You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
358 lines
14 KiB
C
358 lines
14 KiB
C
/*
|
|
FreeRTOS V7.1.1 - Copyright (C) 2012 Real Time Engineers Ltd.
|
|
|
|
|
|
***************************************************************************
|
|
* *
|
|
* FreeRTOS tutorial books are available in pdf and paperback. *
|
|
* Complete, revised, and edited pdf reference manuals are also *
|
|
* available. *
|
|
* *
|
|
* Purchasing FreeRTOS documentation will not only help you, by *
|
|
* ensuring you get running as quickly as possible and with an *
|
|
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
|
* the FreeRTOS project to continue with its mission of providing *
|
|
* professional grade, cross platform, de facto standard solutions *
|
|
* for microcontrollers - completely free of charge! *
|
|
* *
|
|
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
|
* *
|
|
* Thank you for using FreeRTOS, and thank you for your support! *
|
|
* *
|
|
***************************************************************************
|
|
|
|
|
|
This file is part of the FreeRTOS distribution.
|
|
|
|
FreeRTOS is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License (version 2) as published by the
|
|
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
|
>>>NOTE<<< The modification to the GPL is included to allow you to
|
|
distribute a combined work that includes FreeRTOS without being obliged to
|
|
provide the source code for proprietary components outside of the FreeRTOS
|
|
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details. You should have received a copy of the GNU General Public
|
|
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
|
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
|
by writing to Richard Barry, contact details for whom are available on the
|
|
FreeRTOS WEB site.
|
|
|
|
1 tab == 4 spaces!
|
|
|
|
***************************************************************************
|
|
* *
|
|
* Having a problem? Start by reading the FAQ "My application does *
|
|
* not run, what could be wrong? *
|
|
* *
|
|
* http://www.FreeRTOS.org/FAQHelp.html *
|
|
* *
|
|
***************************************************************************
|
|
|
|
|
|
http://www.FreeRTOS.org - Documentation, training, latest information,
|
|
license and contact details.
|
|
|
|
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
|
|
including FreeRTOS+Trace - an indispensable productivity tool.
|
|
|
|
Real Time Engineers ltd license FreeRTOS to High Integrity Systems, who sell
|
|
the code with commercial support, indemnification, and middleware, under
|
|
the OpenRTOS brand: http://www.OpenRTOS.com. High Integrity Systems also
|
|
provide a safety engineered and independently SIL3 certified version under
|
|
the SafeRTOS brand: http://www.SafeRTOS.com.
|
|
*/
|
|
|
|
/*
|
|
* A sample implementation of pvPortMalloc() and vPortFree() that combines
|
|
* (coalescences) adjacent memory blocks as they are freed, and in so doing
|
|
* limits memory fragmentation.
|
|
*
|
|
* See heap_1.c, heap_2.c and heap_3.c for alternative implementations, and the
|
|
* memory management pages of http://www.FreeRTOS.org for more information.
|
|
*/
|
|
#include <stdlib.h>
|
|
|
|
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
|
|
all the API functions to use the MPU wrappers. That should only be done when
|
|
task.h is included from an application file. */
|
|
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
|
|
|
#include "FreeRTOS.h"
|
|
#include "task.h"
|
|
|
|
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
|
|
|
/* Block sizes must not get too small. */
|
|
#define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( heapSTRUCT_SIZE * 2 ) )
|
|
|
|
/* Allocate the memory for the heap. The struct is used to force byte
|
|
alignment without using any non-portable code. */
|
|
static union xRTOS_HEAP
|
|
{
|
|
#if portBYTE_ALIGNMENT == 8
|
|
volatile portDOUBLE dDummy;
|
|
#else
|
|
volatile unsigned long ulDummy;
|
|
#endif
|
|
unsigned char ucHeap[ configTOTAL_HEAP_SIZE ];
|
|
} xHeap;
|
|
|
|
/* Define the linked list structure. This is used to link free blocks in order
|
|
of their memory address. */
|
|
typedef struct A_BLOCK_LINK
|
|
{
|
|
struct A_BLOCK_LINK *pxNextFreeBlock; /*<< The next free block in the list. */
|
|
size_t xBlockSize; /*<< The size of the free block. */
|
|
} xBlockLink;
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/*
|
|
* Inserts a block of memory that is being freed into the correct position in
|
|
* the list of free memory blocks. The block being freed will be merged with
|
|
* the block in front it and/or the block behind it if the memory blocks are
|
|
* adjacent to each other.
|
|
*/
|
|
static void prvInsertBlockIntoFreeList( xBlockLink *pxBlockToInsert );
|
|
|
|
/*
|
|
* Called automatically to setup the required heap structures the first time
|
|
* pvPortMalloc() is called.
