You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
80 lines
3.0 KiB
Python
80 lines
3.0 KiB
Python
3 years ago
|
import torch
|
||
|
from torch import Tensor
|
||
|
from torch import nn
|
||
|
from torch.nn import functional as F
|
||
|
from typing import Optional, List
|
||
|
|
||
|
from .mobilenetv3 import MobileNetV3LargeEncoder
|
||
|
from .resnet import ResNet50Encoder
|
||
|
from .lraspp import LRASPP
|
||
|
from .decoder import RecurrentDecoder, Projection
|
||
|
from .fast_guided_filter import FastGuidedFilterRefiner
|
||
|
from .deep_guided_filter import DeepGuidedFilterRefiner
|
||
|
|
||
|
class MattingNetwork(nn.Module):
|
||
|
def __init__(self,
|
||
|
variant: str = 'mobilenetv3',
|
||
|
refiner: str = 'deep_guided_filter',
|
||
|
pretrained_backbone: bool = False):
|
||
|
super().__init__()
|
||
|
assert variant in ['mobilenetv3', 'resnet50']
|
||
|
assert refiner in ['fast_guided_filter', 'deep_guided_filter']
|
||
|
|
||
|
if variant == 'mobilenetv3':
|
||
|
self.backbone = MobileNetV3LargeEncoder(pretrained_backbone)
|
||
|
self.aspp = LRASPP(960, 128)
|
||
|
self.decoder = RecurrentDecoder([16, 24, 40, 128], [80, 40, 32, 16])
|
||
|
else:
|
||
|
self.backbone = ResNet50Encoder(pretrained_backbone)
|
||
|
self.aspp = LRASPP(2048, 256)
|
||
|
self.decoder = RecurrentDecoder([64, 256, 512, 256], [128, 64, 32, 16])
|
||
|
|
||
|
self.project_mat = Projection(16, 4)
|
||
|
self.project_seg = Projection(16, 1)
|
||
|
|
||
|
if refiner == 'deep_guided_filter':
|
||
|
self.refiner = DeepGuidedFilterRefiner()
|
||
|
else:
|
||
|
self.refiner = FastGuidedFilterRefiner()
|
||
|
|
||
|
def forward(self,
|
||
|
src: Tensor,
|
||
|
r1: Optional[Tensor] = None,
|
||
|
r2: Optional[Tensor] = None,
|
||
|
r3: Optional[Tensor] = None,
|
||
|
r4: Optional[Tensor] = None,
|
||
|
downsample_ratio: float = 1,
|
||
|
segmentation_pass: bool = False):
|
||
|
|
||
|
if downsample_ratio != 1:
|
||
|
src_sm = self._interpolate(src, scale_factor=downsample_ratio)
|
||
|
else:
|
||
|
src_sm = src
|
||
|
|
||
|
f1, f2, f3, f4 = self.backbone(src_sm)
|
||
|
f4 = self.aspp(f4)
|
||
|
hid, *rec = self.decoder(src_sm, f1, f2, f3, f4, r1, r2, r3, r4)
|
||
|
|
||
|
if not segmentation_pass:
|
||
|
fgr_residual, pha = self.project_mat(hid).split([3, 1], dim=-3)
|
||
|
if downsample_ratio != 1:
|
||
|
fgr_residual, pha = self.refiner(src, src_sm, fgr_residual, pha, hid)
|
||
|
fgr = fgr_residual + src
|
||
|
fgr = fgr.clamp(0., 1.)
|
||
|
pha = pha.clamp(0., 1.)
|
||
|
return [fgr, pha, *rec]
|
||
|
else:
|
||
|
seg = self.project_seg(hid)
|
||
|
return [seg, *rec]
|
||
|
|
||
|
def _interpolate(self, x: Tensor, scale_factor: float):
|
||
|
if x.ndim == 5:
|
||
|
B, T = x.shape[:2]
|
||
|
x = F.interpolate(x.flatten(0, 1), scale_factor=scale_factor,
|
||
|
mode='bilinear', align_corners=False, recompute_scale_factor=False)
|
||
|
x = x.unflatten(0, (B, T))
|
||
|
else:
|
||
|
x = F.interpolate(x, scale_factor=scale_factor,
|
||
|
mode='bilinear', align_corners=False, recompute_scale_factor=False)
|
||
|
return x
|