# 演示: SqlServer CDC 导入 Elasticsearch **创建 `docker-compose.yml` 文件,内容如下所示:** ``` version: '2.1' services: sqlserver: image: mcr.microsoft.com/mssql/server:2019-latest container_name: sqlserver ports: - "1433:1433" environment: - "MSSQL_AGENT_ENABLED=true" - "MSSQL_PID=Standard" - "ACCEPT_EULA=Y" - "SA_PASSWORD=Password!" elasticsearch: image: elastic/elasticsearch:7.6.0 container_name: elasticsearch environment: - cluster.name=docker-cluster - bootstrap.memory_lock=true - "ES_JAVA_OPTS=-Xms512m -Xmx512m" - discovery.type=single-node ports: - "9200:9200" - "9300:9300" ulimits: memlock: soft: -1 hard: -1 nofile: soft: 65536 hard: 65536 kibana: image: elastic/kibana:7.6.0 container_name: kibana ports: - "5601:5601" volumes: - /var/run/docker.sock:/var/run/docker.sock ``` 该 Docker Compose 中包含的容器有: - SqlServer:SqlServer 数据库。 - Elasticsearch:`orders` 表将和 `products` 表进行 join,join 的结果写入 Elasticsearch 中。 - Kibana:可视化 Elasticsearch 中的数据。 在 docker-compose.yml 所在目录下运行如下命令以启动所有容器: ```shell docker-compose up -d ``` 该命令会以 detached 模式自动启动 Docker Compose 配置中定义的所有容器。 你可以通过 docker ps 来观察上述的容器是否正常启动了。 也可以访问 http://localhost:5601/ 来查看 Kibana 是否运行正常。 另外可以通过如下命令停止并删除所有的容器: ```shell docker-compose down ```` **下载以下 jar 包到 `/lib/`:** ```下载链接只对已发布的版本有效, SNAPSHOT 版本需要本地编译``` - [flink-sql-connector-elasticsearch7-1.16.0.jar](https://repo.maven.apache.org/maven2/org/apache/flink/flink-sql-connector-elasticsearch7/1.16.0/flink-sql-connector-elasticsearch7-1.16.0.jar) - [flink-sql-connector-sqlserver-cdc-2.3-SNAPSHOT.jar](https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-sqlserver-cdc/2.3-SNAPSHOT/flink-sql-connector-sqlserver-cdc-2.3-SNAPSHOT.jar) **在 SqlServer 数据库中准备数据** 创建数据库和表 `products`,`orders`,并插入数据: ```sql -- Sqlserver CREATE DATABASE inventory; GO USE inventory; EXEC sys.sp_cdc_enable_db; -- Create and populate our products using a single insert with many rows CREATE TABLE products ( id INTEGER IDENTITY(101,1) NOT NULL PRIMARY KEY, name VARCHAR(255) NOT NULL, description VARCHAR(512), weight FLOAT ); INSERT INTO products(name,description,weight) VALUES ('scooter','Small 2-wheel scooter',3.14); INSERT INTO products(name,description,weight) VALUES ('car battery','12V car battery',8.1); INSERT INTO products(name,description,weight) VALUES ('12-pack drill bits','12-pack of drill bits with sizes ranging from #40 to #3',0.8); INSERT INTO products(name,description,weight) VALUES ('hammer','12oz carpenter''s hammer',0.75); INSERT INTO products(name,description,weight) VALUES ('hammer','14oz carpenter''s hammer',0.875); INSERT INTO products(name,description,weight) VALUES ('hammer','16oz carpenter''s hammer',1.0); INSERT INTO products(name,description,weight) VALUES ('rocks','box of assorted rocks',5.3); INSERT INTO products(name,description,weight) VALUES ('jacket','water resistent black wind breaker',0.1); INSERT INTO products(name,description,weight) VALUES ('spare tire','24 inch spare tire',22.2); EXEC sys.sp_cdc_enable_table @source_schema = 'dbo', @source_name = 'products', @role_name = NULL, @supports_net_changes = 0; -- Create some very simple orders CREATE TABLE orders ( id INTEGER IDENTITY(10001,1) NOT NULL PRIMARY KEY, order_date DATE NOT NULL, purchaser INTEGER NOT NULL, quantity INTEGER NOT NULL, product_id INTEGER NOT NULL, FOREIGN KEY (product_id) REFERENCES products(id) ); INSERT INTO orders(order_date,purchaser,quantity,product_id) VALUES ('16-JAN-2016', 1001, 1, 102); INSERT INTO orders(order_date,purchaser,quantity,product_id) VALUES ('17-JAN-2016', 1002, 2, 105); INSERT INTO orders(order_date,purchaser,quantity,product_id) VALUES ('19-FEB-2016', 1002, 2, 106); INSERT INTO orders(order_date,purchaser,quantity,product_id) VALUES ('21-FEB-2016', 1003, 1, 107); EXEC sys.sp_cdc_enable_table @source_schema = 'dbo', @source_name = 'orders', @role_name = NULL, @supports_net_changes = 0; GO ``` **然后启动 Flink 集群,再启动 SQL CLI:** ```sql -- Flink SQL -- checkpoint every 3000 milliseconds Flink SQL> SET execution.checkpointing.interval = 3s; Flink SQL> CREATE TABLE products ( id INT, name STRING, description STRING, PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'sqlserver-cdc', 'hostname' = 'localhost', 'port' = '1433', 'username' = 'sa', 'password' = 'Password!', 'database-name' = 'inventory', 'schema-name' = 'dbo', 'table-name' = 'products' ); Flink SQL> CREATE TABLE orders ( id INT, order_date DATE, purchaser INT, quantity INT, product_id INT, PRIMARY KEY (id) NOT ENFORCED ) WITH ( 'connector' = 'sqlserver-cdc', 'hostname' = 'localhost', 'port' = '1433', 'username' = 'sa', 'password' = 'Password!', 'database-name' = 'inventory', 'schema-name' = 'dbo', 'table-name' = 'orders' ); Flink SQL> CREATE TABLE enriched_orders ( order_id INT, order_date DATE, purchaser INT, quantity INT, product_name STRING, product_description STRING, PRIMARY KEY (order_id) NOT ENFORCED ) WITH ( 'connector' = 'elasticsearch-7', 'hosts' = 'http://localhost:9200', 'index' = 'enriched_orders_1' ); Flink SQL> INSERT INTO enriched_orders SELECT o.id,o.order_date,o.purchaser,o.quantity, p.name, p.description FROM orders AS o LEFT JOIN products AS p ON o.product_id = p.id; ``` **检查 ElasticSearch 中的结果** 检查最终的结果是否写入 ElasticSearch 中,可以在 [Kibana](http://localhost:5601/) 看到 ElasticSearch 中的数据。 **在 SqlServer 制造一些变更,观察 ElasticSearch 中的结果** 通过如下的 SQL 语句对 SqlServer 数据库进行一些修改,然后就可以看到每执行一条 SQL 语句,Elasticsearch 中的数据都会实时更新。 ```sql INSERT INTO orders(order_date,purchaser,quantity,product_id) VALUES ('22-FEB-2016', 1006, 22, 107); GO UPDATE orders SET quantity = 11 WHERE id = 10001; GO DELETE FROM orders WHERE id = 10004; GO ```