|
|
|
|
# 基于 Flink CDC 构建 MySQL 和 Postgres 的 Streaming ETL
|
|
|
|
|
|
|
|
|
|
这篇教程将展示如何基于 Flink CDC 快速构建 MySQL 和 Postgres 的流式 ETL。本教程的演示都将在 Flink SQL CLI 中进行,只涉及 SQL,无需一行 Java/Scala 代码,也无需安装 IDE。
|
|
|
|
|
|
|
|
|
|
假设我们正在经营电子商务业务,商品和订单的数据存储在 MySQL 中,订单对应的物流信息存储在 Postgres 中。
|
|
|
|
|
对于订单表,为了方便进行分析,我们希望让它关联上其对应的商品和物流信息,构成一张宽表,并且实时把它写到 ElasticSearch 中。
|
|
|
|
|
|
|
|
|
|
接下来的内容将介绍如何使用 Flink Mysql/Postgres CDC 来实现这个需求,系统的整体架构如下图所示:
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
## 准备阶段
|
|
|
|
|
准备一台已经安装了 Docker 的 Linux 或者 MacOS 电脑。
|
|
|
|
|
|
|
|
|
|
### 准备教程所需要的组件
|
|
|
|
|
接下来的教程将以 `docker-compose` 的方式准备所需要的组件。
|
|
|
|
|
|
|
|
|
|
使用下面的内容创建一个 `docker-compose.yml` 文件:
|
|
|
|
|
```
|
|
|
|
|
version: '2.1'
|
|
|
|
|
services:
|
|
|
|
|
postgres:
|
|
|
|
|
image: debezium/example-postgres:1.1
|
|
|
|
|
ports:
|
|
|
|
|
- "5432:5432"
|
|
|
|
|
environment:
|
|
|
|
|
- POSTGRES_DB=postgres
|
|
|
|
|
- POSTGRES_USER=postgres
|
|
|
|
|
- POSTGRES_PASSWORD=postgres
|
|
|
|
|
mysql:
|
|
|
|
|
image: debezium/example-mysql:1.1
|
|
|
|
|
ports:
|
|
|
|
|
- "3306:3306"
|
|
|
|
|
environment:
|
|
|
|
|
- MYSQL_ROOT_PASSWORD=123456
|
|
|
|
|
- MYSQL_USER=mysqluser
|
|
|
|
|
- MYSQL_PASSWORD=mysqlpw
|
|
|
|
|
elasticsearch:
|
|
|
|
|
image: elastic/elasticsearch:7.6.0
|
|
|
|
|
environment:
|
|
|
|
|
- cluster.name=docker-cluster
|
|
|
|
|
- bootstrap.memory_lock=true
|
|
|
|
|
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
|
|
|
|
|
- discovery.type=single-node
|
|
|
|
|
ports:
|
|
|
|
|
- "9200:9200"
|
|
|
|
|
- "9300:9300"
|
|
|
|
|
ulimits:
|
|
|
|
|
memlock:
|
|
|
|
|
soft: -1
|
|
|
|
|
hard: -1
|
|
|
|
|
nofile:
|
|
|
|
|
soft: 65536
|
|
|
|
|
hard: 65536
|
|
|
|
|
kibana:
|
|
|
|
|
image: elastic/kibana:7.6.0
|
|
|
|
|
ports:
|
|
|
|
|
- "5601:5601"
|
|
|
|
|
```
|
|
|
|
|
该 Docker Compose 中包含的容器有:
|
|
|
|
|
- MySQL: 商品表 `products` 和 订单表 `orders` 将存储在该数据库中, 这两张表将和 Postgres 数据库中的物流表 `shipments`进行关联,得到一张包含更多信息的订单表 `enriched_orders`
|
|
|
|
|
- Postgres: 物流表 `shipments` 将存储在该数据库中
|
|
|
|
|
- Elasticsearch: 最终的订单表 `enriched_orders` 将写到 Elasticsearch
|
|
|
|
|
- Kibana: 用来可视化 ElasticSearch 的数据
|
|
|
|
|
|
|
|
|
|
在 `docker-compose.yml` 所在目录下执行下面的命令来启动本教程需要的组件:
|
|
|
|
|
```shell
|
|
|
|
|
docker-compose up -d
|
|
|
|
|
```
|
|
|
|
|
该命令将以 detached 模式自动启动 Docker Compose 配置中定义的所有容器。你可以通过 docker ps 来观察上述的容器是否正常启动了,也可以通过访问 [http://localhost:5601/](http://localhost:5601/) 来查看 Kibana 是否运行正常。
|
|
|
|
|
|
|
|
|
|
### 下载 Flink 和所需要的依赖包
|
|
|
|
|
1. 下载 [Flink 1.13.2](https://archive.apache.org/dist/flink/flink-1.13.2/flink-1.13.2-bin-scala_2.11.tgz) 并将其解压至目录 `flink-1.13.2`
|
|
|
|
|
2. 下载下面列出的依赖包,并将它们放到目录 `flink-1.13.2/lib/` 下:
|
|
|
|
|
|
|
|
|
|
**下载链接只对已发布的版本有效, SNAPSHOT 版本需要本地编译**
|
|
|
|
|
- [flink-sql-connector-elasticsearch7_2.11-1.13.2.jar](https://repo.maven.apache.org/maven2/org/apache/flink/flink-sql-connector-elasticsearch7_2.11/1.13.2/flink-sql-connector-elasticsearch7_2.11-1.13.2.jar)
