You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
102 lines
3.3 KiB
Python
102 lines
3.3 KiB
Python
3 years ago
|
import torch
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
# --------------------------------------------------------------------------------- Train Loss
|
||
|
|
||
|
|
||
|
def matting_loss(pred_fgr, pred_pha, true_fgr, true_pha):
|
||
|
"""
|
||
|
Args:
|
||
|
pred_fgr: Shape(B, T, 3, H, W)
|
||
|
pred_pha: Shape(B, T, 1, H, W)
|
||
|
true_fgr: Shape(B, T, 3, H, W)
|
||
|
true_pha: Shape(B, T, 1, H, W)
|
||
|
"""
|
||
|
loss = dict()
|
||
|
# Alpha losses
|
||
|
loss['pha_l1'] = F.l1_loss(pred_pha, true_pha)
|
||
|
loss['pha_laplacian'] = laplacian_loss(pred_pha.flatten(0, 1), true_pha.flatten(0, 1))
|
||
|
loss['pha_coherence'] = F.mse_loss(pred_pha[:, 1:] - pred_pha[:, :-1],
|
||
|
true_pha[:, 1:] - true_pha[:, :-1]) * 5
|
||
|
# Foreground losses
|
||
|
true_msk = true_pha.gt(0)
|
||
|
pred_fgr = pred_fgr * true_msk
|
||
|
true_fgr = true_fgr * true_msk
|
||
|
loss['fgr_l1'] = F.l1_loss(pred_fgr, true_fgr)
|
||
|
loss['fgr_coherence'] = F.mse_loss(pred_fgr[:, 1:] - pred_fgr[:, :-1],
|
||
|
true_fgr[:, 1:] - true_fgr[:, :-1]) * 5
|
||
|
# Total
|
||
|
loss['total'] = loss['pha_l1'] + loss['pha_coherence'] + loss['pha_laplacian'] \
|
||
|
+ loss['fgr_l1'] + loss['fgr_coherence']
|
||
|
return loss
|
||
|
|
||
|
def segmentation_loss(pred_seg, true_seg):
|
||
|
"""
|
||
|
Args:
|
||
|
pred_seg: Shape(B, T, 1, H, W)
|
||
|
true_seg: Shape(B, T, 1, H, W)
|
||
|
"""
|
||
|
return F.binary_cross_entropy_with_logits(pred_seg, true_seg)
|
||
|
|
||
|
|
||
|
# ----------------------------------------------------------------------------- Laplacian Loss
|
||
|
|
||
|
|
||
|
def laplacian_loss(pred, true, max_levels=5):
|
||
|
kernel = gauss_kernel(device=pred.device, dtype=pred.dtype)
|
||
|
pred_pyramid = laplacian_pyramid(pred, kernel, max_levels)
|
||
|
true_pyramid = laplacian_pyramid(true, kernel, max_levels)
|
||
|
loss = 0
|
||
|
for level in range(max_levels):
|
||
|
loss += (2 ** level) * F.l1_loss(pred_pyramid[level], true_pyramid[level])
|
||
|
return loss / max_levels
|
||
|
|
||
|
def laplacian_pyramid(img, kernel, max_levels):
|
||
|
current = img
|
||
|
pyramid = []
|
||
|
for _ in range(max_levels):
|
||
|
current = crop_to_even_size(current)
|
||
|
down = downsample(current, kernel)
|
||
|
up = upsample(down, kernel)
|
||
|
diff = current - up
|
||
|
pyramid.append(diff)
|
||
|
current = down
|
||
|
return pyramid
|
||
|
|
||
|
def gauss_kernel(device='cpu', dtype=torch.float32):
|
||
|
kernel = torch.tensor([[1, 4, 6, 4, 1],
|
||
|
[4, 16, 24, 16, 4],
|
||
|
[6, 24, 36, 24, 6],
|
||
|
[4, 16, 24, 16, 4],
|
||
|
[1, 4, 6, 4, 1]], device=device, dtype=dtype)
|
||
|
kernel /= 256
|
||
|
kernel = kernel[None, None, :, :]
|
||
|
return kernel
|
||
|
|
||
|
def gauss_convolution(img, kernel):
|
||
|
B, C, H, W = img.shape
|
||
|
img = img.reshape(B * C, 1, H, W)
|
||
|
img = F.pad(img, (2, 2, 2, 2), mode='reflect')
|
||
|
img = F.conv2d(img, kernel)
|
||
|
img = img.reshape(B, C, H, W)
|
||
|
return img
|
||
|
|
||
|
def downsample(img, kernel):
|
||
|
img = gauss_convolution(img, kernel)
|
||
|
img = img[:, :, ::2, ::2]
|
||
|
return img
|
||
|
|
||
|
def upsample(img, kernel):
|
||
|
B, C, H, W = img.shape
|
||
|
out = torch.zeros((B, C, H * 2, W * 2), device=img.device, dtype=img.dtype)
|
||
|
out[:, :, ::2, ::2] = img * 4
|
||
|
out = gauss_convolution(out, kernel)
|
||
|
return out
|
||
|
|
||
|
def crop_to_even_size(img):
|
||
|
H, W = img.shape[2:]
|
||
|
H = H - H % 2
|
||
|
W = W - W % 2
|
||
|
return img[:, :, :H, :W]
|
||
|
|