@ -67,16 +67,24 @@ The blinky demo is implemented and described in main_blinky.c.
If mainCREATE_SIMPLE_BLINKY_DEMO_ONLY is not 1 then the comprehensive test and
demo application will be built . The comprehensive test and demo application is
implemented and described in main_full . c . */
# define mainCREATE_SIMPLE_BLINKY_DEMO_ONLY 0
# define mainCREATE_SIMPLE_BLINKY_DEMO_ONLY 0
/* This demo uses heap_5.c, and these constants define the sizes of the regions
that make up the total heap . heap_5 is only used for test and example purposes
as this demo could easily create one large heap region instead of multiple
smaller heap regions - in which case heap_4 . c would be the more appropriate
choice . See http : //www.freertos.org/a00111.html for an explanation. */
# define mainREGION_1_SIZE 10801
# define mainREGION_2_SIZE 29905
# define mainREGION_3_SIZE 6007
# define mainREGION_1_SIZE 8201
# define mainREGION_2_SIZE 40905
# define mainREGION_3_SIZE 50007
/* This demo allows for users to perform actions with the keyboard. */
# define mainNO_KEY_PRESS_VALUE -1
# define mainOUTPUT_TRACE_KEY 't'
# define mainINTERRUPT_NUMBER_KEYBOARD 3
/* This demo allows to save a trace file. */
# define mainTRACE_FILE_NAME "Trace.dump"
/*-----------------------------------------------------------*/
@ -125,6 +133,23 @@ void vApplicationGetTimerTaskMemory( StaticTask_t **ppxTimerTaskTCBBuffer, Stack
*/
static void prvSaveTraceFile ( void ) ;
/*
* Windows thread function to capture keyboard input from outside of the
* FreeRTOS simulator . This thread passes data safely into the FreeRTOS
* simulator using a stream buffer .
*/
static DWORD WINAPI prvWindowsKeyboardInputThread ( void * pvParam ) ;
/*
* Interrupt handler for when keyboard input is received .
*/
static uint32_t prvKeyboardInterruptHandler ( void ) ;
/*
* Keyboard interrupt handler for the blinky demo .
*/
extern void vBlinkyKeyboardInterruptHandler ( int xKeyPressed ) ;
/*-----------------------------------------------------------*/
/* When configSUPPORT_STATIC_ALLOCATION is set to 1 the application writer can
@ -134,204 +159,227 @@ declared here, as a global, so it can be checked by a test that is implemented
in a different file . */
StackType_t uxTimerTaskStack [ configTIMER_TASK_STACK_DEPTH ] ;
/* Notes if the trace is running or not. */
static BaseType_t xTraceRunning = pdTRUE ;
/* Thread handle for the keyboard input Windows thread. */
static HANDLE xWindowsKeyboardInputThreadHandle = NULL ;
/* This stores the last key pressed that has not been handled.
* Keyboard input is retrieved by the prvWindowsKeyboardInputThread
* Windows thread and stored here . This is then read by the idle
* task and handled appropriately . */
static int xKeyPressed = mainNO_KEY_PRESS_VALUE ;
/*-----------------------------------------------------------*/
int main ( void )
{
/* This demo uses heap_5.c, so start by defining some heap regions. heap_5
is only used for test and example reasons . Heap_4 is more appropriate . See
http : //www.freertos.org/a00111.html for an explanation. */
prvInitialiseHeap ( ) ;
/* Do not include trace code when performing a code coverage analysis. */
# if( projCOVERAGE_TEST != 1 )
{
/* Initialise the trace recorder. Use of the trace recorder is optional.
