You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
RobustVideoMatting/dataset/coco.py

103 lines
3.5 KiB
Python

import os
import numpy as np
import random
import json
import os
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.transforms import functional as F
from PIL import Image
class CocoPanopticDataset(Dataset):
def __init__(self,
imgdir: str,
anndir: str,
annfile: str,
transform=None):
with open(annfile) as f:
self.data = json.load(f)['annotations']
self.data = list(filter(lambda data: any(info['category_id'] == 1 for info in data['segments_info']), self.data))
self.imgdir = imgdir
self.anndir = anndir
self.transform = transform
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx]
img = self._load_img(data)
seg = self._load_seg(data)
if self.transform is not None:
img, seg = self.transform(img, seg)
return img, seg
def _load_img(self, data):
with Image.open(os.path.join(self.imgdir, data['file_name'].replace('.png', '.jpg'))) as img:
return img.convert('RGB')
def _load_seg(self, data):
with Image.open(os.path.join(self.anndir, data['file_name'])) as ann:
ann.load()
ann = np.array(ann, copy=False).astype(np.int32)
ann = ann[:, :, 0] + 256 * ann[:, :, 1] + 256 * 256 * ann[:, :, 2]
seg = np.zeros(ann.shape, np.uint8)
for segments_info in data['segments_info']:
if segments_info['category_id'] in [1, 27, 32]: # person, backpack, tie
seg[ann == segments_info['id']] = 255
return Image.fromarray(seg)
class CocoPanopticTrainAugmentation:
def __init__(self, size):
self.size = size
self.jitter = transforms.ColorJitter(0.1, 0.1, 0.1, 0.1)
def __call__(self, img, seg):
# Affine
params = transforms.RandomAffine.get_params(degrees=(-20, 20), translate=(0.1, 0.1),
scale_ranges=(1, 1), shears=(-10, 10), img_size=img.size)
img = F.affine(img, *params, interpolation=F.InterpolationMode.BILINEAR)
seg = F.affine(seg, *params, interpolation=F.InterpolationMode.NEAREST)
# Resize
params = transforms.RandomResizedCrop.get_params(img, scale=(0.5, 1), ratio=(0.7, 1.3))
img = F.resized_crop(img, *params, self.size, interpolation=F.InterpolationMode.BILINEAR)
seg = F.resized_crop(seg, *params, self.size, interpolation=F.InterpolationMode.NEAREST)
# Horizontal flip
if random.random() < 0.5:
img = F.hflip(img)
seg = F.hflip(seg)
# Color jitter
img = self.jitter(img)
# To tensor
img = F.to_tensor(img)
seg = F.to_tensor(seg)
return img, seg
class CocoPanopticValidAugmentation:
def __init__(self, size):
self.size = size
def __call__(self, img, seg):
# Resize
params = transforms.RandomResizedCrop.get_params(img, scale=(1, 1), ratio=(1., 1.))
img = F.resized_crop(img, *params, self.size, interpolation=F.InterpolationMode.BILINEAR)
seg = F.resized_crop(seg, *params, self.size, interpolation=F.InterpolationMode.NEAREST)
# To tensor
img = F.to_tensor(img)
seg = F.to_tensor(seg)
return img, seg