You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
358 lines
13 KiB
C
358 lines
13 KiB
C
/*
|
|
FreeRTOS V7.0.2 - Copyright (C) 2011 Real Time Engineers Ltd.
|
|
|
|
|
|
***************************************************************************
|
|
* *
|
|
* FreeRTOS tutorial books are available in pdf and paperback. *
|
|
* Complete, revised, and edited pdf reference manuals are also *
|
|
* available. *
|
|
* *
|
|
* Purchasing FreeRTOS documentation will not only help you, by *
|
|
* ensuring you get running as quickly as possible and with an *
|
|
* in-depth knowledge of how to use FreeRTOS, it will also help *
|
|
* the FreeRTOS project to continue with its mission of providing *
|
|
* professional grade, cross platform, de facto standard solutions *
|
|
* for microcontrollers - completely free of charge! *
|
|
* *
|
|
* >>> See http://www.FreeRTOS.org/Documentation for details. <<< *
|
|
* *
|
|
* Thank you for using FreeRTOS, and thank you for your support! *
|
|
* *
|
|
***************************************************************************
|
|
|
|
|
|
This file is part of the FreeRTOS distribution.
|
|
|
|
FreeRTOS is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License (version 2) as published by the
|
|
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.
|
|
>>>NOTE<<< The modification to the GPL is included to allow you to
|
|
distribute a combined work that includes FreeRTOS without being obliged to
|
|
provide the source code for proprietary components outside of the FreeRTOS
|
|
kernel. FreeRTOS is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
more details. You should have received a copy of the GNU General Public
|
|
License and the FreeRTOS license exception along with FreeRTOS; if not it
|
|
can be viewed here: http://www.freertos.org/a00114.html and also obtained
|
|
by writing to Richard Barry, contact details for whom are available on the
|
|
FreeRTOS WEB site.
|
|
|
|
1 tab == 4 spaces!
|
|
|
|
http://www.FreeRTOS.org - Documentation, latest information, license and
|
|
contact details.
|
|
|
|
http://www.SafeRTOS.com - A version that is certified for use in safety
|
|
critical systems.
|
|
|
|
http://www.OpenRTOS.com - Commercial support, development, porting,
|
|
licensing and training services.
|
|
*/
|
|
|
|
/*
|
|
Changes from V1.2.3
|
|
|
|
+ The created tasks now include calls to tskYIELD(), allowing them to be used
|
|
with the cooperative scheduler.
|
|
*/
|
|
|
|
/**
|
|
* Creates eight tasks, each of which loops continuously performing an (emulated)
|
|
* floating point calculation.
|
|
*
|
|
* All the tasks run at the idle priority and never block or yield. This causes
|
|
* all eight tasks to time slice with the idle task. Running at the idle priority
|
|
* means that these tasks will get pre-empted any time another task is ready to run
|
|
* or a time slice occurs. More often than not the pre-emption will occur mid
|
|
* calculation, creating a good test of the schedulers context switch mechanism - a
|
|
* calculation producing an unexpected result could be a symptom of a corruption in
|
|
* the context of a task.
|
|
*
|
|
* \page FlopC flop.c
|
|
* \ingroup DemoFiles
|
|
* <HR>
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
|
|
/* Scheduler include files. */
|
|
#include "FreeRTOS.h"
|
|
#include "task.h"
|
|
#include "print.h"
|
|
|
|
/* Demo program include files. */
|
|
#include "flop.h"
|
|
|
|
#define mathSTACK_SIZE ( ( unsigned short ) 512 )
|
|
#define mathNUMBER_OF_TASKS ( 8 )
|
|
|
|
/* Four tasks, each of which performs a different floating point calculation.