See http : //www.FreeRTOS.org/trace for more information. */
vTraceEnable ( TRC_START ) ;
/* Start the trace recording - the recording is written to a file if
configASSERT ( ) is called . */
printf ( " \r \n Trace started. \r \n The trace will be dumped to disk if a call to configASSERT() fails. \r \n " ) ;
printf ( " Uncomment the call to kbhit() in this file to also dump trace with a key press. \r \n " ) ;
uiTraceStart ( ) ;
}
# endif
/* The mainCREATE_SIMPLE_BLINKY_DEMO_ONLY setting is described at the top
of this file . */
# if ( mainCREATE_SIMPLE_BLINKY_DEMO_ONLY == 1 )
{
main_blinky ( ) ;
}
# else
{
main_full ( ) ;
}
# endif
return 0 ;
/* Set interrupt handler for keyboard input. */
vPortSetInterruptHandler ( mainINTERRUPT_NUMBER_KEYBOARD , prvKeyboardInterruptHandler ) ;
/* Start keyboard input handling thread. */
xWindowsKeyboardInputThreadHandle = CreateThread (
NULL , /* Pointer to thread security attributes. */
0 , /* Initial thread stack size, in bytes. */
prvWindowsKeyboardInputThread , /* Pointer to thread function. */
NULL , /* Argument for new thread. */
0 , /* Creation flags. */
NULL ) ;
fflush ( stdout ) ;
/* Use the cores that are not used by the FreeRTOS tasks. */
SetThreadAffinityMask ( xWindowsKeyboardInputThreadHandle , ~ 0x01u ) ;
/* This demo uses heap_5.c, so start by defining some heap regions. heap_5
is only used for test and example reasons . Heap_4 is more appropriate . See
http : //www.freertos.org/a00111.html for an explanation. */
prvInitialiseHeap ( ) ;
/* Do not include trace code when performing a code coverage analysis. */
# if( projCOVERAGE_TEST != 1 )
{
/* Initialise the trace recorder. Use of the trace recorder is optional.
See http : //www.FreeRTOS.org/trace for more information. */
configASSERT ( xTraceInitialize ( ) = = TRC_SUCCESS ) ;
/* Start the trace recording - the recording is written to a file if
configASSERT ( ) is called . */
printf (
" Trace started. \r \n "
" Note that the trace output uses the ring buffer mode, meaning that the output trace \r \n "
" will only be the most recent data able to fit within the trace recorder buffer. \r \n \r \n "
" The trace will be dumped to the file \" %s \" whenever a call to configASSERT() \r \n "
" fails or the \' %c \' key is pressed. \r \n "
" Note that key presses cannot be captured in the Eclipse console, so for key presses to work \r \n "
" you will have to run this demo in a Windows console. \r \n \r \n " ,
mainTRACE_FILE_NAME , mainOUTPUT_TRACE_KEY ) ;
fflush ( stdout ) ;
configASSERT ( xTraceEnable ( TRC_START ) = = TRC_SUCCESS ) ;
}
# endif
/* The mainCREATE_SIMPLE_BLINKY_DEMO_ONLY setting is described at the top
of this file . */
# if ( mainCREATE_SIMPLE_BLINKY_DEMO_ONLY == 1 )
{
main_blinky ( ) ;
}
# else
{
main_full ( ) ;
}
# endif
return 0 ;
}
/*-----------------------------------------------------------*/
void vApplicationMallocFailedHook ( void )
{
/* vApplicationMallocFailedHook() will only be called if
configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig . h . It is a hook
function that will get called if a call to pvPortMalloc ( ) fails .
pvPortMalloc ( ) is called internally by the kernel whenever a task , queue ,
timer or semaphore is created . It is also called by various parts of the
demo application . If heap_1 . c , heap_2 . c or heap_4 . c is being used , then the
size of the heap available to pvPortMalloc ( ) is defined by
configTOTAL_HEAP_SIZE in FreeRTOSConfig . h , and the xPortGetFreeHeapSize ( )
API function can be used to query the size of free heap space that remains
( although it does not provide information on how the remaining heap might be
fragmented ) . See http : //www.freertos.org/a00111.html for more
information . */
vAssertCalled ( __LINE__ , __FILE__ ) ;
/* vApplicationMallocFailedHook() will only be called if
configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig . h . It is a hook
function that will get called if a call to pvPortMalloc ( ) fails .
