You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 lines
5.9 KiB
Python
190 lines
5.9 KiB
Python
"""
|
|
python generate_imagematte_with_background_video.py \
|
|
--imagematte-dir ../matting-data/Distinctions/test \
|
|
--background-dir ../matting-data/BackgroundVideos_mp4/test \
|
|
--resolution 512 \
|
|
--out-dir ../matting-data/evaluation/distinction_motion_sd/ \
|
|
--random-seed 11
|
|
|
|
Seed:
|
|
10 - distinction-static
|
|
11 - distinction-motion
|
|
12 - adobe-static
|
|
13 - adobe-motion
|
|
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
import pims
|
|
import numpy as np
|
|
import random
|
|
from multiprocessing import Pool
|
|
from PIL import Image
|
|
# from tqdm import tqdm
|
|
from tqdm.contrib.concurrent import process_map
|
|
from torchvision import transforms
|
|
from torchvision.transforms import functional as F
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--imagematte-dir', type=str, required=True)
|
|
parser.add_argument('--background-dir', type=str, required=True)
|
|
parser.add_argument('--num-samples', type=int, default=20)
|
|
parser.add_argument('--num-frames', type=int, default=100)
|
|
parser.add_argument('--resolution', type=int, required=True)
|
|
parser.add_argument('--out-dir', type=str, required=True)
|
|
parser.add_argument('--random-seed', type=int)
|
|
parser.add_argument('--extension', type=str, default='.png')
|
|
args = parser.parse_args()
|
|
|
|
random.seed(args.random_seed)
|
|
|
|
imagematte_filenames = os.listdir(os.path.join(args.imagematte_dir, 'fgr'))
|
|
random.shuffle(imagematte_filenames)
|
|
|
|
background_filenames = [
|
|
"0000.mp4",
|
|
"0007.mp4",
|
|
"0008.mp4",
|
|
"0010.mp4",
|
|
"0013.mp4",
|
|
"0015.mp4",
|
|
"0016.mp4",
|
|
"0018.mp4",
|
|
"0021.mp4",
|
|
"0029.mp4",
|
|
"0033.mp4",
|
|
"0035.mp4",
|
|
"0039.mp4",
|
|
"0050.mp4",
|
|
"0052.mp4",
|
|
"0055.mp4",
|
|
"0060.mp4",
|
|
"0063.mp4",
|
|
"0087.mp4",
|
|
"0086.mp4",
|
|
"0090.mp4",
|
|
"0101.mp4",
|
|
"0110.mp4",
|
|
"0117.mp4",
|
|
"0120.mp4",
|
|
"0122.mp4",
|
|
"0123.mp4",
|
|
"0125.mp4",
|
|
"0128.mp4",
|
|
"0131.mp4",
|
|
"0172.mp4",
|
|
"0176.mp4",
|
|
"0181.mp4",
|
|
"0187.mp4",
|
|
"0193.mp4",
|
|
"0198.mp4",
|
|
"0220.mp4",
|
|
"0221.mp4",
|
|
"0224.mp4",
|
|
"0229.mp4",
|
|
"0233.mp4",
|
|
"0238.mp4",
|
|
"0241.mp4",
|
|
"0245.mp4",
|
|
"0246.mp4"
|
|
]
|
|
|
|
random.shuffle(background_filenames)
|
|
|
|
def lerp(a, b, percentage):
|
|
return a * (1 - percentage) + b * percentage
|
|
|
|
def motion_affine(*imgs):
|
|
config = dict(degrees=(-10, 10), translate=(0.1, 0.1),
|
|
scale_ranges=(0.9, 1.1), shears=(-5, 5), img_size=imgs[0][0].size)
|
|
angleA, (transXA, transYA), scaleA, (shearXA, shearYA) = transforms.RandomAffine.get_params(**config)
|
|
angleB, (transXB, transYB), scaleB, (shearXB, shearYB) = transforms.RandomAffine.get_params(**config)
|
|
|
|
T = len(imgs[0])
|
|
variation_over_time = random.random()
|
|
for t in range(T):
|
|