|
|
Each of the four is created twice. */
|
|
static void vCompetingMathTask1( void *pvParameters );
|
|
static void vCompetingMathTask2( void *pvParameters );
|
|
static void vCompetingMathTask3( void *pvParameters );
|
|
static void vCompetingMathTask4( void *pvParameters );
|
|
|
|
/* These variables are used to check that all the tasks are still running. If a
|
|
task gets a calculation wrong it will
|
|
stop incrementing its check variable. */
|
|
static volatile unsigned short usTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
|
|
|
|
/*-----------------------------------------------------------*/
|
|
|
|
void vStartMathTasks( unsigned portBASE_TYPE uxPriority )
|
|
{
|
|
xTaskCreate( vCompetingMathTask1, "Math1", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 0 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask2, "Math2", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 1 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask3, "Math3", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 2 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask4, "Math4", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 3 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask1, "Math5", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 4 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask2, "Math6", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 5 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask3, "Math7", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 6 ] ), uxPriority, NULL );
|
|
xTaskCreate( vCompetingMathTask4, "Math8", mathSTACK_SIZE, ( void * ) &( usTaskCheck[ 7 ] ), uxPriority, NULL );
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void vCompetingMathTask1( void *pvParameters )
|
|
{
|
|
portDOUBLE d1, d2, d3, d4;
|
|
volatile unsigned short *pusTaskCheckVariable;
|
|
const portDOUBLE dAnswer = ( 123.4567 + 2345.6789 ) * -918.222;
|
|
const char * const pcTaskStartMsg = "Math task 1 started.\r\n";
|
|
const char * const pcTaskFailMsg = "Math task 1 failed.\r\n";
|
|
short sError = pdFALSE;
|
|
|
|
/* Queue a message for printing to say the task has started. */
|
|
vPrintDisplayMessage( &pcTaskStartMsg );
|
|
|
|
/* The variable this task increments to show it is still running is passed in
|
|
as the parameter. */
|
|
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
|
|
|
|
/* Keep performing a calculation and checking the result against a constant. */
|
|
for(;;)
|
|
{
|
|
d1 = 123.4567;
|
|
d2 = 2345.6789;
|
|
d3 = -918.222;
|
|
|
|
d4 = ( d1 + d2 ) * d3;
|
|
|
|
taskYIELD();
|
|
|
|
/* If the calculation does not match the expected constant, stop the
|
|
increment of the check variable. */
|
|
if( fabs( d4 - dAnswer ) > 0.001 )
|
|
{
|
|
vPrintDisplayMessage( &pcTaskFailMsg );
|
|
sError = pdTRUE;
|
|
}
|
|
|
|
if( sError == pdFALSE )
|
|
{
|
|
/* If the calculation has always been correct, increment the check
|
|
variable so we know this task is still running okay. */
|
|
( *pusTaskCheckVariable )++;
|
|
}
|
|
|
|
taskYIELD();
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void vCompetingMathTask2( void *pvParameters )
|
|
{
|
|
portDOUBLE d1, d2, d3, d4;
|
|
volatile unsigned short *pusTaskCheckVariable;
|
|
const portDOUBLE dAnswer = ( -389.38 / 32498.2 ) * -2.0001;
|
|
const char * const pcTaskStartMsg = "Math task 2 started.\r\n";
|
|
const char * const pcTaskFailMsg = "Math task 2 failed.\r\n";
|
|
short sError = pdFALSE;
|
|
|
|
/* Queue a message for printing to say the task has started. */
|
|
vPrintDisplayMessage( &pcTaskStartMsg );
|
|
|
|
/* The variable this task increments to show it is still running is passed in
|
|
as the parameter. */
|
|
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
|
|
|
|
/* Keep performing a calculation and checking the result against a constant. */
|
|
for( ;; )
|
|
{
|
|
d1 = -389.38;
|
|
d2 = 32498.2;
|
|
d3 = -2.0001;
|
|
|
|
d4 = ( d1 / d2 ) * d3;
|
|
|
|
taskYIELD();
|
|
|
|
/* If the calculation does not match the expected constant, stop the
|
|
increment of the check variable. */
|
|
if( fabs( d4 - dAnswer ) > 0.001 )
|
|
{
|
|
vPrintDisplayMessage( &pcTaskFailMsg );
|
|
sError = pdTRUE;
|
|
}
|
|
|
|
if( sError == pdFALSE )
|
|
{
|
|
/* If the calculation has always been correct, increment the check
|
|
variable so we know
|
|
this task is still running okay. */
|
|
( *pusTaskCheckVariable )++;
|
|
}
|
|
|
|
taskYIELD();
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void vCompetingMathTask3( void *pvParameters )