pvPortMalloc ( ) is called internally by the kernel whenever a task , queue ,
timer or semaphore is created . It is also called by various parts of the
demo application . If heap_1 . c , heap_2 . c or heap_4 . c is being used , then the
size of the heap available to pvPortMalloc ( ) is defined by
configTOTAL_HEAP_SIZE in FreeRTOSConfig . h , and the xPortGetFreeHeapSize ( )
API function can be used to query the size of free heap space that remains
( although it does not provide information on how the remaining heap might be
fragmented ) . See http : //www.freertos.org/a00111.html for more
information . */
vAssertCalled ( __LINE__ , __FILE__ ) ;
}
/*-----------------------------------------------------------*/
void vApplicationIdleHook ( void )
{
/* vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set
to 1 in FreeRTOSConfig . h . It will be called on each iteration of the idle
task . It is essential that code added to this hook function never attempts
to block in any way ( for example , call xQueueReceive ( ) with a block time
specified , or call vTaskDelay ( ) ) . If application tasks make use of the
vTaskDelete ( ) API function to delete themselves then it is also important
that vApplicationIdleHook ( ) is permitted to return to its calling function ,
because it is the responsibility of the idle task to clean up memory
allocated by the kernel to any task that has since deleted itself . */
/* Uncomment the following code to allow the trace to be stopped with any
key press . The code is commented out by default as the kbhit ( ) function
interferes with the run time behaviour . */
/*
if ( _kbhit ( ) ! = pdFALSE )
{
if ( xTraceRunning = = pdTRUE )
{
vTraceStop ( ) ;
prvSaveTraceFile ( ) ;
xTraceRunning = pdFALSE ;
}
}
*/
# if ( mainCREATE_SIMPLE_BLINKY_DEMO_ONLY != 1 )
{
/* Call the idle task processing used by the full demo. The simple
blinky demo does not use the idle task hook . */
vFullDemoIdleFunction ( ) ;
}
# endif
/* vApplicationIdleHook() will only be called if configUSE_IDLE_HOOK is set
to 1 in FreeRTOSConfig . h . It will be called on each iteration of the idle
task . It is essential that code added to this hook function never attempts
to block in any way ( for example , call xQueueReceive ( ) with a block time
specified , or call vTaskDelay ( ) ) . If application tasks make use of the
vTaskDelete ( ) API function to delete themselves then it is also important
that vApplicationIdleHook ( ) is permitted to return to its calling function ,
because it is the responsibility of the idle task to clean up memory
allocated by the kernel to any task that has since deleted itself . */
# if ( mainCREATE_SIMPLE_BLINKY_DEMO_ONLY != 1 )
{
/* Call the idle task processing used by the full demo. The simple
blinky demo does not use the idle task hook . */
vFullDemoIdleFunction ( ) ;
}
# endif
}
/*-----------------------------------------------------------*/
void vApplicationStackOverflowHook ( TaskHandle_t pxTask , char * pcTaskName )
{
( void ) pcTaskName ;
( void ) pxTask ;
/* Run time stack overflow checking is performed if
configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook
function is called if a stack overflow is detected . This function is
provided as an example only as stack overflow checking does not function
when running the FreeRTOS Windows port . */
vAssertCalled ( __LINE__ , __FILE__ ) ;
( void ) pcTaskName ;