|
|
*/
|
|
static void prvHeapInit( void );
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/* The size of the structure placed at the beginning of each allocated memory
|
|
block must by correctly byte aligned. */
|
|
static const unsigned short heapSTRUCT_SIZE = ( sizeof( xBlockLink ) + portBYTE_ALIGNMENT - ( sizeof( xBlockLink ) % portBYTE_ALIGNMENT ) );
|
|
|
|
/* Ensure the pxEnd pointer will end up on the correct byte alignment. */
|
|
static const size_t xTotalHeapSize = ( ( size_t ) configTOTAL_HEAP_SIZE ) & ( ( size_t ) ~portBYTE_ALIGNMENT_MASK );
|
|
|
|
/* Create a couple of list links to mark the start and end of the list. */
|
|
static xBlockLink xStart, *pxEnd = NULL;
|
|
|
|
/* Keeps track of the number of free bytes remaining, but says nothing about
|
|
fragmentation. */
|
|
static size_t xFreeBytesRemaining = ( ( size_t ) configTOTAL_HEAP_SIZE ) & ( ( size_t ) ~portBYTE_ALIGNMENT_MASK );
|
|
|
|
/* STATIC FUNCTIONS ARE DEFINED AS MACROS TO MINIMIZE THE FUNCTION CALL DEPTH. */
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void *pvPortMalloc( size_t xWantedSize )
|
|
{
|
|
xBlockLink *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
|
|
void *pvReturn = NULL;
|
|
|
|
vTaskSuspendAll();
|
|
{
|
|
/* If this is the first call to malloc then the heap will require
|
|
initialisation to setup the list of free blocks. */
|
|
if( pxEnd == NULL )
|
|
{
|
|
prvHeapInit();
|
|
}
|
|
|
|
/* The wanted size is increased so it can contain a xBlockLink
|
|
structure in addition to the requested amount of bytes. */
|
|
if( xWantedSize > 0 )
|
|
{
|
|
xWantedSize += heapSTRUCT_SIZE;
|
|
|
|
/* Ensure that blocks are always aligned to the required number of
|
|
bytes. */
|
|
if( xWantedSize & portBYTE_ALIGNMENT_MASK )
|
|
{
|
|
/* Byte alignment required. */
|
|
xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
|
|
}
|
|
}
|
|
|
|
if( ( xWantedSize > 0 ) && ( xWantedSize < xTotalHeapSize ) )
|
|
{
|
|
/* Traverse the list from the start (lowest address) block until one
|
|
of adequate size is found. */
|
|
pxPreviousBlock = &xStart;
|
|
pxBlock = xStart.pxNextFreeBlock;
|
|
while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
|
|
{
|
|
pxPreviousBlock = pxBlock;
|
|
pxBlock = pxBlock->pxNextFreeBlock;
|
|
}
|
|
|
|
/* If the end marker was reached then a block of adequate size was
|
|
not found. */
|
|
if( pxBlock != pxEnd )
|
|
{
|
|
/* Return the memory space - jumping over the xBlockLink structure
|
|
at its start. */
|
|
pvReturn = ( void * ) ( ( ( unsigned char * ) pxPreviousBlock->pxNextFreeBlock ) + heapSTRUCT_SIZE );
|
|
|
|
/* This block is being returned for use so must be taken out of
|
|
the list of free blocks. */
|
|
pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
|
|
|
|
/* If the block is larger than required it can be split into two. */
|
|
if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
|
|
{
|
|
/* This block is to be split into two. Create a new block
|
|
following the number of bytes requested. The void cast is
|
|
used to prevent byte alignment warnings from the compiler. */
|
|
pxNewBlockLink = ( void * ) ( ( ( unsigned char * ) pxBlock ) + xWantedSize );
|
|
|
|
/* Calculate the sizes of two blocks split from the single
|
|
block. */
|
|
pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
|
|
pxBlock->xBlockSize = xWantedSize;
|
|
|
|
/* Insert the new block into the list of free blocks. */
|
|
prvInsertBlockIntoFreeList( ( pxNewBlockLink ) );
|
|
}
|
|
|
|
xFreeBytesRemaining -= pxBlock->xBlockSize;
|
|
}
|
|
}
|
|
}
|
|
xTaskResumeAll();
|
|
|
|
#if( configUSE_MALLOC_FAILED_HOOK == 1 )
|
|
{
|
|
if( pvReturn == NULL )
|
|
{
|
|
extern void vApplicationMallocFailedHook( void );
|
|
vApplicationMallocFailedHook();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return pvReturn;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vPortFree( void *pv )
|
|
{
|
|
unsigned char *puc = ( unsigned char * ) pv;