|
|
{
|
|
portDOUBLE *pdArray, dTotal1, dTotal2, dDifference;
|
|
volatile unsigned short *pusTaskCheckVariable;
|
|
const unsigned short usArraySize = 250;
|
|
unsigned short usPosition;
|
|
const char * const pcTaskStartMsg = "Math task 3 started.\r\n";
|
|
const char * const pcTaskFailMsg = "Math task 3 failed.\r\n";
|
|
short sError = pdFALSE;
|
|
|
|
/* Queue a message for printing to say the task has started. */
|
|
vPrintDisplayMessage( &pcTaskStartMsg );
|
|
|
|
/* The variable this task increments to show it is still running is passed in
|
|
as the parameter. */
|
|
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
|
|
|
|
pdArray = ( portDOUBLE * ) pvPortMalloc( ( size_t ) 250 * sizeof( portDOUBLE ) );
|
|
|
|
/* Keep filling an array, keeping a running total of the values placed in the
|
|
array. Then run through the array adding up all the values. If the two totals
|
|
do not match, stop the check variable from incrementing. */
|
|
for( ;; )
|
|
{
|
|
dTotal1 = 0.0;
|
|
dTotal2 = 0.0;
|
|
|
|
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
|
|
{
|
|
pdArray[ usPosition ] = ( portDOUBLE ) usPosition + 5.5;
|
|
dTotal1 += ( portDOUBLE ) usPosition + 5.5;
|
|
}
|
|
|
|
taskYIELD();
|
|
|
|
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
|
|
{
|
|
dTotal2 += pdArray[ usPosition ];
|
|
}
|
|
|
|
dDifference = dTotal1 - dTotal2;
|
|
if( fabs( dDifference ) > 0.001 )
|
|
{
|
|
vPrintDisplayMessage( &pcTaskFailMsg );
|
|
sError = pdTRUE;
|
|
}
|
|
|
|
taskYIELD();
|
|
|
|
if( sError == pdFALSE )
|
|
{
|
|
/* If the calculation has always been correct, increment the check
|
|
variable so we know this task is still running okay. */
|
|
( *pusTaskCheckVariable )++;
|
|
}
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
static void vCompetingMathTask4( void *pvParameters )
|
|
{
|
|
portDOUBLE *pdArray, dTotal1, dTotal2, dDifference;
|
|
volatile unsigned short *pusTaskCheckVariable;
|
|
const unsigned short usArraySize = 250;
|
|
unsigned short usPosition;
|
|
const char * const pcTaskStartMsg = "Math task 4 started.\r\n";
|
|
const char * const pcTaskFailMsg = "Math task 4 failed.\r\n";
|
|
short sError = pdFALSE;
|
|
|
|
/* Queue a message for printing to say the task has started. */
|
|
vPrintDisplayMessage( &pcTaskStartMsg );
|
|
|
|
/* The variable this task increments to show it is still running is passed in
|
|
as the parameter. */
|
|
pusTaskCheckVariable = ( unsigned short * ) pvParameters;
|
|
|
|
pdArray = ( portDOUBLE * ) pvPortMalloc( ( size_t ) 250 * sizeof( portDOUBLE ) );
|
|
|
|
/* Keep filling an array, keeping a running total of the values placed in the
|
|
array. Then run through the array adding up all the values. If the two totals
|
|
do not match, stop the check variable from incrementing. */
|
|
for( ;; )
|
|
{
|
|
dTotal1 = 0.0;
|
|
dTotal2 = 0.0;
|
|
|
|
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
|
|
{
|
|
pdArray[ usPosition ] = ( portDOUBLE ) usPosition * 12.123;
|
|
dTotal1 += ( portDOUBLE ) usPosition * 12.123;
|
|
}
|
|
|
|
taskYIELD();
|
|
|
|
for( usPosition = 0; usPosition < usArraySize; usPosition++ )
|
|
{
|
|
dTotal2 += pdArray[ usPosition ];
|
|
}
|
|
|
|
dDifference = dTotal1 - dTotal2;
|
|
if( fabs( dDifference ) > 0.001 )
|
|
{
|
|
vPrintDisplayMessage( &pcTaskFailMsg );
|
|
sError = pdTRUE;
|
|
}
|
|
|
|
taskYIELD();
|
|
|
|
if( sError == pdFALSE )
|
|
{
|
|
/* If the calculation has always been correct, increment the check
|
|
variable so we know this task is still running okay. */
|
|
( *pusTaskCheckVariable )++;
|
|
}
|
|
}
|
|
}
|
|
/*-----------------------------------------------------------*/
|
|
|
|
/* This is called to check that all the created tasks are still running. */
|
|
portBASE_TYPE xAreMathsTaskStillRunning( void )
|
|
{
|
|
/* Keep a history of the check variables so we know if they have been incremented
|
|
since the last call. */
|
|
static unsigned short usLastTaskCheck[ mathNUMBER_OF_TASKS ] = { ( unsigned short ) 0 };
|
|
portBASE_TYPE xReturn = pdTRUE, xTask;
|
|
|
|
/* Check the maths tasks are still running by ensuring their check variables
|
|
are still incrementing. */
|
|
for( xTask = 0; xTask < mathNUMBER_OF_TASKS; xTask++ )
|
|
{
|
|
if( usTaskCheck[ xTask ] == usLastTaskCheck[ xTask ] )
|
|
{
|
|
/* The check has not incremented so an error exists. */
|
|
xReturn = pdFALSE;
|
|
}
|
|
|
|
usLastTaskCheck[ xTask ] = usTaskCheck[ xTask ];
|
|
}
|
|
|
|
return xReturn;
|
|
}
|
|
|
|
|
|
|