( void ) pxTask ;
/* Run time stack overflow checking is performed if
configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook
function is called if a stack overflow is detected . This function is
provided as an example only as stack overflow checking does not function
when running the FreeRTOS Windows port . */
vAssertCalled ( __LINE__ , __FILE__ ) ;
}
/*-----------------------------------------------------------*/
void vApplicationTickHook ( void )
{
/* This function will be called by each tick interrupt if
configUSE_TICK_HOOK is set to 1 in FreeRTOSConfig . h . User code can be
added here , but the tick hook is called from an interrupt context , so
code must not attempt to block , and only the interrupt safe FreeRTOS API
functions can be used ( those that end in FromISR ( ) ) . */
# if ( mainCREATE_SIMPLE_BLINKY_DEMO_ONLY != 1 )
{
vFullDemoTickHookFunction ( ) ;
}
# endif /* mainCREATE_SIMPLE_BLINKY_DEMO_ONLY */
/* This function will be called by each tick interrupt if
configUSE_TICK_HOOK is set to 1 in FreeRTOSConfig . h . User code can be
added here , but the tick hook is called from an interrupt context , so
code must not attempt to block , and only the interrupt safe FreeRTOS API
functions can be used ( those that end in FromISR ( ) ) . */
# if ( mainCREATE_SIMPLE_BLINKY_DEMO_ONLY != 1 )
{
vFullDemoTickHookFunction ( ) ;
}
# endif /* mainCREATE_SIMPLE_BLINKY_DEMO_ONLY */
}
/*-----------------------------------------------------------*/
void vApplicationDaemonTaskStartupHook ( void )
{
/* This function will be called once only, when the daemon task starts to
execute ( sometimes called the timer task ) . This is useful if the
application includes initialisation code that would benefit from executing
after the scheduler has been started . */
/* This function will be called once only, when the daemon task starts to
execute ( sometimes called the timer task ) . This is useful if the
application includes initialisation code that would benefit from executing
after the scheduler has been started . */
}
/*-----------------------------------------------------------*/
void vAssertCalled ( unsigned long ulLine , const char * const pcFileName )
{
static BaseType_t xPrinted = pdFALSE ;
volatile uint32_t ulSetToNonZeroInDebuggerToContinue = 0 ;
/* Called if an assertion passed to configASSERT() fails. See
http : //www.freertos.org/a00110.html#configASSERT for more information. */
/* Parameters are not used. */
( void ) ulLine ;
( void ) pcFileName ;
taskENTER_CRITICAL ( ) ;
{
/* Stop the trace recording. */
if ( xPrinted = = pdFALSE )
{
xPrinted = pdTRUE ;
if ( xTraceRunning = = pdTRUE )
{
prvSaveTraceFile ( ) ;
}
}
/* You can step out of this function to debug the assertion by using
the debugger to set ulSetToNonZeroInDebuggerToContinue to a non - zero
value . */
while ( ulSetToNonZeroInDebuggerToContinue = = 0 )
{
__asm volatile ( " NOP " ) ;
__asm volatile ( " NOP " ) ;
}
}
taskEXIT_CRITICAL ( ) ;
/* Called if an assertion passed to configASSERT() fails. See
http : //www.freertos.org/a00110.html#configASSERT for more information. */
/* Parameters are not used. */
( void ) ulLine ;
( void ) pcFileName ;
taskENTER_CRITICAL ( ) ;
{
printf ( " ASSERT! Line %ld, file %s, GetLastError() %ld \r \n " , ulLine , pcFileName , GetLastError ( ) ) ;
fflush ( stdout ) ;
# if( projCOVERAGE_TEST != 1 )
{
/* Stop the trace recording. */
( void ) xTraceDisable ( ) ;