|
|
xBlockLink *pxLink;
|
|
|
|
if( pv != NULL )
|
|
{
|
|
/* The memory being freed will have an xBlockLink structure immediately
|
|
before it. */
|
|
puc -= heapSTRUCT_SIZE;
|
|
|
|
/* This casting is to keep the compiler from issuing warnings. */
|
|
pxLink = ( void * ) puc;
|
|
|
|
vTaskSuspendAll();
|
|
{
|
|
/* Add this block to the list of free blocks. */
|
|
xFreeBytesRemaining += pxLink->xBlockSize;
|
|
prvInsertBlockIntoFreeList( ( ( xBlockLink * ) pxLink ) );
|
|
}
|
|
xTaskResumeAll();
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
size_t xPortGetFreeHeapSize( void )
|
|
{
|
|
return xFreeBytesRemaining;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vPortInitialiseBlocks( void )
|
|
{
|
|
/* This just exists to keep the linker quiet. */
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvHeapInit( void )
|
|
{
|
|
xBlockLink *pxFirstFreeBlock;
|
|
unsigned char *pucHeapEnd;
|
|
|
|
/* Ensure the start of the heap is aligned. */
|
|
configASSERT( ( ( ( unsigned long ) xHeap.ucHeap ) & ( ( unsigned long ) portBYTE_ALIGNMENT_MASK ) ) == 0UL );
|
|
|
|
/* xStart is used to hold a pointer to the first item in the list of free
|
|
blocks. The void cast is used to prevent compiler warnings. */
|
|
xStart.pxNextFreeBlock = ( void * ) xHeap.ucHeap;
|
|
xStart.xBlockSize = ( size_t ) 0;
|
|
|
|
/* pxEnd is used to mark the end of the list of free blocks and is inserted
|
|
at the end of the heap space. */
|
|
pucHeapEnd = xHeap.ucHeap + xTotalHeapSize;
|
|
pucHeapEnd -= heapSTRUCT_SIZE;
|
|
pxEnd = ( void * ) pucHeapEnd;
|
|
configASSERT( ( ( ( unsigned long ) pxEnd ) & ( ( unsigned long ) portBYTE_ALIGNMENT_MASK ) ) == 0UL );
|
|
pxEnd->xBlockSize = 0;
|
|
pxEnd->pxNextFreeBlock = NULL;
|
|
|
|
/* To start with there is a single free block that is sized to take up the
|
|
entire heap space, minus the space taken by pxEnd. */
|
|
pxFirstFreeBlock = ( void * ) xHeap.ucHeap;
|
|
pxFirstFreeBlock->xBlockSize = xTotalHeapSize - heapSTRUCT_SIZE;
|
|
pxFirstFreeBlock->pxNextFreeBlock = pxEnd;
|
|
|
|
/* The heap now contains pxEnd. */
|
|
xFreeBytesRemaining -= heapSTRUCT_SIZE;
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void prvInsertBlockIntoFreeList( xBlockLink *pxBlockToInsert )
|
|
{
|
|
xBlockLink *pxIterator;
|
|
unsigned char *puc;
|
|
|
|
/* Iterate through the list until a block is found that has a higher address
|
|
than the block being inserted. */
|
|
for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock )
|
|
{
|
|
/* Nothing to do here, just iterate to the right position. */
|
|
}
|
|
|
|
/* Do the block being inserted, and the block it is being inserted after
|
|
make a contiguous block of memory? */
|
|
puc = ( unsigned char * ) pxIterator;
|
|
if( ( puc + pxIterator->xBlockSize ) == ( unsigned char * ) pxBlockToInsert )
|
|
{
|
|
pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
|
|
pxBlockToInsert = pxIterator;
|
|
}
|
|
|
|
/* Do the block being inserted, and the block it is being inserted before
|
|
make a contiguous block of memory? */
|
|
puc = ( unsigned char * ) pxBlockToInsert;
|
|
if( ( puc + pxBlockToInsert->xBlockSize ) == ( unsigned char * ) pxIterator->pxNextFreeBlock )
|
|
{
|
|
if( pxIterator->pxNextFreeBlock != pxEnd )
|
|
{
|
|
/* Form one big block from the two blocks. */
|
|
pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
|
|
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
|
|
}
|
|
else
|
|
{
|
|
pxBlockToInsert->pxNextFreeBlock = pxEnd;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
|
|
}
|
|
|
|
/* If the block being inserted plugged a gab, so was merged with the block
|
|
before and the block after, then it's pxNextFreeBlock pointer will have
|
|
already been set, and should not be set here as that would make it point
|
|
to itself. */
|
|
if( pxIterator != pxBlockToInsert )
|
|
{
|
|
pxIterator->pxNextFreeBlock = pxBlockToInsert;
|
|
}
|
|
}
|
|
|