|
|
|
|
|
- [flink-sql-connector-mysql-cdc-2.3-SNAPSHOT.jar](https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-mysql-cdc/2.3-SNAPSHOT/flink-sql-connector-mysql-cdc-2.3-SNAPSHOT.jar)
|
|
|
|
|
- [flink-sql-connector-postgres-cdc-2.3-SNAPSHOT.jar](https://repo1.maven.org/maven2/com/ververica/flink-sql-connector-postgres-cdc/2.3-SNAPSHOT/flink-sql-connector-postgres-cdc-2.3-SNAPSHOT.jar)
|
|
|
|
|
|
|
|
|
|
### 准备数据
|
|
|
|
|
#### 在 MySQL 数据库中准备数据
|
|
|
|
|
1. 进入 MySQL 容器
|
|
|
|
|
```shell
|
|
|
|
|
docker-compose exec mysql mysql -uroot -p123456
|
|
|
|
|
```
|
|
|
|
|
2. 创建数据库和表 `products`,`orders`,并插入数据
|
|
|
|
|
```sql
|
|
|
|
|
-- MySQL
|
|
|
|
|
CREATE DATABASE mydb;
|
|
|
|
|
USE mydb;
|
|
|
|
|
CREATE TABLE products (
|
|
|
|
|
id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
|
|
|
|
|
name VARCHAR(255) NOT NULL,
|
|
|
|
|
description VARCHAR(512)
|
|
|
|
|
);
|
|
|
|
|
ALTER TABLE products AUTO_INCREMENT = 101;
|
|
|
|
|
|
|
|
|
|
INSERT INTO products
|
|
|
|
|
VALUES (default,"scooter","Small 2-wheel scooter"),
|
|
|
|
|
(default,"car battery","12V car battery"),
|
|
|
|
|
(default,"12-pack drill bits","12-pack of drill bits with sizes ranging from #40 to #3"),
|
|
|
|
|
(default,"hammer","12oz carpenter's hammer"),
|
|
|
|
|
(default,"hammer","14oz carpenter's hammer"),
|
|
|
|
|
(default,"hammer","16oz carpenter's hammer"),
|
|
|
|
|
(default,"rocks","box of assorted rocks"),
|
|
|
|
|
(default,"jacket","water resistent black wind breaker"),
|
|
|
|
|
(default,"spare tire","24 inch spare tire");
|
|
|
|
|
|
|
|
|
|
CREATE TABLE orders (
|
|
|
|
|
order_id INTEGER NOT NULL AUTO_INCREMENT PRIMARY KEY,
|
|
|
|
|
order_date DATETIME NOT NULL,
|
|
|
|
|
customer_name VARCHAR(255) NOT NULL,
|
|
|
|
|
price DECIMAL(10, 5) NOT NULL,
|
|
|
|
|
product_id INTEGER NOT NULL,
|
|
|
|
|
order_status BOOLEAN NOT NULL -- Whether order has been placed
|
|
|
|
|
) AUTO_INCREMENT = 10001;
|
|
|
|
|
|
|
|
|
|
INSERT INTO orders
|
|
|
|
|
VALUES (default, '2020-07-30 10:08:22', 'Jark', 50.50, 102, false),
|
|
|
|
|
(default, '2020-07-30 10:11:09', 'Sally', 15.00, 105, false),
|
|
|
|
|
(default, '2020-07-30 12:00:30', 'Edward', 25.25, 106, false);
|
|
|
|
|
```
|
|
|
|
|
#### 在 Postgres 数据库中准备数据
|
|
|
|
|
1. 进入 Postgres 容器
|
|
|
|
|
```shell
|
|
|
|
|
docker-compose exec postgres psql -h localhost -U postgres
|
|
|
|
|
```
|
|
|
|
|
2. 创建表 `shipments`,并插入数据
|
|
|
|
|
```sql
|
|
|
|
|
-- PG
|
|
|
|
|
CREATE TABLE shipments (
|
|
|
|
|
shipment_id SERIAL NOT NULL PRIMARY KEY,
|
|
|
|
|
order_id SERIAL NOT NULL,
|
|
|
|
|
origin VARCHAR(255) NOT NULL,
|
|
|
|
|
destination VARCHAR(255) NOT NULL,
|
|
|
|
|
is_arrived BOOLEAN NOT NULL
|
|
|
|
|
);
|
|
|
|
|
ALTER SEQUENCE public.shipments_shipment_id_seq RESTART WITH 1001;
|
|
|
|
|
ALTER TABLE public.shipments REPLICA IDENTITY FULL;
|
|
|
|
|
INSERT INTO shipments