prvSaveTraceFile ( ) ;
}
# endif
/* You can step out of this function to debug the assertion by using
the debugger to set ulSetToNonZeroInDebuggerToContinue to a non - zero
value . */
while ( ulSetToNonZeroInDebuggerToContinue = = 0 )
{
__asm volatile ( " NOP " ) ;
__asm volatile ( " NOP " ) ;
}
# if( projCOVERAGE_TEST != 1 )
{
/* Re-enable recording */
( void ) xTraceEnable ( TRC_START ) ;
}
# endif
}
taskEXIT_CRITICAL ( ) ;
}
/*-----------------------------------------------------------*/
static void prvSaveTraceFile ( void )
{
/* Tracing is not used when code coverage analysis is being performed. */
# if( projCOVERAGE_TEST != 1 )
{
FILE * pxOutputFile ;
vTraceStop ( ) ;
pxOutputFile = fopen ( " Trace.dump " , " wb " ) ;
if ( pxOutputFile ! = NULL )
{
fwrite ( RecorderDataPtr , sizeof ( RecorderDataType ) , 1 , pxOutputFile ) ;
fclose ( pxOutputFile ) ;
printf ( " \r \n Trace output saved to Trace.dump \r \n " ) ;
}
else
{
printf ( " \r \n Failed to create trace dump file \r \n " ) ;
}
}
# endif
/* Tracing is not used when code coverage analysis is being performed. */
# if( projCOVERAGE_TEST != 1 )
{
FILE * pxOutputFile ;
pxOutputFile = fopen ( mainTRACE_FILE_NAME , " wb " ) ;
if ( pxOutputFile ! = NULL )
{
fwrite ( RecorderDataPtr , sizeof ( RecorderDataType ) , 1 , pxOutputFile ) ;
fclose ( pxOutputFile ) ;
printf ( " \r \n Trace output saved to %s \r \n " , mainTRACE_FILE_NAME ) ;
fflush ( stdout ) ;
}
else
{
printf ( " \r \n Failed to create trace dump file \r \n " ) ;
fflush ( stdout ) ;
}
}
# endif
}
/*-----------------------------------------------------------*/
@ -352,27 +400,27 @@ volatile uint32_t ulAdditionalOffset = 19; /* Just to prevent 'condition is alwa
HeapStats_t xHeapStats ;
const HeapRegion_t xHeapRegions [ ] =
{
/* Start address with dummy offsets Size */
{ ucHeap + 1 , mainREGION_1_SIZE } ,
{ ucHeap + 15 + mainREGION_1_SIZE , mainREGION_2_SIZE } ,
{ ucHeap + 19 + mainREGION_1_SIZE + mainREGION_2_SIZE , mainREGION_3_SIZE } ,
{ NULL , 0 }
/* Start address with dummy offsets Size */
{ ucHeap + 1 , mainREGION_1_SIZE } ,
{ ucHeap + 15 + mainREGION_1_SIZE , mainREGION_2_SIZE } ,
{ ucHeap + 19 + mainREGION_1_SIZE + mainREGION_2_SIZE , mainREGION_3_SIZE } ,
{ NULL , 0 }
} ;
/* Sanity check that the sizes and offsets defined actually fit into the
array . */
configASSERT ( ( ulAdditionalOffset + mainREGION_1_SIZE + mainREGION_2_SIZE + mainREGION_3_SIZE ) < configTOTAL_HEAP_SIZE ) ;
/* Sanity check that the sizes and offsets defined actually fit into the
array . */
configASSERT ( ( ulAdditionalOffset + mainREGION_1_SIZE + mainREGION_2_SIZE + mainREGION_3_SIZE ) < configTOTAL_HEAP_SIZE ) ;
/* Prevent compiler warnings when configASSERT() is not defined. */
( void ) ulAdditionalOffset ;
/* Prevent compiler warnings when configASSERT() is not defined. */
( void ) ulAdditionalOffset ;
/* The heap has not been initialised yet so expect stats to all be zero. */
vPortGetHeapStats ( & xHeapStats ) ;
/* The heap has not been initialised yet so expect stats to all be zero. */
vPortGetHeapStats ( & xHeapStats ) ;
vPortDefineHeapRegions ( xHeapRegions ) ;
vPortDefineHeapRegions ( xHeapRegions ) ;
/* Sanity check vTaskGetHeapStats(). */
prvExerciseHeapStats ( ) ;
/* Sanity check vTaskGetHeapStats(). */
prvExerciseHeapStats ( ) ;
}
/*-----------------------------------------------------------*/
@ -385,60 +433,60 @@ void *pvAllocatedBlock;
