Add C++ Demo link

pull/28/head
DefTruth
parent 0bfe4fe408
commit 1431b38fea

@ -222,7 +222,7 @@ Speed is measured with `inference_speed_test.py` for reference.
## Third-party Resources
* NCNN C++ and Android Demo: [ncnn_Android_RobustVideoMatting](https://github.com/FeiGeChuanShu/ncnn_Android_RobustVideoMatting) from [FeiGeChuanShu](https://github.com/FeiGeChuanShu)
* ONNXRuntime C++ Demo: [lite.ai.toolkit](https://github.com/DefTruth/lite.ai.toolkit/blob/main/ort/cv/rvm.cpp) from [DefTruth](https://github.com/DefTruth)
* ONNXRuntime C++ Demo: [lite.ai.toolkit](https://github.com/DefTruth/lite.ai.toolkit/blob/main/ort/cv/rvm.cpp) and [demo](https://github.com/DefTruth/RobustVideoMatting.lite.ai.toolkit) from [DefTruth](https://github.com/DefTruth)
<br>

@ -216,7 +216,13 @@ convert_video = torch.hub.load("PeterL1n/RobustVideoMatting", "converter")
* 注释2图灵架构之前的 GPU 不支持 FP16 推理,所以 GTX 1080 Ti 使用 FP32。
* 注释3我们只测量张量吞吐量tensor throughput。 提供的视频转换脚本会慢得多,因为它不使用硬件视频编码/解码,也没有在并行线程上完成张量传输。如果您有兴趣在 Python 中实现硬件视频编码/解码,请参考 [PyNvCodec](https://github.com/NVIDIA/VideoProcessingFramework)。
<br>
<br>
## 第三方资源
* NCNN C++ and Android Demo: [ncnn_Android_RobustVideoMatting](https://github.com/FeiGeChuanShu/ncnn_Android_RobustVideoMatting) from [FeiGeChuanShu](https://github.com/FeiGeChuanShu)
* ONNXRuntime C++ Demo: [lite.ai.toolkit](https://github.com/DefTruth/lite.ai.toolkit/blob/main/ort/cv/rvm.cpp) and [demo](https://github.com/DefTruth/RobustVideoMatting.lite.ai.toolkit) from [DefTruth](https://github.com/DefTruth)
## 项目成员
* [Shanchuan Lin](https://www.linkedin.com/in/shanchuanlin/)

Loading…
Cancel
Save