percentage = (t / (T - 1)) * variation_over_time
|
|
angle = lerp(angleA, angleB, percentage)
|
|
transX = lerp(transXA, transXB, percentage)
|
|
transY = lerp(transYA, transYB, percentage)
|
|
scale = lerp(scaleA, scaleB, percentage)
|
|
shearX = lerp(shearXA, shearXB, percentage)
|
|
shearY = lerp(shearYA, shearYB, percentage)
|
|
for img in imgs:
|
|
img[t] = F.affine(img[t], angle, (transX, transY), scale, (shearX, shearY), F.InterpolationMode.BILINEAR)
|
|
return imgs
|
|
|
|
|
|
def process(i):
|
|
imagematte_filename = imagematte_filenames[i % len(imagematte_filenames)]
|
|
background_filename = background_filenames[i % len(background_filenames)]
|
|
|
|
bgrs = pims.PyAVVideoReader(os.path.join(args.background_dir, background_filename))
|
|
|
|
out_path = os.path.join(args.out_dir, str(i).zfill(4))
|
|
os.makedirs(os.path.join(out_path, 'fgr'), exist_ok=True)
|
|
os.makedirs(os.path.join(out_path, 'pha'), exist_ok=True)
|
|
os.makedirs(os.path.join(out_path, 'com'), exist_ok=True)
|
|
os.makedirs(os.path.join(out_path, 'bgr'), exist_ok=True)
|
|
|
|
with Image.open(os.path.join(args.imagematte_dir, 'fgr', imagematte_filename)) as fgr, \
|
|
Image.open(os.path.join(args.imagematte_dir, 'pha', imagematte_filename)) as pha:
|
|
fgr = fgr.convert('RGB')
|
|
pha = pha.convert('L')
|
|
|
|
fgrs = [fgr] * args.num_frames
|
|
phas = [pha] * args.num_frames
|
|
fgrs, phas = motion_affine(fgrs, phas)
|
|
|
|
for t in range(args.num_frames):
|
|
fgr = fgrs[t]
|
|
pha = phas[t]
|
|
|
|
w, h = fgr.size
|
|
scale = args.resolution / max(h, w)
|
|
w, h = int(w * scale), int(h * scale)
|
|
|
|
fgr = fgr.resize((w, h))
|
|
pha = pha.resize((w, h))
|
|
|
|
if h < args.resolution:
|
|
pt = (args.resolution - h) // 2
|
|
pb = args.resolution - h - pt
|
|
else:
|
|
pt = 0
|
|
pb = 0
|
|
|
|
if w < args.resolution:
|
|
pl = (args.resolution - w) // 2
|
|
pr = args.resolution - w - pl
|
|
else:
|
|
pl = 0
|
|
pr = 0
|
|
|
|
fgr = F.pad(fgr, [pl, pt, pr, pb])
|
|
pha = F.pad(pha, [pl, pt, pr, pb])
|
|
|
|
if i // len(imagematte_filenames) % 2 == 1:
|
|
fgr = fgr.transpose(Image.FLIP_LEFT_RIGHT)
|
|
pha = pha.transpose(Image.FLIP_LEFT_RIGHT)
|
|
|
|
fgr.save(os.path.join(out_path, 'fgr', str(t).zfill(4) + args.extension))
|
|
pha.save(os.path.join(out_path, 'pha', str(t).zfill(4) + args.extension))
|
|
|
|
bgr = Image.fromarray(bgrs[t]).convert('RGB')
|
|
w, h = bgr.size
|
|
scale = args.resolution / min(h, w)
|
|
w, h = int(w * scale), int(h * scale)
|
|
bgr = bgr.resize((w, h))
|
|
bgr = F.center_crop(bgr, (args.resolution, args.resolution))
|
|
bgr.save(os.path.join(out_path, 'bgr', str(t).zfill(4) + args.extension))
|
|
|
|
pha = np.asarray(pha).astype(float)[:, :, None] / 255
|
|
com = Image.fromarray(np.uint8(np.asarray(fgr) * pha + np.asarray(bgr) * (1 - pha)))
|
|
com.save(os.path.join(out_path, 'com', str(t).zfill(4) + args.extension))
|
|
|
|
if __name__ == '__main__':
|
|
r = process_map(process, range(args.num_samples), max_workers=10)
|
|
|