const size_t xArraySize = 5 , xBlockSize = 1000UL ;
void * pvAllocatedBlocks [ xArraySize ] ;
/* Check heap stats are as expected after initialisation but before any
allocations . */
vPortGetHeapStats ( & xHeapStats ) ;
/* Minimum ever free bytes remaining should be the same as the total number
of bytes as nothing has been allocated yet . */
configASSERT ( xHeapStats . xMinimumEverFreeBytesRemaining = = xHeapStats . xAvailableHeapSpaceInBytes ) ;
configASSERT ( xHeapStats . xMinimumEverFreeBytesRemaining = = xInitialFreeSpace ) ;
/* Nothing has been allocated or freed yet. */
configASSERT ( xHeapStats . xNumberOfSuccessfulAllocations = = 0 ) ;
configASSERT ( xHeapStats . xNumberOfSuccessfulFrees = = 0 ) ;
/* Allocate a 1000 byte block then measure what the overhead of the
allocation in regards to how many bytes more than 1000 were actually
removed from the heap in order to store metadata about the allocation . */
pvAllocatedBlock = pvPortMalloc ( xBlockSize ) ;
configASSERT ( pvAllocatedBlock ) ;
xMetaDataOverhead = ( xInitialFreeSpace - xPortGetFreeHeapSize ( ) ) - xBlockSize ;
/* Free the block again to get back to where we started. */
vPortFree ( pvAllocatedBlock ) ;
vPortGetHeapStats ( & xHeapStats ) ;
configASSERT ( xHeapStats . xAvailableHeapSpaceInBytes = = xInitialFreeSpace ) ;
configASSERT ( xHeapStats . xNumberOfSuccessfulAllocations = = 1 ) ;
configASSERT ( xHeapStats . xNumberOfSuccessfulFrees = = 1 ) ;
/* Allocate blocks checking some stats value on each allocation. */
for ( i = 0 ; i < xArraySize ; i + + )
{
pvAllocatedBlocks [ i ] = pvPortMalloc ( xBlockSize ) ;
configASSERT ( pvAllocatedBlocks [ i ] ) ;
vPortGetHeapStats ( & xHeapStats ) ;
configASSERT ( xHeapStats . xMinimumEverFreeBytesRemaining = = ( xInitialFreeSpace - ( ( i + 1 ) * ( xBlockSize + xMetaDataOverhead ) ) ) ) ;
configASSERT ( xHeapStats . xMinimumEverFreeBytesRemaining = = xHeapStats . xAvailableHeapSpaceInBytes ) ;
configASSERT ( xHeapStats . xNumberOfSuccessfulAllocations = = ( 2Ul + i ) ) ;
configASSERT ( xHeapStats . xNumberOfSuccessfulFrees = = 1 ) ; /* Does not increase during allocations. */
}
configASSERT ( xPortGetFreeHeapSize ( ) = = xPortGetMinimumEverFreeHeapSize ( ) ) ;
xMinimumFreeBytes = xPortGetFreeHeapSize ( ) ;
/* Free the blocks again. */
for ( i = 0 ; i < xArraySize ; i + + )
{
vPortFree ( pvAllocatedBlocks [ i ] ) ;
vPortGetHeapStats ( & xHeapStats ) ;
configASSERT ( xHeapStats . xAvailableHeapSpaceInBytes = = ( xInitialFreeSpace - ( ( ( xArraySize - i - 1 ) * ( xBlockSize + xMetaDataOverhead ) ) ) ) ) ;
configASSERT ( xHeapStats . xNumberOfSuccessfulAllocations = = ( xArraySize + 1 ) ) ; /* Does not increase during frees. */
configASSERT ( xHeapStats . xNumberOfSuccessfulFrees = = ( 2UL + i ) ) ;
}
/* The minimum ever free heap size should not change as blocks are freed. */
configASSERT ( xMinimumFreeBytes = = xPortGetMinimumEverFreeHeapSize ( ) ) ;
/* Check heap stats are as expected after initialisation but before any
allocations . */
vPortGetHeapStats ( & xHeapStats ) ;
/* Minimum ever free bytes remaining should be the same as the total number
of bytes as nothing has been allocated yet . */
configASSERT ( xHeapStats . xMinimumEverFreeBytesRemaining = = xHeapStats . xAvailableHeapSpaceInBytes ) ;
configASSERT ( xHeapStats . xMinimumEverFreeBytesRemaining = = xInitialFreeSpace ) ;
/* Nothing has been allocated or freed yet. */
