', 'database-name' = 'mydb', 'table-name' = 'products' ); Flink SQL> CREATE TABLE orders ( order_id INT, order_date TIMESTAMP(0), customer_name STRING, price DECIMAL(10, 5), product_id INT, order_status BOOLEAN, PRIMARY KEY (order_id) NOT ENFORCED ) WITH ( 'connector' = 'mysql-cdc', 'hostname' = 'localhost', 'port' = '3306', 'username' = 'root', 'password' = '123456', 'database-name' = 'mydb', 'table-name' = 'orders' ); Flink SQL> CREATE TABLE shipments ( shipment_id INT, order_id INT, origin STRING, destination STRING, is_arrived BOOLEAN, PRIMARY KEY (shipment_id) NOT ENFORCED ) WITH ( 'connector' = 'postgres-cdc', 'hostname' = 'localhost', 'port' = '5432', 'username' = 'postgres', 'password' = 'postgres', 'database-name' = 'postgres', 'schema-name' = 'public', 'table-name' = 'shipments' ); ``` 最后,创建 `enriched_orders` 表, 用来将关联后的订单数据写入 Elasticsearch 中 ```sql -- Flink SQL Flink SQL> CREATE TABLE enriched_orders ( order_id INT, order_date TIMESTAMP(0), customer_name STRING, price DECIMAL(10, 5), product_id INT, order_status BOOLEAN, product_name STRING, product_description STRING, shipment_id INT, origin STRING, destination STRING, is_arrived BOOLEAN, PRIMARY KEY (order_id) NOT ENFORCED ) WITH ( 'connector' = 'elasticsearch-7', 'hosts' = 'http://localhost:9200', 'index' = 'enriched_orders' ); ``` ## 关联订单数据并且将其写入 Elasticsearch 中 使用 Flink SQL 将订单表 `order` 与 商品表 `products`,物流信息表 `shipments` 关联,并将关联后的订单信息写入 Elasticsearch 中 ```sql -- Flink SQL Flink SQL> INSERT INTO enriched_orders SELECT o.*, p.name, p.description, s.shipment_id, s.origin, s.destination, s.is_arrived FROM orders AS o LEFT JOIN products AS p ON o.product_id = p.id LEFT JOIN shipments AS s ON o.order_id = s.order_id; ``` 现在,就可以在 Kibana 中看到包含商品和物流信息的订单数据。 首先访问 [http://localhost:5601/app/kibana#/management/kibana/index_pattern](http://localhost:5601/app/kibana#/management/kibana/index_pattern) 创建 index pattern `enriched_orders`. ![Create Index Pattern](/_static/fig/mysql-postgress-tutorial/kibana-create-index-pattern.png "Create Index Pattern") 然后就可以在 [http://localhost:5601/app/kibana#/discover](http://localhost:5601/app/kibana#/discover) 看到写入的数据了. ![Find enriched Orders](/_static/fig/mysql-postgress-tutorial/kibana-detailed-orders.png "Find enriched Orders") 接下来,修改 MySQL 和 Postgres 数据库中表的数据,Kibana中显示的订单数据也将实时更新: 1. 在 MySQL 的 `orders` 表中插入一条数据 ```sql --MySQL INSERT INTO orders VALUES (default, '2020-07-30 15:22:00', 'Jark', 29.71, 104, false); ``` 2. 在 Postgres 的 `shipment` 表中插入一条数据 ```sql --PG INSERT INTO shipments VALUES (default,10004,'Shanghai','Beijing',false); ``` 3. 在 MySQL 的 `orders` 表中更新订单的状态 ```sql --MySQL UPDATE orders SET order_status = true WHERE order_id = 10004; ``` 4. 在 Postgres 的 `shipment` 表中更新物流的状态 ```sql --PG UPDATE shipments SET is_arrived = true WHERE shipment_id = 1004; ``` 5. 在 MYSQL 的 `orders` 表中删除一条数据 ```sql --MySQL DELETE FROM orders WHERE order_id = 10004; ``` 每执行一步就刷新一次 Kibana,可以看到 Kibana 中显示的订单数据将实时更新,如下所示: ![Enriched Orders Changes](/_static/fig/mysql-postgress-tutorial/kibana-detailed-orders-changes.gif "Enriched Orders Changes") ## 环境清理 本教程结束后,在 `docker-compose.yml` 文件所在的目录下执行如下命令停止所有容器: ```shell docker-compose down ``` 在 Flink 所在目录 `flink-1.13.2` 下执行如下命令停止 Flink 集群: ```shell ./bin/stop-cluster.sh ```