|
|
|
|
|
VALUES (default,10001,'Beijing','Shanghai',false),
|
|
|
|
|
(default,10002,'Hangzhou','Shanghai',false),
|
|
|
|
|
(default,10003,'Shanghai','Hangzhou',false);
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 启动 Flink 集群和 Flink SQL CLI
|
|
|
|
|
|
|
|
|
|
1. 使用下面的命令跳转至 Flink 目录下
|
|
|
|
|
```
|
|
|
|
|
cd flink-1.13.2
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
2. 使用下面的命令启动 Flink 集群
|
|
|
|
|
```shell
|
|
|
|
|
./bin/start-cluster.sh
|
|
|
|
|
```
|
|
|
|
|
启动成功的话,可以在 [http://localhost:8081/](http://localhost:8081/) 访问到 Flink Web UI,如下所示:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
3. 使用下面的命令启动 Flink SQL CLI
|
|
|
|
|
```shell
|
|
|
|
|
./bin/sql-client.sh
|
|
|
|
|
```
|
|
|
|
|
启动成功后,可以看到如下的页面:
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
## 在 Flink SQL CLI 中使用 Flink DDL 创建表
|
|
|
|
|
首先,开启 checkpoint,每隔3秒做一次 checkpoint
|
|
|
|
|
```sql
|
|
|
|
|
-- Flink SQL
|
|
|
|
|
Flink SQL> SET execution.checkpointing.interval = 3s;
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
然后, 对于数据库中的表 `products`, `orders`, `shipments`, 使用 Flink SQL CLI 创建对应的表,用于同步这些底层数据库表的数据
|
|
|
|
|
```sql
|
|
|
|
|
-- Flink SQL
|
|
|
|
|
Flink SQL> CREATE TABLE products (
|
|
|
|
|
id INT,
|
|
|
|
|
name STRING,
|
|
|
|
|
description STRING,
|
|
|
|
|
PRIMARY KEY (id) NOT ENFORCED
|
|
|
|
|
) WITH (
|
|
|
|
|
'connector' = 'mysql-cdc',
|
|
|
|
|
'hostname' = 'localhost',
|
|
|
|
|
'port' = '3306',
|
|
|
|
|
'username' = 'root',
|
|
|
|
|
'password' = '123456',
|
|
|
|
|
'database-name' = 'mydb',
|
|
|
|
|
'table-name' = 'products'
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
Flink SQL> CREATE TABLE orders (
|
|
|
|
|
order_id INT,
|
|
|
|
|
order_date TIMESTAMP(0),
|
|
|
|
|
customer_name STRING,
|
|
|
|
|
price DECIMAL(10, 5),
|
|
|
|
|
product_id INT,
|
|
|
|
|
order_status BOOLEAN,
|
|
|
|
|
PRIMARY KEY (order_id) NOT ENFORCED
|
|
|
|
|
) WITH (
|
|
|
|
|
'connector' = 'mysql-cdc',
|
|
|
|
|
'hostname' = 'localhost',
|
|
|
|
|
'port' = '3306',
|
|
|
|
|
'username' = 'root',
|
|
|
|
|
'password' = '123456',
|
|
|
|
|
'database-name' = 'mydb',
|
|
|
|
|
'table-name' = 'orders'
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
Flink SQL> CREATE TABLE shipments (
|
|
|
|
|
shipment_id INT,
|
|
|
|
|
order_id INT,
|
|
|
|
|
origin STRING,
|
|
|
|
|
destination STRING,
|
|
|
|
|
is_arrived BOOLEAN,
|
|
|
|
|
PRIMARY KEY (shipment_id) NOT ENFORCED
|
|
|
|
|
) WITH (
|
|
|
|
|
'connector' = 'postgres-cdc',
|
|
|
|
|
'hostname' = 'localhost',
|
|
|
|
|
'port' = '5432',
|
|
|
|
|
'username' = 'postgres',
|
|
|
|
|
'password' = 'postgres',
|
|
|
|
|
'database-name' = 'postgres',
|
|
|
|
|
'schema-name' = 'public',
|
|
|
|
|
'table-name' = 'shipments'
|
|
|
|
|
);
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
最后,创建 `enriched_orders` 表, 用来将关联后的订单数据写入 Elasticsearch 中
|
|
|
|
|
```sql
|
|
|
|
|
-- Flink SQL
|
|
|
|
|