configASSERT ( xHeapStats . xNumberOfSuccessfulAllocations = = 0 ) ;
configASSERT ( xHeapStats . xNumberOfSuccessfulFrees = = 0 ) ;
/* Allocate a 1000 byte block then measure what the overhead of the
allocation in regards to how many bytes more than 1000 were actually
removed from the heap in order to store metadata about the allocation . */
pvAllocatedBlock = pvPortMalloc ( xBlockSize ) ;
configASSERT ( pvAllocatedBlock ) ;
xMetaDataOverhead = ( xInitialFreeSpace - xPortGetFreeHeapSize ( ) ) - xBlockSize ;
/* Free the block again to get back to where we started. */
vPortFree ( pvAllocatedBlock ) ;
vPortGetHeapStats ( & xHeapStats ) ;
configASSERT ( xHeapStats . xAvailableHeapSpaceInBytes = = xInitialFreeSpace ) ;
configASSERT ( xHeapStats . xNumberOfSuccessfulAllocations = = 1 ) ;
configASSERT ( xHeapStats . xNumberOfSuccessfulFrees = = 1 ) ;
/* Allocate blocks checking some stats value on each allocation. */
for ( i = 0 ; i < xArraySize ; i + + )
{
pvAllocatedBlocks [ i ] = pvPortMalloc ( xBlockSize ) ;
configASSERT ( pvAllocatedBlocks [ i ] ) ;
vPortGetHeapStats ( & xHeapStats ) ;
configASSERT ( xHeapStats . xMinimumEverFreeBytesRemaining = = ( xInitialFreeSpace - ( ( i + 1 ) * ( xBlockSize + xMetaDataOverhead ) ) ) ) ;
configASSERT ( xHeapStats . xMinimumEverFreeBytesRemaining = = xHeapStats . xAvailableHeapSpaceInBytes ) ;
configASSERT ( xHeapStats . xNumberOfSuccessfulAllocations = = ( 2Ul + i ) ) ;
configASSERT ( xHeapStats . xNumberOfSuccessfulFrees = = 1 ) ; /* Does not increase during allocations. */
}
configASSERT ( xPortGetFreeHeapSize ( ) = = xPortGetMinimumEverFreeHeapSize ( ) ) ;
xMinimumFreeBytes = xPortGetFreeHeapSize ( ) ;
/* Free the blocks again. */
for ( i = 0 ; i < xArraySize ; i + + )
{
vPortFree ( pvAllocatedBlocks [ i ] ) ;
vPortGetHeapStats ( & xHeapStats ) ;
configASSERT ( xHeapStats . xAvailableHeapSpaceInBytes = = ( xInitialFreeSpace - ( ( ( xArraySize - i - 1 ) * ( xBlockSize + xMetaDataOverhead ) ) ) ) ) ;
configASSERT ( xHeapStats . xNumberOfSuccessfulAllocations = = ( xArraySize + 1 ) ) ; /* Does not increase during frees. */
configASSERT ( xHeapStats . xNumberOfSuccessfulFrees = = ( 2UL + i ) ) ;
}
/* The minimum ever free heap size should not change as blocks are freed. */
configASSERT ( xMinimumFreeBytes = = xPortGetMinimumEverFreeHeapSize ( ) ) ;
}
/*-----------------------------------------------------------*/
@ -453,18 +501,19 @@ the stack and so not exists after this function exits. */
static StaticTask_t xIdleTaskTCB ;
static StackType_t uxIdleTaskStack [ configMINIMAL_STACK_SIZE ] ;
/* Pass out a pointer to the StaticTask_t structure in which the Idle task's
state will be stored . */
* ppxIdleTaskTCBBuffer = & xIdleTaskTCB ;
/* Pass out a pointer to the StaticTask_t structure in which the Idle task's
state will be stored . */
* ppxIdleTaskTCBBuffer = & xIdleTaskTCB ;
/* Pass out the array that will be used as the Idle task's stack. */
* ppxIdleTaskStackBuffer = uxIdleTaskStack ;
/* Pass out the array that will be used as the Idle task's stack. */
* ppxIdleTaskStackBuffer = uxIdleTaskStack ;
/* Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer.
Note that , as the array is necessarily of type StackType_t ,
configMINIMAL_STACK_SIZE is specified in words , not bytes . */
* pulIdleTaskStackSize = configMINIMAL_STACK_SIZE ;
/* Pass out the size of the array pointed to by *ppxIdleTaskStackBuffer.
