|
|
|
@ -1,4 +1,4 @@
|
|
|
|
|
from encoder.preprocess import preprocess_librispeech, preprocess_voxceleb1, preprocess_voxceleb2
|
|
|
|
|
from encoder.preprocess import preprocess_librispeech, preprocess_voxceleb1, preprocess_voxceleb2, preprocess_aidatatang_200zh
|
|
|
|
|
from utils.argutils import print_args
|
|
|
|
|
from pathlib import Path
|
|
|
|
|
import argparse
|
|
|
|
@ -10,17 +10,7 @@ if __name__ == "__main__":
|
|
|
|
|
parser = argparse.ArgumentParser(
|
|
|
|
|
description="Preprocesses audio files from datasets, encodes them as mel spectrograms and "
|
|
|
|
|
"writes them to the disk. This will allow you to train the encoder. The "
|
|
|
|
|
"datasets required are at least one of VoxCeleb1, VoxCeleb2 and LibriSpeech. "
|
|
|
|
|
"Ideally, you should have all three. You should extract them as they are "
|
|
|
|
|
"after having downloaded them and put them in a same directory, e.g.:\n"
|
|
|
|
|
"-[datasets_root]\n"
|
|
|
|
|
" -LibriSpeech\n"
|
|
|
|
|
" -train-other-500\n"
|
|
|
|
|
" -VoxCeleb1\n"
|
|
|
|
|
" -wav\n"
|
|
|
|
|
" -vox1_meta.csv\n"
|
|
|
|
|
" -VoxCeleb2\n"
|
|
|
|
|
" -dev",
|
|
|
|
|
"datasets required are at least one of LibriSpeech, VoxCeleb1, VoxCeleb2, aidatatang_200zh. ",
|
|
|
|
|
formatter_class=MyFormatter
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument("datasets_root", type=Path, help=\
|
|
|
|
@ -29,7 +19,7 @@ if __name__ == "__main__":
|
|
|
|
|
"Path to the output directory that will contain the mel spectrograms. If left out, "
|
|
|
|
|
"defaults to <datasets_root>/SV2TTS/encoder/")
|
|
|
|
|
parser.add_argument("-d", "--datasets", type=str,
|
|
|
|
|
default="librispeech_other,voxceleb1,voxceleb2", help=\
|
|
|
|
|
default="librispeech_other,voxceleb1,aidatatang_200zh", help=\
|
|
|
|
|
"Comma-separated list of the name of the datasets you want to preprocess. Only the train "
|
|
|
|
|
"set of these datasets will be used. Possible names: librispeech_other, voxceleb1, "
|
|
|
|
|
"voxceleb2.")
|
|
|
|
@ -63,6 +53,7 @@ if __name__ == "__main__":
|
|
|
|
|
"librispeech_other": preprocess_librispeech,
|
|
|
|
|
"voxceleb1": preprocess_voxceleb1,
|
|
|
|
|
"voxceleb2": preprocess_voxceleb2,
|
|
|
|
|
"aidatatang_200zh": preprocess_aidatatang_200zh,
|
|
|
|
|
}
|
|
|
|
|
args = vars(args)
|
|
|
|
|
for dataset in args.pop("datasets"):
|