Flink SQL> CREATE TABLE enriched_orders (
|
|
|
|
|
order_id INT,
|
|
|
|
|
order_date TIMESTAMP(0),
|
|
|
|
|
customer_name STRING,
|
|
|
|
|
price DECIMAL(10, 5),
|
|
|
|
|
product_id INT,
|
|
|
|
|
order_status BOOLEAN,
|
|
|
|
|
product_name STRING,
|
|
|
|
|
product_description STRING,
|
|
|
|
|
shipment_id INT,
|
|
|
|
|
origin STRING,
|
|
|
|
|
destination STRING,
|
|
|
|
|
is_arrived BOOLEAN,
|
|
|
|
|
PRIMARY KEY (order_id) NOT ENFORCED
|
|
|
|
|
) WITH (
|
|
|
|
|
'connector' = 'elasticsearch-7',
|
|
|
|
|
'hosts' = 'http://localhost:9200',
|
|
|
|
|
'index' = 'enriched_orders'
|
|
|
|
|
);
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
## 关联订单数据并且将其写入 Elasticsearch 中
|
|
|
|
|
使用 Flink SQL 将订单表 `order` 与 商品表 `products`,物流信息表 `shipments` 关联,并将关联后的订单信息写入 Elasticsearch 中
|
|
|
|
|
```sql
|
|
|
|
|
-- Flink SQL
|
|
|
|
|
Flink SQL> INSERT INTO enriched_orders
|
|
|
|
|
SELECT o.*, p.name, p.description, s.shipment_id, s.origin, s.destination, s.is_arrived
|
|
|
|
|
FROM orders AS o
|
|
|
|
|
LEFT JOIN products AS p ON o.product_id = p.id
|
|
|
|
|
LEFT JOIN shipments AS s ON o.order_id = s.order_id;
|
|
|
|
|
```
|
|
|
|
|
现在,就可以在 Kibana 中看到包含商品和物流信息的订单数据。
|
|
|
|
|
|
|
|
|
|
首先访问 [http://localhost:5601/app/kibana#/management/kibana/index_pattern](http://localhost:5601/app/kibana#/management/kibana/index_pattern) 创建 index pattern `enriched_orders`.
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
然后就可以在 [http://localhost:5601/app/kibana#/discover](http://localhost:5601/app/kibana#/discover) 看到写入的数据了.
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
接下来,修改 MySQL 和 Postgres 数据库中表的数据,Kibana中显示的订单数据也将实时更新:
|
|
|
|
|
1. 在 MySQL 的 `orders` 表中插入一条数据
|
|
|
|
|
```sql
|
|
|
|
|
--MySQL
|
|
|
|
|
INSERT INTO orders
|
|
|
|
|
VALUES (default, '2020-07-30 15:22:00', 'Jark', 29.71, 104, false);
|
|
|
|
|
```
|
|
|
|
|
2. 在 Postgres 的 `shipment` 表中插入一条数据
|
|
|
|
|
```sql
|
|
|
|
|
--PG
|
|
|
|
|
INSERT INTO shipments
|
|
|
|
|
VALUES (default,10004,'Shanghai','Beijing',false);
|
|
|
|
|
```
|
|
|
|
|
3. 在 MySQL 的 `orders` 表中更新订单的状态
|
|
|
|
|
```sql
|
|
|
|
|
--MySQL
|
|
|
|
|
UPDATE orders SET order_status = true WHERE order_id = 10004;
|
|
|
|
|
```
|
|
|
|
|
4. 在 Postgres 的 `shipment` 表中更新物流的状态
|
|
|
|
|
```sql
|
|
|
|
|
--PG
|
|
|
|
|
UPDATE shipments SET is_arrived = true WHERE shipment_id = 1004;
|
|
|
|
|
```
|
|
|
|
|
5. 在 MYSQL 的 `orders` 表中删除一条数据
|
|
|
|
|
```sql
|
|
|
|
|
--MySQL
|
|
|
|
|
DELETE FROM orders WHERE order_id = 10004;
|
|
|
|
|
```
|
|
|
|
|
每执行一步就刷新一次 Kibana,可以看到 Kibana 中显示的订单数据将实时更新,如下所示:
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
## 环境清理
|
|
|
|
|
本教程结束后,在 `docker-compose.yml` 文件所在的目录下执行如下命令停止所有容器:
|
|
|
|
|
```shell
|
|
|
|
|
docker-compose down
|
|
|
|
|
```
|
|
|
|
|
在 Flink 所在目录 `flink-1.13.2` 下执行如下命令停止 Flink 集群:
|
|
|
|
|
```shell
|
|
|
|
|
./bin/stop-cluster.sh
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
|