Note that , as the array is necessarily of type StackType_t ,
configMINIMAL_STACK_SIZE is specified in words , not bytes . */
* pulIdleTaskStackSize = configMINIMAL_STACK_SIZE ;
}
/*-----------------------------------------------------------*/
/* configUSE_STATIC_ALLOCATION and configUSE_TIMERS are both set to 1, so the
@ -477,16 +526,103 @@ function then they must be declared static - otherwise they will be allocated on
the stack and so not exists after this function exits . */
static StaticTask_t xTimerTaskTCB ;
/* Pass out a pointer to the StaticTask_t structure in which the Timer
task ' s state will be stored . */
* ppxTimerTaskTCBBuffer = & xTimerTaskTCB ;
/* Pass out a pointer to the StaticTask_t structure in which the Timer
task ' s state will be stored . */
* ppxTimerTaskTCBBuffer = & xTimerTaskTCB ;
/* Pass out the array that will be used as the Timer task's stack. */
* ppxTimerTaskStackBuffer = uxTimerTaskStack ;
/* Pass out the size of the array pointed to by *ppxTimerTaskStackBuffer.
Note that , as the array is necessarily of type StackType_t ,
configMINIMAL_STACK_SIZE is specified in words , not bytes . */
* pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH ;
}
/* Pass out the array that will be used as the Timer task's stack. */
* ppxTimerTaskStackBuffer = uxTimerTaskStack ;
/*-----------------------------------------------------------*/
/* Pass out the size of the array pointed to by *ppxTimerTaskStackBuffer.
Note that , as the array is necessarily of type StackType_t ,
configMINIMAL_STACK_SIZE is specified in words , not bytes . */
* pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH ;
/*
* Interrupt handler for when keyboard input is received .
*/
static uint32_t prvKeyboardInterruptHandler ( void )
{
/* Handle keyboard input. */
switch ( xKeyPressed )
{
case mainNO_KEY_PRESS_VALUE :
break ;
case mainOUTPUT_TRACE_KEY :
# if( projCOVERAGE_TEST != 1 )
{
/* Saving the trace file requires Windows system calls, so enter a critical
* section to prevent deadlock or errors resulting from calling a Windows
* system call from within the FreeRTOS simulator . */
portENTER_CRITICAL ( ) ;
{
( void ) xTraceDisable ( ) ;
prvSaveTraceFile ( ) ;
( void ) xTraceEnable ( TRC_START ) ;
}
portEXIT_CRITICAL ( ) ;
}
# endif
break ;
default :
# if ( mainCREATE_SIMPLE_BLINKY_DEMO_ONLY == 1 )
{
/* Call the keyboard interrupt handler for the blinky demo. */
vBlinkyKeyboardInterruptHandler ( xKeyPressed ) ;
}
# endif
break ;
}
/* This interrupt does not require a context switch so return pdFALSE */
return pdFALSE ;
}
/*-----------------------------------------------------------*/
/*
* Windows thread function to capture keyboard input from outside of the
* FreeRTOS simulator . This thread passes data into the simulator using
* an integer .
*/
static DWORD WINAPI prvWindowsKeyboardInputThread ( void * pvParam )
{
( void ) pvParam ;
for ( ; ; )
{
/* Block on acquiring a key press */
xKeyPressed = _getch ( ) ;
/* Notify FreeRTOS simulator that there is a keyboard interrupt.
* This will trigger prvKeyboardInterruptHandler .
*/
vPortGenerateSimulatedInterrupt ( mainINTERRUPT_NUMBER_KEYBOARD ) ;
}
/* Should not get here, report negative exit status. */
return - 1 ;
}
/*-----------------------------------------------------------*/
/* The below code is used by the trace recorder for timing. */
static uint32_t ulEntryTime = 0 ;
void vTraceTimerReset ( void )
{
ulEntryTime = xTaskGetTickCount ( ) ;
}
uint32_t uiTraceTimerGetFrequency ( void )
{
return configTICK_RATE_HZ ;
}
uint32_t uiTraceTimerGetValue ( void )
{
return ( xTaskGetTickCount ( ) - ulEntryTime ) ;
}